Generalized S-modules

Ibrahima Cheikh Sow and Alhousseynou Ba
Département de Mathématique et Informatique
Faculté des sciences et techniques
Cheikh Anta Diop University, Dakar, Senegal.
sowibrahima1990@gmail.com
alhousseynou.ba@ucad.edu.sn

Abstract
Let R be a non-necessarily commutative ring with unity $1 \neq 0$ and M a unitary left R-module. An R-module M is said to be generalized hopfian if every surjective R-endomorphism of M is superfluous. It is well known that any noetherian module is generalized hopfian but converse is not always true. For instance the \mathbb{Z}-module \mathbb{Q} of rational numbers is generalized hopfian but it is not noetherian. For a fixed ring R, we study R-modules for which every generalized hopfian module of $\sigma[M]$ is noetherian. Such modules are said to be generalized S-modules. In this paper, some properties and important characterizations of generalized S-modules are given.

Keyword: hopfian module, generalized hopfian module, generalized S-module

Introduction
Let R be a non-necessarily commutative ring with unity $1 \neq 0$ and M a left module over R. Let M and N be two objects of R-Mod. We say that N is generated by M if there are a set Λ and a surjective homomorphism $\phi : M^{(\Lambda)} \rightarrow N$. A submodule of N is said to be subgenerated by M. The set of all R-modules subgenerated by M constitutes the category $\sigma[M]$. It’s a full subcategory of R-Mod.
A submodule N of M is called superfluous in M if every submodule L of M, the relation $N + L = M$ implies $L = M$. An epimorphism $f : M \to N$ is said to be superfluous if $\ker f$ is superfluous. A module N is said to be generalized hopfian if every surjective R-endomorphism of N has a superfluous kernel. We know that every noetherian module is generalized hopfian but the inverse is not true in general. For example the \mathbb{Z}-module \mathbb{Q} of rational numbers is generalized hopfian but it is not noetherian. The goal of this work is, for a fixed ring R, to find the R-modules M for which every generalized hopfian module in $\sigma[M]$ is noetherian. These modules are said to be generalized S-modules.

A projective, finitely generated and generator object of $\sigma[M]$ is said to be progenerator. An R-module N is hopfian if every surjective R-endomorphism of N is an automorphism. M is called S-module if every hopfian object of $\sigma[M]$ is noetherian. A module M is said to be locally noetherian (resp. locally of finite length) if every finitely generated submodule of M is noetherian (resp. of finite length). An R-module N is called uniserial if its submodules are linearly ordered by inclusion. A module is called serial if it is a direct sum of uniserial modules. A M is of serial representation type if every object of $\sigma[M]$ is serial. A M is serial type if every object of $\sigma[M]$ is direct sum of uniserial modules of finite length. An R-module M is said to have dual Goldie dimension, if there exist nonzero submodules N_1, \ldots, N_k and a surjection $M \to \prod_{i=1}^{k} N_i$. An R-module M is said to be Quasi-noetherian module if for every ascending chain $N_1 \subseteq \ldots \subseteq N_n \subseteq \ldots$ of R-submodules of M, there exists $m \in \mathbb{Z}^+$ such that $R^m(\bigcup_{n} N_n) \subseteq N_m$.

SOME PROPERTIES OF GENERALIZED S-MODULES

Proposition 1: Let M be a left R-module.

1. If M is a generalized S-module, then so is every submodule of M.

2. If a module M is a generalized S-module, then every homomorphic image of M is a generalized S-module.

3. Let $M = \prod_{i \in I} M_i$ be a direct product of module M_i with $\sigma[M_i] \cap \sigma[M_j] = 0$ for every $i \neq j$, then M is a generalized S-module if and only if I is finite and M_i is a generalized S-module.
Proof

1) Let N be a submodule of M. In particular, $M \in \sigma[M]$. Since $\sigma[M]$ is closed under submodule, then $N \in \sigma[M]$. The category $\sigma[N]$ becomes a full subcategory of $\sigma[M]$. Let K be an object of $\sigma[N]$. K is also an element of $\sigma[M]$. If K is generalized hopfian, then K is noetherian. Thus N is a generalized S-module.

2) Let $f: M \to M'$ be a homomorphic image of M. That implies M' is generated by M. Hence, $M' \in \sigma[M]$ by referring to 1) M' is a generalized S-module.

3) Assume $M = \prod_{i \in I} M_i$ be a generalized S-module. Let $\pi_j : M \to M_j$ for all $j \in I$ be a surjective homomorphism, then by referring to 2) M_j is a generalized S-module for all $j \in I$. Now, let’s suppose that M_i is a generalized S-module and I is finite. Let N be a generalized hopfian object of $\sigma[M]$. Let $g: \prod_{i \in I} M_i \to \bigoplus_{i \in I} M_i$ be a homomorphism

Since I is finite, then :

$$\prod_{i \in I} M_i \cong \bigoplus_{i \in I} M_i$$

Then $N \in \sigma[\bigoplus_{i \in I} M_i]$. As $\sigma[M_i] \cap \sigma[M_j] = 0$ for any $i \neq j$, then by referring to [6], $N = \bigoplus_{i \in I} N_i$ with $N_i \in \sigma[M_i]$. Since N is generalized hopfian, then N_i is generalized hopfian for each $i \in I$. As M_i is generalized S-module, then N_i is noetherian. Therefore N is noetherian. Hence, M is generalized S-module.

Lemma 1

Let M be a left R-module. If M is hopfian module, then M is generalized hopfian module.

Proof

Let f be a surjective endomorphism of M. Since M is hopfian, then $Ker f = 0$.

$$Ker f + N = 0 + N = M \Rightarrow N = M.$$

Thus M is generalized hopfian module.

Proposition 2: Let M be a left R-module. If M is a generalized S-module, then M is a S-module.

Proof

Let K be a hopfian object of $\sigma[M]$, then K is a generalized hopfian object of $\sigma[M]$. Since M is a generalized S-module, then K is noetherian.
Thus M is a S-module.

Proposition 3:
Let M be a left R-module. If M is a generalized S-module, then every indecomposable projective object of $\sigma[M]$ is noetherian.

Proof
Let N be a projective object of $\sigma[M]$ and f a surjective endomorphism of N. We assume the following exact sequence:

$$0 \rightarrow \ker f \rightarrow N \rightarrow N \rightarrow 0$$

We have $N = \ker f \bigoplus N$. As N is indecomposable, then $\ker f = 0$. Therefore N is generalized hopfian. That implies N is noetherian.

Proposition 4:
Let M be a left R-module. If M is a generalized S-module, then the projective cover of every simple object of $\sigma[M]$, if it exists, is noetherian.

Proof
Let P be a simple object of $\sigma[M]$ with projective cover \bar{P}. To show that the projective cover is noetherian, we have to prove that \bar{P} is indecomposable. Let P_1 and P_2 be two submodules of \bar{P}. We suppose $\bar{P} = P_1 \bigoplus P_2$ and a surjective homomorphism $f : \bar{P} \rightarrow P$ such that $\ker f$ is superfluous in \bar{P}. Let $f_1 \neq 0$ be the restriction of f on P_1. As P is simple, then f_1 is surjective. Then $P_2 \subseteq \ker f$ that implies $P_2 = 0$. Therefore \bar{P} is indecomposable. It results from proposition 3 that \bar{P} is noetherian.

Proposition 5:
Let M be a R-module. If M is a generalized S-module, then there exists a finite number of non isomorphic simple modules in $\sigma[M]$.

Proof Let $(N_j)_{j \in J}$ be a complete system of non-isomorphic class of simple objects of $\sigma[M]$. Assume $N = \oplus_{j \in J} N_j$. Since N is hopfian, then N is generalized hopfian, therefore N is noetherian. Hence J is finite.

Lemma 2
If M is a direct sum of an infinite countable family $(M_n)_{n \in \mathbb{N}}$ of submodules of M such that any two of them are isomorphic, then M is not generalized hopfian module.
Proof
It results from proposition 2.3 of [4].

Lemma 3
A direct summand of a generalized hopfian module is a generalized hopfian module.

Proof
Let M be a module and N a direct summand of M. We can write $M = N \oplus K$ where K is a submodule of M. If M is a generalized hopfian module and f a surjective endomorphism of N, then $\phi : M = N \oplus K \rightarrow M = N \oplus K$ such that $\phi(n + k) = f(n) + k$. ϕ is a surjective endomorphism of M. Therefore, $\text{Ker} \phi = \text{Ker} f$ is superfluous in M. If L is a submodule of N such that $\text{ker} f + L = N$, then $M = \text{ker} f + L + K$ and consequently $M = L + K$. Then $N = N \cap M = N \cap (L + K) = L + N \cap K = L + 0 = L$. Thus N is a generalized hopfian module.

Proposition 6:
Let R be a commutative ring and M a module over R. If M is a generalized S-module, then M is locally noetherian.

Proof
Let L be a finitely generated object of $\sigma[M]$. Then every finitely generated module over a commutative ring is Hopfian module. Then L is Hopfian module. By referring to Lemma 1, L is generalized Hopfian module. Thus L is noetherian. Then M is locally noetherian.

Proposition 7:
Let R be a commutative ring and M a semisimple module. If M is a generalized S-module then, every object of $\sigma[M]$ is noetherian.

Proof
Let N be a object of $\sigma[M]$. Since M is semisimple module, therefore N is semisimple module and $N = \oplus_{i \in I} N_i$ with N_i simple module. As N_i is Hopfian module and fully invariant, then N is Hopfian module. Then N is generalized Hopfian module. Thus N is noetherian.

Proposition 8:
Let R be a ring and M a generalized S-module. Then every object N of finite corank in $\sigma[M]$ is noetherian.
Proof
Let \(f: \mathbb{N} \to \mathbb{N} \) be an epimorphism, and suppose that \(\operatorname{corank}N = k \). There exist nonzero modules \(N_i \) and a surjection \(\phi: N \to \prod_{i=1}^{k} N_i \) such that \(\ker(\phi) \ll N \). Since \(g = \phi f \) is an epimorphism, then we have \(\ker(g) \ll N \).

Let \(n \in \ker(f) \), then \(g(n) = (\phi)(f(n)) = \phi(0) = 0 \), \(n \in \ker(g) \) and \(\ker(f) \subseteq \ker(g) \ll N \). Hence \(\ker(f) \ll N \). Then \(N \) is noetherian.

Proposition 9:
Let \(R \) be a ring and \(M \) a generalized \(S \)-module. Then every generalized hopfian object of \(\sigma[M] \) is Quasi-noetherian module.

Proof
Let \(N \) be a generalised Hopfian object of \(\sigma[M] \). Since \(M \) is a generalized \(S \)-module, then \(N \) is Noetherian. By referring to [8] that \(N \) is quasi-noetherian.

Proposition 10:
Let \(R \) be a ring and \(M \) a semisimple module.
If \(M \) is a generalized \(S \)-module, then the following conditions are verified:

1. every object of \(\sigma[M] \) is finite length;
2. \(M \) is serial type.

Proof
1)Let \(N \) be an object of \(\sigma[M] \). As \(M \) is semisimple module, then \(N = \bigoplus_{i \in I} N_i \) where \(N_i \) is a simple module. For every \(i \in I \), \(N_i \) is hopfian module and fully invariant. Therefore \(N \) is hopfian module, then \(N \) is generalized hopfian module. Since \(M \) is a generalized \(S \)-module, then \(N \) is noetherian. Since \(N \) is semisimple module, then \(N \) is finite length.
2)Let \(N \) be a direct sum of simple module \(N_i \). Then \(N_i \) is uniserial and finite length for every \(i \in I \). Thus \(M \) is serial type.

MAIN RESULTS

Theorem 1: Let \(R \) be a ring whose left ideal and the right ideal are two-sided. Let \(M \) be a module over \(R \). We suppose that \(\sigma[M] \) has a progenerator. Then the following conditions are equivalent:

1. \(M \) is a generalized \(S \)-module;
2. M is a S-module;

3. every object of $\sigma[M]$ is direct sum of cyclic submodules.

Proof

1 \Rightarrow 2 Assume M is a generalized S-module. By referring to proposition 2, M is a S-module.

2 \Rightarrow 3 Let P be a progenerator of $\sigma[M]$ and $x_i \in P$ for every $i \in I$, $\sigma[Rx_i]$ is a subcategory of $\sigma[M]$. Let K be a hopfian object of $\sigma[Rx_i]$, then K is a hopfian object of $\sigma[M]$. Since M is a S-module, then K is noetherian. Therefore Rx_i is a S-module. By referring to [8], $\sigma[Rx_i] = R/\text{Ann}(x_i)$-Mod, then $R/\text{Ann}(x_i)$ is a S-ring. Hence $P = \bigoplus_{i=1}^{n} Rx_i$ with Rx_i simple and for all $i \neq k$ Rx_i and Rx_k non isomorphic. Let $N \in \sigma[P]$, $N = \bigoplus_{i=1}^{n} N_i$ with $N_i \in R/\text{Ann}(x_i)$-Mod (following[7]). Since $\sigma[P] \subseteq \sigma[M]$ then $N \in \sigma[M]$. Since Rx_i is a S-module for all i, then P is a S-module. Therefore the quotient ring $R/\text{Ann}(x_i)$ is a S-ring. Following [3] theorem 2 N_i is direct sum of cyclic modules.

3 \Rightarrow 1 Let $L = \bigoplus_{i \in I} L_i$ be a generalized hopfian object of $\sigma[M]$ which is direct sum of cyclic submodules L_i. If L is not noetherian, then all the class of isomorphic of the cyclic modules of $\sigma[M]$ is finite, there exists an infinite countable family L_n of the family L_i, constituted of cyclic submodules of L such that any two of them are isomorphic. Then

$$L = Q \oplus N \text{ where } N = \bigoplus_{n \in \mathbb{N}} L_n.$$

By referring to Lemma 2, N is not generalized hopfian module. Since N is a summand direct by referring to Lemma 3, L is generalized hopfian module which is a contradiction.

Theorem 2:

Let R be a ring and M a semisimple R-module.

We assume that $\sigma[M]$ has a finite number of uniserial modules. Then the following conditions are equivalent:

1. M is a generalized S-module;

2. M is of serial representation type and of finite length.

Proof

1 \Rightarrow 2 Let N be an object of $\sigma[M]$. Since M is semisimple module, then N is
semisimple module and $N = \bigoplus N_i$ where N_i is simple. As N_i uniserial, then N is serial. Thus M is of serial representation type. M is semisimple module, then M is hopfian module. Thus M is generalized hopfian module. As M is a generalized S-module, then M is noetherian. By referring to [4] corollary 10.16 that M is finite length.

2 \Rightarrow 1 Let N be a generalized hopfian object of $\sigma[M]$. Since M is of serial representation type, then N is serial. $N = \bigoplus_{i \in I} N_i$ where N_i are uniserial. As $\sigma[M]$ has a finite number of uniserial module, then N is finite length. Therefore N is noetherian.

Theorem 3:
Let R be a commutative ring and M a regular R-module. We suppose that $\sigma[M]$ has a finite number of simple R-module. Then the following conditions are equivalent:

1. M is a generalized S-module;

2. M is locally noetherian module.

Proof
1 \Rightarrow 2 It results from proposition 6 that M is locally noetherian.

2 \Rightarrow 1. Let N be a generalized hopfian object $\sigma[M]$. M is regular module and By the condition 2 M is locally noetherian module. By referring [8] 37 that M is semisimple module. Since M is semisimple module, then N is semisimple module. $N = \bigoplus_{i \in I} N_i$ where N_i are simple module. Since $\sigma[M]$ has a finite number of simples module, then N is of finite length. Then N is noetherian, therefore M is a generalized S-module.

REFERENCES

