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Abstract
This article discusses an iterative method to solve a nonlinear equation, which is
free from derivatives, obtained by approximating a derivative in the method pro-
posed by Rhee et al. [Int. J. Comput. Math., 95 (2018), 2174-2211] by the method
of divided difference. We show analytically that the method is of order eighth
and for each iteration it requires four evaluation functions. Numerical experiments
show that the new method is comparable with other discussed methods.
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1. INTRODUCTION
Finding a simple root α of the nonlinear equation f(x) = 0 is a prototype for many
nonlinear numerical problems. Newton’s method is the most widely iterative method
used for dealing with such problems, and it is defined by

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . ,

which converges quadratically in some neighbohood of α [1, h.58].

Many researchers have modified Newton’s method in order to obtain a high order con-
vergence such as [3], [5], [6], [8], [9], [10], [11], and [13]. Sharma and Arora [15]
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developed the iteration method of the form

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

2f [yn, xn]− f ′(xn)
,

xn+1 = zn −
f [zn, yn]

f [zn, xn]

f(zn)

2f [zn, yn]− f [zn, xn]
,

where f [r, t] = (f(r)−f(t))
(r−t) , s = f(yn)

f(xn)
and u = f(zn)

f(yn)
, which has four evaluation func-

tions and an eight order of convergence. Rhee et al. [14] modified Sharma and Arora’s
method and proposed the iterative method

yn = xn − f(xn)
f ′(xn)

,

zn = xn − Lf (s)
f(xn)
f ′(xn)

,

xn+1 = zn −Kf (s, u)
f(xn)
f ′(xn)

,

 (1)

where s = f(yn)
f(xn)

, u = f(zn)
f(yn)

, Lf (s) =
(1−s)
(1−2s) and Kf (s, u) =

su(1−s)2(1−u)
(1−2s)(1−su)(1−2s−2u+3su)

,
which have four evaluation functions and an eight order convergence.

In this article, the authors present a derivative free three-step iterative method, which is
a modification of the method of Rhee et al. [14]. The derivation and analysis of conver-
gence of the proposed method are presented in section two. In section three, numerical
simulations are carried out on the four test functions using the proposed method and
three methods proposed by Rhee et al. (MCX, MAX, and MEX, see [14] for detail) to
see the efficiency of the proposed method.

2. DERIVATION AND ITS ANALYSIS OF CONVERGENCE
If the first derivative, f ′(xn), on equation (1) is estimated by using a divided difference
of the form

f ′(xn) ≈
f(wn)− f(xn)

wn − xn
,

where

wn = xn + f(xn)
3, (2)

a new derivative free three-step iteration method (MFTI) is obtained as follows

yn = xn − f(xn)(wn−xn)
f(wn)−f(xn)

,

zn = xn − Lf (s)
f(xn)(wn−xn)
f(wn)−f(xn)

xn+1 = zn −Kf (s, u)
f(xn)(wn−xn)
f(wn)−f(xn)

,

 (3)
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where s = f(yn)
f(xn)

, u = f(zn)
f(yn)

, Lf (s) =
(1−s)
(1−2s) and Kf (s, u) =

su(1−s)2(1−u)
(1−2s)(1−su)(1−2s−2u+3su)

.
The convergence analysis of (3) is given in Theorem 1.

Teorema 1 (Order of Convergence) Suppose that α ∈ I is a simple zero of a function
f : I ⊂ R→ R sufficiently differentiable at open interval I . If x0 is close enough to α,
the iterative method defined in equation (3) has an eight order convergence and satisfies
the error equation

en+1 = ((β1)c
7
2 + (β2)c

5
2 + (β3)c

4
2 + (β4)c

3
2 − c3c4c22 + (c33K13 − c33)c2)e8n +O(e9n),

where β1 = 10K32L3−L5L3+K13L
3
3+225−K70− 15K13L

2
3+75K13L3− 2L4L3+

9L2
3+5L5−90L3+10L4+K51L3−25K32−K32L

2
3−5K51−125K13, β2 = −140c3+

3K13L
2
3c3 + 5f ′(α)3 − 2L4c3 − L5c3 + 10c3K32 + 75c3K13 + c3K51 − 30K13L3c3 −

L2
3c3 − 2K32L3c3 − L3f

′(α)3 + 33L3c3, β3 = −L3c4 + 5c4, and β4 = −15c23K13 +
24c23 + 3K13L3c

2
3 − c23K32 − 2L3c

2
3 − f ′(α)3c3,

Lj =
dj

dsj
Lf (0), 0 ≤ j ≤ 7,

Kij =
1

(i!j!)

∂i+j

∂si∂uj
Kf (0, 0), 0 ≤ i+ j ≤ 8,

and

L0 = 1, L1 = 1, L2 = 2,

K00 = K10 = K01 = K20 = K02 = K30 = K03 = K40 = K50 = K60 = 0,

K11 = K12 = 1, K21 = 2, K22 = 4,

K31 = 1 + L3, K41 = −4 + 2L3 + L4.

Proof. Suppose that α is the simple root of f(x) = 0 then f(α) = 0, and f ′(α) 6= 0.
Then by Taylor’s expansion [2, h.216] of f(x) about α until the eight order derivative,
we get

f(x) = f(α) + f ′(α)
(x− α)

1!
+ f (2)(α)

(x− α)2

2!
+ f (3)(α)

(x− α)3

3!
+ f (4)(α)

(x− α)4

4!

+ f (5)(α)
(x− α)5

5!
+ f (6)(α)

(x− α)6

6!
+ f (7)(α)

(x− α)7

7!

+ f (8)(α)
(x− α)8

8!
+O(x− α)9. (4)

By evaluating equation (4) at x = xn, and recalling en = xn−α and f(α) = 0, equation
(4) can be written as

f(xn) = f ′(α)(en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + c8e

8
n) +O(e9n), (5)
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with

cn =
f (n)(α)

n!f ′(α)
, 2 ≤ n ≤ 8.

Then using equation (5), we obtain

f(xn)
3 = f ′(α)3(e3n + 3c2e

4
n + (3c3 + 3c22)e

5
n + (3c4 + 6c2c3 + c32)e

6
n + (3c23 + 3c5

+ 3c22c3 + 6c2c4)e
7
n + (6c2c5 + 3c22c4 + 6c3c4 + 3c2c

2
3 + 3c6)e

8
n)

+O(e9n). (6)

Using equation (6) and recalling xn = en + α then equation (2) becomes

wn = α + en + f ′(α)3(e3n + 3c2e
4
n + (3c3 + 3c22)e

5
n + (3c4 + 6c2c3 + c32)e

6
n

+ (3c23 + 3c5 + 3c22c3 + 6c2c4)e
7
n + (6c2c5 + 3c22c4 + 6c3c4 + 3c2c

2
3 + 3c6)e

8
n

+O(e9n)). (7)

Substituting equation (7) into equation (4) we get

f(wn) = f ′(α)en + c2f
′(α)e2n + (c3f

′(α) + f ′(α)4)e3n + · · ·+O(e9n),

and it follows that

f(wn)− f(xn) = f ′(α)4e3n + 5f ′(α)4c2e
4
n + (9f ′(α)4c22 + 6f ′(α)4c3)e

5
n

+ (7f ′(α)4c4 + 21f ′(α)4c2c3 + 7f ′(α)4c32 + c2f
′(α)7)e6n

+ (24f ′(α)4c22c3 + 8f ′(α)4c5 + 24f ′(α)4c2c4 + 12f ′(α)4

+ 3c3f
′(α)7 + 2c42f

′(α)4 + 6c22f
′(α)7)e7n + (9f ′(α)4c6

+ 15c32f
′(α)7 + 27f ′(α)4c2c

2
3 + 27f ′(α)4c22c4

+ 27f ′(α)4c2c5 + 24c2f
′(α)7c3 + 9c32f

′(α)4c3

+ 6c4f
′(α)7 + 27f ′(α)4c3c4)e

8
n +O(e9n). (8)

From equation (7), we obtain

wn − xn = f ′(α)3e3n + c23f
′(α)3e4n + (3c3 + 3c22)f

′(α)3e5n + (3c4 + 6c2c3 + c32)f
′(α)3e6n

+ (3c5 + 3c23 + 3c22 + 3c22c3 + 6c2c4)f
′(α)3e7n

+ (3c22c4 + 3c6 + 6c3c4 + 6c2c5 + 3c2c
2
3)f
′(α)3e8n +O(e9n). (9)

Moreover from equation (5) and (9) we get

f(xn)(wn − xn) = f ′(α)4(e4n + 4c2e
5
n + (4c3 + 6c22)e

6
n + (12c2c3 + 4c32 + 4c4)e

7
n

+ (12c22c3 + 6c23 + 4c5 + 12c2c4 + c42)e
8
n +O(e9n)).

(10)
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From equation (8), equation (10) and the aid of geometric series [16] we obtain

f(xn)(wn − xn)
f(wn)− f(xn)

= en − c2e2n + (−2c3 + 2c22)e
3
n + (7c2c3 − 4c32 − 3c4 − f ′(α)3c2)e4n

+ (8c42 + 10c2c4 + 6c23 − 3f ′(α)3c3 − 4c5 − 20c22c3)e
5
n

+ · · ·+O(e9n). (11)

Next equation (11) is substituted to equation (3) and simplifying the resulting equation
we get

yn = α + c2e
2
n − (−2c3 + 2c22)e

3
n − (7c2c3 − 4c32 − 3c4 − f ′(α)3c2)e4n + · · ·+O(e9n).

(12)

Then by evaluating equation (4) at x = yn as in equation (12) we get

f(yn) = c2f
′(α)e2n + (2c3 − 2c22)f

′(α)e3n + ((3c4 + 5c32 − 7c2c3)f
′(α) + f ′(α)4c2)e

4
n

+ · · ·+O(e9n). (13)

To calculate s = f(yn)
f(xn)

we use equation (5), equation (13) and the aid of geometric
series [16, h.730] we end up with

s = c2en + (−3c22 + 2c3)e
2
n + (f ′(α)3c2 − 10c2c3 + 8c32 + 3c4)e

3
n + · · ·+O(e9n).

(14)

Since Lf (s) =
(1−s)
(1−2s) , then by Taylor’s expansion of Lf (s) around s = 0, and by using

equation (14) we obtain

Lf (s) = L0 + L1c2en + (2L1c3 − 3L1c
2
2 + L2c

2
2)e

2
n + (L1c2f

′(α)3 + 4L2c2c3

+ L3c
3
2 − 6L2c

3
2 − 10L1c2c3 + 3L1c4 + 8L1c

3
2)e

3
n + · · ·+O(e9n), (15)

where

Lj =
dj

dsj
Lf (s), 0 ≤ j ≤ 7.

Next equation (11) an equation (15) are substituted into equation (3) and simplifying
the resulting equation, we end up with

zn = α + (1− L0)en + (L0c2 − L1c2)e
2
n + (2L0c3 − 2L0c

2
2 − 2L1c3 + 4L1c

2
2 − L2c

2
2)e

3
n

+ · · ·+O(e9n). (16)

Then by evaluating equation (4) at x = zn as in equation (16), and setting L0 = 1, L1 =
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1, L2 = 2 then simplifying we obtain

f(zn) = (− c2c3 + 5c32 − L3c
3
2)f
′(α)e4n + ((10L3c

4
2 − 6L3c

2
2c3 − 2c2c4 − 36c42 − L4c

4
2

+ 32c22c3 − 2c23)f
′(α)− f ′(α)4c22)e5n + · · ·+O(e9n). (17)

Then using equation (17), equation (13) and the aid of geometric series [16, h.730] we
have

u =
f(zn)

f(xn)
= (− c22L3 + 5c22 − c3)e2n + (−2c4 + 20c2c3 − 4c2L3c3 − 26c32

− c32L4 − f ′(α)3c2 + 8L3c
3
2)e

3
n + · · ·+O(e9n). (18)

Next by Taylor’s expansion ofKf (s, u) about (s = 0, u = 0), up to the order of seven in
s and three in u, using the equation (14) and equation (18), after simplifying we obtain

Kf (s, u) = K00 + c2K10en + (5K01c
2
2 + c22K20 + 2c3K10 − 3c22K10 −K01c3

−K01c
2
2L3)en

2 + (c32K30 + c2f
′(α)3K10 − 6c32K20 −K11L3c

3
2

−K01c2f
′(α)3 −K11c2c3 − 2K01c4 − 4K01c2L3c3 − 10c2c3K10

+ 8c32K10 + 5K11c
3
2 + 3c4K10 − 26K01c

3
2 + 4c2c3K20 + 8K01L3c

3
2

+ 20K01c2c3 −K01c
3
2L4)e

3
n + · · ·+O(e9n), (19)

where

Kij =
1

(i!j!)

∂i+j

∂si∂uj
Kf (s, u), 0 ≤ i+ j ≤ 8.

Substituting the equation (11), equation (16) and equation (19) into the equation (3), we
obtain

xn+1 = α−K00en + (K00c2 − c2K10)e
2
n + (−2c3K10 − c22K20 +K01c

2
2L3 − 5K01c

2
2

− 2K00c
2
2 + 4c22K10 +K01c3 + 2K00c3)e

3
n +

8∑
l=4

γle
l
n +O(e9n), (20)

where γl = γl(c2, c3, · · · , c6, L3, · · · , L7, Kij), for 4 ≤ l ≤ 8, 0 ≤ i ≤ 7 and 0 ≤ j ≤ 3.
Setting

K00 = K10 = K01 = K20 = 0,

from equation (20) along with γ4 = 0, we immediately obtain

K11 = 1, K30 = 0.

Continuing in this manner at the l-th stage with 4 ≤ l ≤ 7, γl = 0 and solve γl = 0 for
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remaining Kij to find

K02 = 0, K21 = 2, K40 = 0, K12 = 1, K31 = 1 + L3, K50 = 0,

K03 = 0, K22 = 4, K41 = −4 + 2L3 + L4, K60 = 0.

On substituting these values of Kij into γ8, recalling en+1 = xn+1 − α, we find

en+1 = ((− c33 +K13c
3
3)c2 + (24c23 + 3K13L3c

2
3 − f ′(α)3c3 − 15K13c

2
3 − 2L3c

2
3

−K32c
2
3)c

3
2 − c22c4c3 + (5c4 − L3c4)c

4
2 + (−2K32L3c3 − 140c3 + 3K13L

2
3c3

− 30K13L3c3 + 75K13c3 + 33L3c3 − L2
3c3 +K51c3 + 5f ′(α)3 − 2L4c3

− L3f
′(α)3 − L5c3 + 10K32c3)c

5
2 + (225− 25K32 − 125K13 + 10K32L3

+ 9L2
3 − 5K51 −K70 + 10L4 + 5L5 +K13L

3
3 − 90L3 + 75K13L3 − 2L4L3

− L5L3 − 15K13L
2
3 −K32L

2
3 +K51L3)c

7
2)e

8
n +O(e9n).

From the definition of the convergence order [12, h.75], we see that the iterative method (3)
is of order eight and Theorem 1 is proven. 2

3. NUMERICAL SIMULATION
In this section numerical simulations are performed which aim to compare the proposed
method (MFTI) and the known methods as the MCX, the MAX, and the MEX as defined
in [14]. The following nonlinear equations used to perform the comparison:

(i) f1(x) = log(x)−
√
x+ x3.

(ii) f2(x) = x5 + log[1 + sin(x)].

(iii) f3(x) = sin(x) exp(x2 − 3x) + ln(1 + x2).

In computation, we use tolerance of 1.0 × 1E − 200 and addition the maximum num-
ber of iterations allowed is 100. The computational order of convergence (COC) is
estimated using a formula [4]

COC ≈ ln |xk+1 − xk|/|xk − xk−1|
ln |xk − xk−1|/|xk−1 − xk−2|

.

In Table 1, fn(x) states the nonlinear function, n states the number of iterations, COC is
the computational order of convergence, |f(xn)| is the absolute value of the function and
|xn−xn−1| is the absolute value of difference between two consecutive approximation.

Based on Table 1, it can be seen that for all the functions with different initial guesses
the method MFTI requires the same number of iterations as MCX, MAX, and MEX.
In addition, the COC of the MFTI obtained is in agreement with the analytic result that
is the method is eight order of convergence. Since the method needs four evaluation
functions in each iteration, based on the efficiency index definition [7, h.261], the MFTI
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Table 1: Comparison of several iteration methods
fn(x) x0 Method n COC |f(xn)| |xn − xn−1|

f1 0.9

MFTI 3 8.00 9.61e− 402 2.745286e− 402

MCX 3 8.00 2.13e− 631 6.084325e− 632

MAX 3 8.00 7.41e− 613 2.118174e− 613

MEX 3 8.00 8.18e− 600 2.336771e− 600

f1 0.7

MFTI 3 8.00 2.03e− 205 5.798626e− 206

MCX 3 8.00 4.37e− 488 1.249273e− 488

MAX 3 8.00 6.49e− 475 1.855657e− 475

MEX 3 8.00 1.85e− 461 5.284096e− 462

f2 0.8

MFTI 4 8.00 7.53e− 305 7.530220e− 305

MCX 4 8.00 4.33e− 645 4.334704e− 645

MAX 4 8.00 8.98e− 266 8.981312e− 266

MEX 4 8.00 5.48e− 236 5.481051e− 236

f2 0.35

MFTI 3 8.00 5.13e− 330 5.130751e− 330

MCX 3 8.00 1.94e− 353 1.940880e− 353

MAX 3 8.00 6.38e− 363 6.379317e− 363

MEX 3 8.00 1.25e− 365 1.248019e− 365

f3 0.35

MFTI 3 8.00 2.13e− 210 2.125722e− 210

MCX 3 8.00 1.96e− 317 1.959292e− 317

MAX 3 8.00 2.61e− 219 2.607581e− 219

MEX 3 8.00 1.63e− 202 1.625053e− 202

f3 0.2

MFTI 3 8.00 1.22e− 262 1.221857e− 262

MCX 3 8.00 4.17e− 292 4.166594e− 292

MAX 3 8.00 5.43e− 300 5.430683e− 300

MEX 3 8.00 6.58e− 242 6.575072e− 242

has an efficiency index 8
1
4 ≈ 1.68179. The advantages of this method is that it does not

use the first derivative of the function.

Over all based on Table 1, the MFTI can compete the existing eight-order method and
it can be used as an alternative method to solve the nonlinear equation.
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