Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 15, Number 4 (2019), pp. 505-516 © Research India Publications https://dx.doi.org/10.37622/GJPAM/15.4.2019.505-516

On Fuzzy Z - Ideals in Z - Algebras

S.Sowmiya¹ and P.Jevalakshmi²

¹Research Scholar, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-43, Tamil Nadu, India.

²Professor and Head, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-43, Tamil Nadu, India.

Abstract

In this paper, we introduce the notion of fuzzy Z-ideal of a Z-algebra and investigate their properties. We study the homomorphic image and pre-image of fuzzy Z-ideals under Z-homomorphisms. We have also proved that the Cartesian product of fuzzy Z-ideals is a fuzzy Z-ideal.

Keywords: Z-algebra, Z-ideal, Z-homomorphism, Level Z-ideals, Fuzzy Z-Ideals, Cartesian Product of Z-algebras.

AMS Classification 2010: 03B47, 03B52.

1. INTRODUCTION

To deal with the uncertainty in the real physical world problem, the binary valued logic could not be applied. To handle this situation, Zadeh [11], in the year 1965, introduced the notion of fuzzy sets in which every member of the universal set under consideration can be assigned a value in the real interval [0,1], called the membership grading of the element. Imai and Iseki [4, 5], introduced two new classes of algebras that arise from the propositional logic. The algebras that was developed from the BCK and BCI logics are known as BCK-algebras and BCI-algebras. Since then many new algebras were developed. One such class of algebra developed from the propositional logic is the Z-algebras by Chandramouleeswaran et al.[2] in the year 2017.

In the year 1975, Rosenfeld [8] fuzzified the groups. Following the idea of fuzzy groups, Xi [10] introduced the concept of fuzzy BCK-algebras. Jun et al. [7] studied the concept of fuzzy ideals in BCK-algebras. In our earlier paper [9] we introduced the notion of fuzzy Z-Subalgebras in Z-algebras and studied some of their properties. In this paper, we introduce the concept of fuzzy Z-ideals of Z-algebras and prove some simple but elegant properties.

2. PRELIMINARIES

In this section we recall some basic definitions that are needed for our work.

Definition 2.1. [6] A BCK- algebra (X, *, 0) is a nonempty set X with constant 0 and a binary * operation satisfying the following conditions:

```
(i) (x * y) * (x * z) \le (z * y)
```

$$(ii)x * (x * y) \le y$$

- $(iii)x \leq x$
- (iv) $x \le y$ and $y \le x$ implies x = y
- (v) $0 \le x \Rightarrow x=0$ is defined by x * y = 0 for all $x, y \in X$.

Definition 2.2. [5] A BCI- algebra (X, *, 0) is a nonempty set X with constant 0 and a binary operation * satisfying the following conditions:

```
(i) (x * y) * (x * z) \le (z * y)
```

- (ii) $x * (x * y) \le y$
- (iii) x < x
- (iv) $x \le y$ and $y \le x$ implies x = y
- (v) x < 0 implies x=0 is defined by x * y = 0 for all $x, y \in X$.

Definition 2.3. [2] A Z-algebra (X, *, 0) is a nonempty set X with constant 0 and a binary operation * satisfying the following conditions:

- (Z1) x * 0 = 0
- $(Z2) \ 0 * x = x$
- (Z3) x * x = x
- (Z4) x * y = y * x when $x \neq 0$ and $y \neq 0$ for all $x, y \in X$.

Definition 2.4. [2] Let X be a Z-algebra and I be a subset of X. Then, I is called a Z-ideal of X, if it satisfies the following conditions: For all x, y in X,

- (i) $0 \in I$
- (ii) $x * y \in I$ and $y \in I$ implies $x \in I$.

Definition 2.5. [2] Let (X, *, 0) and (Y, *', 0') be two Z-algebras. A mapping $h: (X, *, 0) \to (Y, *', 0')$ is said to be a Z-homomorphism of Z-algebras if h(x * y) = h(x) *' h(y) for all $x, y \in X$.

Definition 2.6. [9] Let h be a Z-homomorphism from the Z-algebra (X, *, 0) to the Z-algebra (Y, *', 0'). Then

- 1. h is called
- (i) a Z-monomorphism of Z-algebras if h is 1-1.
- (ii) an Z-epimorphism of Z-algebras if h is onto.
- 2. h is called an Z-endomorphism of Z-algebras if h is a mapping from (X, *, 0) into itself.

Note: If $h:(X,*,0)\to (Y,*',0')$ is a Z-homomorphism then h(0)=0'.

Definition 2.7. [11] Let X be a nonempty set. A fuzzy set A in X is characterized by a membership function μ_A which associates with each point x in X, a real number in the interval [0,1] with the value of $\mu_A(x)$ at x representing the "grade of membership" of x in A. That is, a fuzzy set A in X is characterized by a membership function $\mu_A: X \to [0,1]$.

Definition 2.8. [9] Let (X, *, 0) be a Z-algebra. A fuzzy set A in X with a membership function μ_A is said to be a fuzzy Z- Subalgebra of a Z-algebra X if, for all x, y in X the following condition is satisfied: $\mu_A(x * y) \ge min\{\mu_A(x), \mu_A(y)\}$.

Definition 2.9. [7] A fuzzy set A in BCK-algebra X with membership function μ_A is called a fuzzy ideal of X if it satisfies the following conditions:

(i)
$$\mu_A(0) \ge \mu_A(x)$$

(ii)
$$\mu_A(x) \ge \min\{\mu_A(x * y), \mu_A(y)\}\$$
 for all $x, y \in X$.

Definition 2.10. [3] Let A be a fuzzy set of X. For a fixed $t \in [0,1]$, the set $U(A;t) = \{x \in X | \mu_A(x) \ge t\}$ is called an upper level subset (upper level cut, upper t-level subset) of A.

Definition 2.11. [3] Let A be a fuzzy set of X. For a fixed $t \in [0,1]$, the set $L(A;t) = \{x \in X | \mu_A(x) \le t\}$ is called a lower level subset (lower level cut, lower t-level subset) of A.

Note: (i)
$$t_1 \le t_2, U(A; t_2) \subseteq U(A; t_1)$$
 and $L(A; t_1) \subseteq L(A; t_2)$.
 (ii) $U(A; t) \cup L(A; t) = X$ for all $t \in [0, 1]$.

Definition 2.12. [8] A fuzzy set A in X with a membership function μ_A is said to have the sup property if for any subset $T \subset X$ there exists $x_0 \in X$ such that $\mu_A(x_0) = \sup_{t \in T} \mu_A(t)$.

Definition 2.13. [1] A fuzzy relation A on a nonempty set X is a fuzzy set A with a membership function $\mu_A: X \times X \to [0,1]$.

Definition 2.14. [1] If A is a fuzzy relation with a membership function μ_A on a set X and B is a fuzzy set of X with a membership function μ_B then A is a fuzzy relation on B if for all $x, y \in X$, $\mu_A(x, y) \leq min\{\mu_B(x), \mu_B(y)\}$.

Definition 2.15. [1] Let B be a fuzzy set on a set X with a membership function μ_B then the strongest fuzzy relation A_B on X, that is, a fuzzy relation A on B whose membership function $\mu_{A_B}: X \times X \to [0,1]$ is given by $\mu_{A_B}(x,y) = min\{\mu_B(x), \mu_B(y)\}.$

Theorem 2.16. Let (X, *, 0) and (Y, *', 0') be two Z-algebras. Then $(X \times Y, *'', 0'')$ is a Z-algebra where $(x_1, y_1) *''(x_2, y_2) = (x_1 * x_2, y_1 *'y_2)$ for all $(x_1, y_1), (x_2, y_2) \in X \times Y$, with 0'' = (0, 0') as constant element.

3. FUZZY Z -IDEALS IN Z-ALGEBRAS:

In this section, we introduce the notion of Fuzzy Z-Ideals of Z-algebras and prove some simple but elegant results.

Definition 3.1. Let (X, *, 0) be a Z-algebra. A fuzzy set A in X with a membership function μ_A is said to be fuzzy Z- ideal of a Z-algebra X if it satisfies the following conditions: For all x, y in X,

(i)
$$\mu_A(0) \ge \mu_A(x)$$

(ii) $\mu_A(x) \ge \min\{\mu_A(x * y), \mu_A(y)\}$

Example 3.2. Consider a Z-algebra $X = \{0,1,2,3\}$ with the following Cayley table as in [9]:

Table 1

0	1	2	3
0	1	2	3
0	1	3	2
0	3	2	1
0	2	1	3
	0 0 0	0 1 0 1 0 3	0 1 2 0 1 3 0 3 2

Then (X, *, 0) is a Z-algebra.

Define a fuzzy set A_1 and A_2 in X with a membership function μ_{A_1} and μ_{A_2} are given by $\mu_{A_1}(x) = 0.9$ for all x=0,1,2,3. and

$$\mu_{A_2}(x) = \begin{cases} 0.8 & \text{if } x = 0\\ 0.6 & \text{if } x = 1\\ 0.5 & \text{if } x = 2, 3. \end{cases}$$

Then A_1 is a fuzzy Z-ideal of X , while A_2 is not. For,

$$\mu_{A_2}(2) = 0.5 \not\geq 0.8 = min\{0.8, 0.8\} = min\{\mu_{A_2}(0), \mu_{A_2}(0)\} = min\{\mu_{A_2}(2 * 0), \mu_{A_2}(0)\}.$$

Theorem 3.3. Arbitrary intersection of fuzzy Z-ideals of Z-algebra X is also a fuzzy Z-ideal.

Proof:Let $\{A_i | i \in \Omega\}$ be a family of fuzzy Z-ideals of Z-algebra X.

To prove: $\cap_{i \in \Omega} A_i$ is a fuzzy Z-ideal of X.

For any $x, y \in X$,

$$\begin{split} (i)\mu_{\cap_{i\in\Omega}A_{i}}(0) &= \inf_{i\in\Omega}(\mu_{A_{i}}(0)) \geq \inf_{i\in\Omega}(\mu_{A_{i}}(x)) = \mu_{\cap_{i\in\Omega}A_{i}}(x) \\ (ii)\mu_{\cap_{i\in\Omega}A_{i}}(x) &= \inf_{i\in\Omega}(\mu_{A_{i}}(x)) \\ &\geq \{\inf_{i\in\Omega}(\mu_{A_{i}}(x*y)), \inf_{i\in\Omega}(\mu_{A_{i}}(y))\} \\ &= \min\{\mu_{\cap_{i\in\Omega}A_{i}}(x*y), \mu_{\cap_{i\in\Omega}A_{i}}(y)\} \end{split}$$

From (i) and (ii) we get,

 $\bigcap_{i\in\Omega}A_i$ is a fuzzy Z-ideal of X.

Hence the proof.

Theorem 3.4. A fuzzy set A of a Z-algebra (X, *, 0) is a fuzzy Z-ideal if and only if for any $t \in [0, 1]$, $U(A; t) = \{x \in X | \mu_A(x) \ge t\}$ is an Z-ideal of X where $U(A; t) \ne \phi$. **Proof:** Suppose A is a fuzzy Z-ideal of X and $U(A; t) \ne \phi$ for $t \in [0, 1]$.

Let $x \in U(A; t)$, then $\mu_A(x) \ge t$.

By definition of fuzzy Z-ideal, we have $\mu_A(0) \ge \mu_A(x) \ge t$. Then $0 \in U(A;t)$.

If $x * y \in U(A; t)$ and $y \in U(A; t)$, then $\mu_A(x * y) \ge t$ and $\mu_A(y) \ge t$.

By definition, we have $\mu_A(x) \geq \min\{\mu_A(x * y), \mu_A(y)\} \geq \min\{t, t\} = t$.

Therefore $x \in U(A;t)$. Hence U(A;t) is an Z-ideal of X.

Conversely, suppose that for each $t \in [0, 1]$, U(A;t) is either empty or an Z-ideal of X.

For any $x \in X$, let $\mu_A(x) = t$. Then $x \in U(A; t)$

Since $U(A;t) \neq \phi$ is an Z-ideal of X, we have $0 \in U(A;t)$

and hence $\mu_A(0) \ge t = \mu_A(x)$.

Thus $\mu_A(0) \ge \mu_A(x)$, for all $x \in X$.

Assume that $\mu_A(x) \geq \min\{\mu_A(x*y), \mu_A(y)\}\$ for all $x, y \in X$ is not true.

Then there exists $x_0, y_0 \in X$ such that $\mu_A(x_0) < min\{\mu_A(x_0 * y_0), \mu_A(y_0)\}$.

Let $t_0 = \frac{1}{2} [\mu_A(x_0) + min\{\mu_A(x_0 * y_0), \mu_A(y_0)\}].$

Then $\mu_A(x_0) < t_0 < min\{\mu_A(x_0 * y_0), \mu_A(y_0)\}$. This implies $x_0 * y_0, y_0 \in U(A; t_0)$ and $x_0 \notin U(A; t_0)$.

But $U(A;t_0)$ is an Z-ideal of X. So $x_0 \in U(A;t_0)$ by the definition of Z-ideal. This implies $\mu_A(x_0) \ge t_0$. This is a contradiction.

Therefore $\mu_A(x) \ge \min\{\mu_A(x*y), \mu_A(y)\}$. Hence A is a fuzzy Z-ideal of Z-algebra X.

Definition 3.5. Let A be a fuzzy Z-ideal of X. For any $t \in [0, 1]$, Z-ideals U(A;t) are called Upper level Z-ideals of A.

Remark 3.6. Henceforth, the Upper level Z-ideals will be referred as level Z-ideals.

Theorem 3.7. A fuzzy set A of a Z-algebra (X, *, 0) is a fuzzy Z-ideal if and only if every nonempty level subset of U(A;q), $q \in Im(A)$ is a Z-ideal.

Proof: Let A is a fuzzy Z-ideal.

Claim: U(A;q), $q \in Im(A)$ is a Z-ideal.

Since $U(A;q) \neq \phi$ there exists $x \in U(A;q)$ such that $\mu_A(x) \geq q$.

Since A is a fuzzy Z-ideal, $\mu_A(0) \ge \mu_A(x)$ for all $x \in X$.

Hence for this $x \in U(A;q)$, $\mu_A(0) \ge q$, which shows that $0 \in U(A;q)$.

Now, for any $x, y \in X$, assume that $x * y \in U(A; q)$ and $y \in U(A; q)$.

Then $\mu_A(x*y) \ge q$ and $\mu_A(y) \ge q$. This shows that, $\min\{\mu_A(x*y), \mu_A(y)\} \ge q$.

Since A is a fuzzy Z-ideal, $\mu_A(x) \ge \min\{\mu_A(x * y), \mu_A(y)\} \ge q$.

Thus $x \in U(A; q)$, this proves that U(A;q) is a Z-ideal of X.

Conversely, let U(A;q), $q \in Im(A)$ be a Z-ideal of X.

Claim: A is a fuzzy Z-ideal.

Let $x, y \in X$. For any $q \in Im(A)$, let $q = min\{\mu_A(x * y), \mu_A(y)\}$.

Therefore, $\mu_A(x * y) \ge q$ and $\mu_A(y) \ge q$.

This shows that $x * y, y \in U(A; q)$.

Since U(A;q) is a Z-ideal we have $x \in U(A;q)$.

This proves that $\mu_A(x) \ge q = min\{\mu_A(x * y), \mu_A(y)\}.$

This shows that A is a fuzzy Z-ideal of X.

Theorem 3.8. Let A be a fuzzy Z-ideal of Z-algebra X and let $x \in X$. Then $\mu_A(x) = t$ if and only if $x \in U(A;t)$ but $x \notin U(A;q)$ for all q > t.

Proof: Let A be a fuzzy Z-ideal of X and let $x \in X$.

Assume $\mu_A(x) = t$, so that $x \in U(A; t)$.

If possible, let $x \in U(A; q)$ for q > t.

Then $\mu_A(x) \ge q > t$.

This contradicts the fact that $\mu_A(x) = t$. Hence $x \neq U(A;q)$ for all q > t.

Conversely, let $x \in U(A; t)$, but $x \notin U(A; q)$ for all q > t.

 $x \in U(A;t) \Rightarrow \mu_A(x) \geq t$.

Since $x \notin U(A;q)$ for all q > t, $\mu_A(x) = t$.

4. Z-HOMOMORPHISM ON FUZZY Z-IDEALS IN Z-ALGEBRAS

In this section we prove some theorems on fuzzy Z-ideals under Z-homomorphisms in Z-algebras.

Example 4.1. Consider the Z-algebras (X, *, 0) and (Y, *', 0') with the following Cayley table:

Table 2

*	0	1	2	3
0	0	1	2	3
1	0	1	3	2
2	0	3	2	1
3	0	2	1	3

Table 3

*	0'	1	2	3
0'	0'	1	2	3
1	0'	1	1	3
2	0'	1	2	1
3	0'	3	1	3

Then the function $h:(X,*,0)\to (Y,*',0')$ such that

$$h(x) = \begin{cases} 0 & \text{if } x = 0\\ 3 & \text{if } x = 1, 2, 3. \end{cases}$$

is a Z-homomorphism.

Define a fuzzy set A in X with membership function μ_A is given by $\mu_A(x) = 0.4$ for all $x \in X$ is a fuzzy Z-ideal of X.

Then the homomorphic image of A, h(A) with a membership function $\mu_{h(A)}$ defined by

$$\mu_{h(A)}(y) = \begin{cases} \sup_{z \in h^{-1}(y)} \mu_A(z) & \text{if } h^{-1}(y) = \{x | h(x) = y \neq \phi\} \\ 0 & \text{if } otherwise \end{cases}$$

is a fuzzy set in Y.

This implies, $\mu_{h(A)}(y) = 0.4$ for all $y \in Y$ is a fuzzy Z-ideal of Y.

Theorem 4.2. Let h be a Z-homomorphism from a Z-algebra (X, *, 0) onto a Z-algebra (Y, *', 0') and A be a fuzzy Z-ideal of X with the supremum property. Then image of A denoted by h(A) is a fuzzy Z-ideal of Y.

Proof: Let $a, b \in Y$ with $x_0 \in h^{-1}(a)$ and $y_0 \in h^{-1}(b)$ such that $\mu_A(x_0) = \sup_{t \in h^{-1}(a)} \mu_A(t)$;

$$\mu_A(y_0) = \sup_{t \in h^{-1}(b)} \mu_A(t) .$$

$$(i)\mu_{h(A)}(0') = \sup_{t \in h^{-1}(0')} \mu_A(t) \ge \mu_A(0) \ge \mu_A(x_0) = \sup_{t \in h^{-1}(a)} \mu_A(t) = \mu_{h(A)}(a)$$

$$(ii)min\{\mu_{h(A)}(a*b), \mu_{h(A)}(b)\} = min\{\sup_{t \in h^{-1}(a*b)} \mu_{A}(t), \sup_{t \in h^{-1}(b)} \mu_{A}(t)\}$$

$$= min\{\mu_{A}(x_{0}*y_{0}), \mu_{A}(y_{0})\}$$

$$\leq \mu_{A}(x_{0})$$

$$= \sup_{t \in h^{-1}(a)} \mu_{A}(t)$$

$$= \mu_{h(A)}(a)$$

This implies, $\mu_{h(A)}(a) \ge \min\{\mu_{h(A)}(a*b), \mu_{h(A)}(b)\}.$ Hence h(A) is a fuzzy Z-ideal of Y.

Theorem 4.3. Let $h: X \to Y$ be a homomomorphism of Z-algebra. If B is a fuzzy Z-ideal of Y, then $h^{-1}(B)$ is a fuzzy Z-ideal of X.

Proof:Since B is a fuzzy Z-ideal of Y. For any $x \in X$, we have

$$(i)\mu_{h^{-1}(B)}(x) = \mu_B(h(x)) \le \mu_B(0') = \mu_B(h(0)) = \mu_{h^{-1}(B)}(0)$$

(ii) Let $x, y \in X$. Then

$$\min\{\mu_{h^{-1}(B)}(x*y), \mu_{h^{-1}(B)}(y)\} = \min\{\mu_{B}(h(x*y)), \mu_{B}(h(y))\}$$

$$= \min\{\mu_{B}(h(x)*'h(y)), \mu_{A}(h(y))\}$$

$$\leq \mu_{B}(h(x))$$

$$= \mu_{h^{-1}(B)}(x)$$

$$\Rightarrow \mu_{h^{-1}(B)}(x) \geq \min\{\mu_{h^{-1}(B)}(x*y), \mu_{h^{-1}(B)}(y)\}$$

From (i) and (ii) we get, $h^{-1}(B)$ is a fuzzy Z-ideal of X.

Theorem 4.4. Let $h: X \to Y$ be an Z-epimorphism of Z-algebras. Let B be a fuzzy set of Y. If $h^{-1}(B)$ is a fuzzy Z-ideal of X then B is a fuzzy Z-ideal of Y.

Proof:Assume that $h^{-1}(B)$ is a fuzzy Z-ideal of X.

To prove:B is a fuzzy Z-ideal of Y.

Let $y \in Y$, there exists $x \in X$ such that h(x)=y. Then

$$(i)\mu_B(y) = \mu_B(h(x)) = \mu_{h^{-1}(B)}(x) \le \mu_{h^{-1}(B)}(0) = \mu_B(h(0)) = \mu_B(0')$$

This implies $\mu_B(0') \ge \mu_B(y)$.

(ii) Let $x, y \in Y$. Then there exists $a, b \in X$ such that h(a)=x and h(b)=y. It follows that

$$\begin{split} \mu_B(x) &= \mu_B(h(a)) = \mu_{h^{-1}(B)}(a) \\ &\geq \min\{\mu_{h^{-1}(B)}(a*b), \mu_{h^{-1}(B)}(b)\} \\ &= \min\{\mu_B(h(a*b)), \mu_B(h(b))\} \\ &= \min\{\mu_B(h(a)*'h(b)), \mu_B(h(b))\} \\ &= \min\{\mu_B(x*'y), \mu_B(y)\} \end{split}$$
 This implies, $\mu_B(x) \geq \min\{\mu_B(x*'y), \mu_B(y)\}$

From (i) and (ii) we get, B is a fuzzy Z-ideal of Y.

Definition 4.5. Let h be an Z-endomorphism of Z-algebras and A be a fuzzy set in X. We define a new fuzzy set A^h in X as $\mu_{A^h}(x) = \mu_A(h(x))$ for all $x \in X$.

Theorem 4.6. Let h be an Z-endomorphism of Z-algebra X and A be a fuzzy set in X. Then A^h is a fuzzy Z-ideal of X if A is a fuzzy Z-ideal. **Proof:**Obvious.

5. CARTESIAN PRODUCT OF FUZZY Z-IDEALS IN Z-ALGEBRAS

In this section we discuss the concept of Cartesian product of fuzzy Z-ideals in Z-algebras.

Theorem 5.1. If A and B be fuzzy Z-ideals in a Z-algebra X then $A \times B$ is a fuzzy Z-ideals in $X \times X$.

Proof: Let A and B be fuzzy Z-ideals in a Z-algebra X.

To prove: $A \times B$ is a fuzzy **Z**-ideals in $X \times X$.

(i) Let
$$(x_1, x_2) \in X \times X$$
, $\mu_{A \times B}(0, 0) = min\{\mu_A(0), \mu_B(0)\} \ge min\{\mu_A(x_1), \mu_B(x_2)\} = \mu_{A \times B}(x_1, x_2)$ Hence $\mu_{A \times B}(0, 0) \ge \mu_{A \times B}(x_1, x_2)$ (ii) Let $(x_1, x_2), (y_1, y_2) \in X \times X$. Then,

$$\begin{split} \mu_{A\times B}(x_1,x_2) &= \min\{\mu_A(x_1),\mu_B(x_2)\} \\ &\geq \min\{\min\{\mu_A(x_1*y_1),\mu_A(y_1)\},\min\{\mu_B(x_2*y_2),\mu_B(y_2)\}\} \\ &= \min\{\min\{\mu_A(x_1*y_1),\mu_B(x_2*y_2)\},\min\{\mu_A(y_1),\mu_B(y_2)\}\} \\ &= \min\{\mu_{A\times B}((x_1*y_1),(x_2*y_2),\mu_{A\times B}(y_1,y_2)\} \\ &= \min\{\mu_{A\times B}((x_1,x_2)*(y_1,y_2)),\mu_{A\times B}(y_1,y_2)\} \\ &\text{Hence } \mu_{A\times B}(x_1,x_2) \geq \min\{\mu_{A\times B}((x_1,x_2)*(y_1,y_2)),\mu_{A\times B}(y_1,y_2)\} \end{split}$$

Theorem 5.2. Let A and B be fuzzy sets in a Z-algebra X such that $A \times B$ is a fuzzy Z-ideal of $X \times X$. Then,

(i) Either
$$\mu_A(0) \ge \mu_A(x)$$
 (or) $\mu_B(0) \ge \mu_B(x)$ for all $x \in X$.

By (i) and (ii) we get, $A \times B$ is a fuzzy Z-ideal in $X \times X$.

(ii) If $\mu_A(0) \ge \mu_A(x)$ for all $x \in X$, then either $\mu_B(0) \ge \mu_A(x)$ (or) $\mu_B(0) \ge \mu_B(x)$.

(iii) If
$$\mu_B(0) \ge \mu_B(x)$$
 for all $x \in X$, then either $\mu_A(0) \ge \mu_A(x)$ (or) $\mu_A(0) \ge \mu_B(x)$.

Proof: Let A and B be fuzzy sets in a Z-algebra X such that $A \times B$ is a fuzzy Z-ideal of $X \times X$.

(i) If $\mu_A(0) < \mu_A(x_1)$ and $\mu_B(0) < \mu_B(x_2)$ for some $x \in X$.

Then
$$\mu_{A\times B}(x_1, x_2) = min\{\mu_A(x_1), \mu_B(x_2)\}\$$

> $min\{\mu_A(0), \mu_B(0)\}\$
= $\mu_{A\times B}(0, 0)$, which is a contradiction.

Hence, either $\mu_A(0) \ge \mu_A(x)$ (or) $\mu_B(0) \ge \mu_B(x)$ for all $x \in X$.

(ii) Let $\mu_A(0) \ge \mu_A(x)$ for all $x \in X$.

To prove:Either $\mu_B(0) \ge \mu_A(x)$ (or) $\mu_B(0) \ge \mu_B(x)$.

Assume that there exists $x_1, x_2 \in X$ such that $\mu_B(0) < \mu_A(x_1)$ and $\mu_B(0) < \mu_B(x_2)$.

Then,
$$\mu_{A\times B}(0,0) = min\{\mu_A(0),\mu_B(0)\}$$

 $= \mu_B(0)$
 $\mu_{A\times B}(x_1,x_2) = min\{\mu_A(x_1),\mu_B(x_2)\}$
 $> \mu_B(0)$
 $= \mu_{A\times B}(0,0)$
 $\Rightarrow \mu_{A\times B}(x_1,x_2) > \mu_{A\times B}(0,0)$, which is a contradiction.

Hence, either $\mu_B(0) \ge \mu_A(x)$ (or) $\mu_B(0) \ge \mu_B(x)$.

(iii) will obtain by interchanging the roles of A and B in part (ii). Hence the proof.

Theorem 5.3. Let A and B be fuzzy sets in a Z-algebra X and $A \times B$ is fuzzy Z-ideal of $X \times X$ then either A or B is a fuzzy Z-ideal of X.

Proof: Let A and B be fuzzy sets in a Z-algebra X and $A \times B$ is fuzzy Z-ideal of $X \times X$. **To prove:**B is a fuzzy Z-ideal of X.

By Theorem 5.2(i), we can assume that $\mu_B(0) \ge \mu_B(x)$ for all $x \in X$. then by Theorem 5.2 (iii), either $\mu_A(0) \ge \mu_A(x)$ (or) $\mu_A(0) \ge \mu_B(x)$.

Let $\mu_A(0) > \mu_B(x)$ for any $x \in X$, then

$$\begin{split} \mu_{B}(x) &= \min\{\mu_{A}(0), \mu_{B}(x)\} \\ &= \mu_{A \times B}(0, x) \\ &\geq \min\{\mu_{A \times B}((0, x) * (0, y)), \mu_{A \times B}(0, y)\} \\ &= \min\{\mu_{A \times B}((0 * 0), (x * y)), \mu_{A \times B}(0, y)\} \\ &= \min\{\mu_{A \times B}(0, (x * y)), \mu_{A \times B}(0, y)\} \\ &= \min\{\min\{\mu_{A}(0), \mu_{B}(x * y)\}, \min\{\mu_{A}(0), \mu_{B}(y)\}\} \\ &= \min\{\mu_{B}(x * y), \mu_{B}(y)\} \end{split}$$

Therefore, $\mu_B(x) \ge min\{\mu_B(x * y), \mu_B(y)\}$

Hence B is a fuzzy Z-ideal of X.

By Theorem 5.2 (i), assume that $\mu_A(0) \ge \mu_A(x)$ for all $x \in X$.

By Theorem 5.2 (ii), assume that $\mu_B(0) \ge \mu_A(x)$ for any $x \in X$.

Then A is a fuzzy Z-ideal of X.

This completes the proof.

Theorem 5.4. Let A_B be the strongest fuzzy relation on Z-algebra X, where B is a fuzzy set of X. If B is a fuzzy Z-ideal of a Z-algebra X, then A_B is a fuzzy Z-ideal of $X \times X$.

Proof:Let B be a fuzzy Z-ideal of a Z-algebra X.

Let
$$(x_1, x_2), (y_1, y_2) \in X \times X$$
.
Then $\mu_{A_B}(0, 0) = min\{\mu_B(0), \mu_B(0)\}$

$$\geq \min\{\mu_B(x_1), \mu_B(x_2)\}$$

$$= \mu_{A_B}(x_1, x_2)$$
and also $\mu_{A_B}(x_1, x_2) = \min\{\mu_B(x_1), \mu_B(x_2)\}$

$$\geq \min\{\min\{\mu_B(x_1 * y_1), \mu_B(y_1)\}, \min\{\mu_B(x_2 * y_2), \mu_B(y_2)\}\}$$

$$= \min\{\min\{\mu_B(x_1 * y_1), \mu_B(x_2 * y_2)\}, \min\{\mu_B(y_1), \mu_B(y_2)\}\}$$

$$= \min\{\mu_{A_B}((x_1 * y_1), (x_2 * y_2), \mu_{A_B}(y_1, y_2)\}$$

$$= \min\{\mu_{A_B}((x_1, x_2) * (y_1, y_2)), \mu_{A_B}(y_1, y_2)\}$$

Hence A_B is a fuzzy Z-ideal of $X \times X$.

Theorem 5.5. If the strongest fuzzy relation A_B is a fuzzy Z-ideal of $X \times X$, then B is a fuzzy Z-ideal of a Z-algebra X.

```
Proof: Let A_B is a fuzzy Z-ideal of X \times X. Then for all (x_1, x_2), (y_1, y_2) \in X \times X. min\{\mu_B(0), \mu_B(0)\} = \mu_B(0, 0) \ge \mu_{A_B}(x_1, x_2) = min\{\mu_B(x_1), \mu_B(x_2)\} Then, \mu_B(0) \ge min\{\mu_B(x_1), \mu_B(x_2)\} \Rightarrow \mu_B(0) \ge \mu_B(x_1) or \mu_B(0) \ge \mu_B(x_2) for all x_1, x_2 \in X.
```

Also,

$$\begin{split} \min\{\mu_B(x_1),\mu_B(x_2)\} &= \mu_{A_B}(x_1,x_2) \\ &\geq \min\{\mu_{A_B}((x_1,x_2)*(y_1,y_2)),\mu_{A_B}(y_1,y_2)\} \\ &= \min\{\mu_{A_B}((x_1*y_1),(x_2*y_2),\mu_{A_B}(y_1,y_2)\} \\ &= \min\{\min\{\mu_B(x_1*y_1),\mu_B(x_2*y_2)\},\min\{\mu_B(y_1),\mu_B(y_2)\}\} \\ &= \min\{\min\{\mu_B(x_1*y_1),\mu_B(y_1)\},\min\{\mu_B(x_2*y_2),\mu_B(y_2)\}\} \end{split}$$

Put $x_2 = y_2 = 0$, we get $\mu_B(x_1) \ge \min\{\mu_B(x_1 * y_1), \mu_B(y_1)\}\$

Hence B is a fuzzy Z-ideal of a Z-algebra X.

6. CONCLUSION

In this article, we have introduced fuzzy Z-ideals in Z-algebras and discussed their properties. We extend this concept in our research work.

Acknowedgement

Authors wish to thank **Dr.M.Chandramouleeswaran**, Professor and Head, PG Department of Mathematics, Sri Ramanas College of Arts and Science for Women, Aruppukottai, for his valuable suggestions to improve this paper a successful one.

REFERENCES

- [1] Bhattacharya.P and Mukherjee.N.P, Fuzzy relation and fuzzy group, Inform. Sci., 36(1985), 267-282.
- [2] Chandramouleeswaran.M, Muralikrishna.P, Sujatha.K and Sabarinathan.S, A note on Z- algebra, Italian Journal of Pure and Applied Mathematics-N.38(2017),707-714.
- [3] Das.P.S, Fuzzy groups and level subgroups, J.Math.Anal.Appl.84(1981), 264-269.
- [4] Imai Y and Iseki K, On axiom systems of propositional calculi XIV, Proceedings of the Japan Academy, V.42, (1966), 19-22.
- [5] Iseki. K, On BCI-algebras, Mathematics Seminar Notes, Kobe University,8(1980),125-130.
- [6] Iseki.K and Tanaka.S, An introduction to the theory of BCK- algebras, Math. Japon. 23(1)(1978), 1-26.
- [7] Jun.Y.B, Hong.S.M, Kim.S.J and Song.S.Z, Fuzzy ideals and fuzzy subalgebras of BCK-algebras, J.Fuzzy Math.7(2)(1999),411-218. MR 2000c:06040. Zbl 943.06010.
- [8] Rosenfeld.A, Fuzzy groups, J.Math.Anal.Appl,35(1971), 512-517.
- [9] Sowmiya.S and Jeyalakshmi.P., Fuzzy Algebraic Structure in Z-Algebras, World Journal of Engineering Research and Technology,5(4)(2019),74-88.
- [10] Xi.O.G, Fuzzy BCK-algebras, Math.Japon., Vol. 36(5)(1991), 935-942.
- [11] Zadeh .L.A , Fuzzy Sets, Information and Control, 8(1965), 338-353.