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Abstract

This article discusses a three-step iterative method in which no derivative is
required for solving nonlinear equations. The method analitically shows that it
has order eight and requires four evaluation functions for each iteration. The
proposed method is optimal in the sense of Kung and Traub’s conjecture and has
the efficiency index 1.682. Numerical experiments show that the new method is
comparable with other discussed methods.
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1. INTRODUCTION

Numerical method has an important role for solving several mathematical problems.
One of the most basic problems in mathematics is finding the root of nonlinear equation
of the form

f(z)=0. (1)

Newton’s method is a famous method in solving equation (1). The method needs
to compute a function and its derivative for each iteration and it has quadratically
convergence [19]. If the derivative of f in Newton’s method is estimated by a forward
difference, then the Newton’s method becomes Steffensen’s method [17] having the
same order of convergence and the number of function evaluations as the Newton’s
method. Based on Kung and Traub’s conjecture [9] Newton’s and Steffensen’s methods
are optimal iterative method because both have quadratically convergence and require
two evaluation functions for each iteration.
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In the recent years, a large number of iterative methods have been modified to obtain
a derivative-free method with higher order convergence and optimal, for example
Soleymani et al. [16] and Solaimani et al. [15].

In this article, a new iterative method is established based on the optimal eight-order
iterative method by Sharma and Arora [11] as follows:

_ . f(xn) 3\
Yn = Tn f,(xn)a
P fn)
Zn = Yn Flgn, n]? )
Tnps = 2 — S o] f(z0)
n+ n f[Zn7 fn] Qf[Z'm yn] - f[Zn, {[‘n] 7)

by approximating the first derivative in (2) using divided difference of order one with
one parameter. The discussion begin in section 2 by constructing the method and it is
followed by the convergence analysis of the method. In section 3, the computational
tests of the proposed method is performed to see the effective of the proposed method
by comparing with some other optimal eighth-order derivative free iterative methods.

2. AN OPTIMAL THREE-STEP ITERATIVE METHOD FREE FROM
DERIVATIVE

If the first derivative of f in the first and second steps of (2) are approximated using
divided difference with one-parameter (3, that is

f/(xn) ~ flwy, 1,]

where w,, = x,, + 0 f (xn)3 and # # 0 [1], then the following new iteration method is
obtained

4)

fl2ns Tn] 2f (20, Yn] — fl2n, xn].»

In the following, the analysis of convergence of the proposed method (4) is performed
as stated in Theorem 1.

Tpt1 = Zn

Theorem 1 Let f : [ C R — R be a sufficiently differentiable function for the open
interval [ and o € [ be a simple root of f(x) = 0. If z is sufficiently close to « then
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the method defined by (4) has an eight-order convergence, and satisfies the following
error equation:

€n+1 = —A2(f/(&)3A35A3+A2A4A3+2A§A§—A§—2A3A4—2f/(&)3A§6)6§L+0(6?L>7

. )
F (o)

where A; = ST (a)?

7=2,3,...,8and e, = x, — a.

Proof. Let o be a simple root of f(x) = 0, then f(a) = 0 and f'(a) # 0. Using

Taylor’s expansion [4] of f(x) about z = «, we have

(x—a)’
3!

(z —a)°

6!
+O((z — ). (6)

(= a)?

f(z) = fla) + f'(a) (@ —a) + fP(a) =+ [P (a)

2!
o T )

5
(r —a)f (r —a)®
7! 8!
Since f(a) = 0, then by evaluating (6) in © = x,, and considering e,, = z,, — o, we
obtain

+ f(a)

+ fD() + ()

fzn) =f' (@) (e, + Age? + Age® + Agel + Ase® + Agel + Azel + Aged) + O(€)),
(7

where ,
f(J)(a)

A= i@

j=2,3,...,8.
Using (7), we have
f(x)? = f(a)® (ei + 3Aze} + (343 + 3A3)e> + (3A4 + 645 A3 + Ad)el
+ (343 + 3A5 + 34543 + 6424, )e
4 (6445 + 3424, + 6A5 A, + 34,42 + 3A6)ei) L O(ed).
(&)
Since z,, = e,, + « and by substituting (8) into (3), we obtain
W, = e+ + Bf () (ei + 3Age} + (3435 + 3A3)e> + (3A4 + 6A45A3 + A3)ed
+ (343 + 3A5 + 3A5A5 + 6A2A,)e! + (6A,A5 + 3A3A,
4 6A3 A, + 34,42 + 3A6)ei) L O(e0). )
By evaluating (6) in x = w,, in a similar way and using (9), we get
flw,) = f(a) (en + Agel + (A3 + Bf () )l + -+ + (98 ()  Ag + 1543 f' ()" B
+ 2445 f'(a)° B As + - + 278 f’(a)3A3A4)e§) +0(e)). (10)



492 Nurul Khoiromi, M. Imran, Syamsudhuha

From (7) and (10), we obtain

Flwa) = flaa) = BF () el +56f () Asel + (98 (a) A2 + 68 (a)* Az)ed + - -
+ (6Asf' ()" 8% + 278" () A3 Ay + 98" () Ag + - -
+ 24 A, f' () B2 Ag + 943 [ () BAs + 278 ()  Ap A2)ed
+ O(e)), (11)

and from (9), we have

W, — 2y = Bf'(a)’ed + 38Asf () e + B(3As + 3A2) f'(a)’e + B(3A4 + 6 A, As
+ A3 ()€ 4 B(3A5 4 3A2 + 34245 + 6A,A) f' () ]
+ B(3A2A, + 346 + 6A3A, + 6A3A5 + 34,A2) f'(a)’ed

+O(). (12)
Applying divided difference formula [10] and using (11) and (12) gives rise to

1) (1 + 5Aze, + Be2 + Ced + De} + Eei)
14 3Ase, + Fe2 + Gel + Hep + Ied ’

(13)

flwn, v,] =

where

B =942 4 6As,
C =TA3 + 21 A2 A5 + BAsf () + TA,,
D =3f"(a)’ A3 + 6/ ()’ A28 + 1242 + 24 A, Ay + 2A% + 8A; + 24 A2 A3,
E =6f"(0)’ Ay + 15f"(a)* A3B + 241" () Ay BAs + 2T Az Ay + 9As + 2TA2A,
+ 27 A5 A5 + 2T AL A3 + 9A3 A3,
F =3A3 +3A2%,
G =3A,6A,A3 + A3,
H =3A% + 345 + 3A5A4; + 6 A2 Ay,
I =6AyA5 + 3A5A, + 6A3A4 + 3A2A3 + 3 4.

Equation (13) can be simplified by using a geometric series formula [18], and we get

Flwn, ] = ['() + 21 () Asen + 3 () Asel + (Bf' () Ay + 444 f'())el + - -
+ (~1843f'(a)"B — 135/'(a) 4354 + 1843 f'(a)"5 — - -
— 15f" () A2 + 117f (a) Ag Ax Az + 240 f' (o) Ay A3 A€ + O(el).
(14)
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On substituting (7), (14) and z,, = e,, + « in the first step of (4) yields

Yp = a + Aje? + (243 — 2A%)e2 + -+ + (236 A5A, — 45AZ A, A3 + 17046 A3
4o — 602 Asf () A3 + 36 () > Ay BA2 + 294 (00)’ A3BA3)ed + O(e?).

(15)
On substituting = y,, in (6) and using (15), after simplifying it is obtained that
flyn) = Aof'(a)ep + (243 (a) = 2f' (@) A3)ep + - + (45 (a) ASAq
— 128f(a) A A5 + 121 f'(0) Az A} — -+ — T8Bf"(a) A3 Ay
— 102" () Ay A3 + 126 f/ () * A3 B)ed + O(e?). (16)
Similar to (14), using (16), (7), (15) and z,, = e,, + «, we obtain
FYn,a] = f'() + f'(@) Azen + (Asf'(a) + f'(a) A3)ep + (=2 (@) A3 + Asf'(a)
+3f'() AsAg)el + -+ + (6A7f'(0)'B — BASf'(a) B + f'(e) A7 As
+ 228 () AJBA; — -+ — f'(@) Az AJ + 4641 (a) ASAs)el + O(e))).
(17)

Using (17), we have

Flyms )2 = ()’ (1 4 2Asen + (3A2 + 245)€2 + (8As Ay + 24, — 243)ed
oo+ (942 — 14A% — 24045 4 -+ — 286" (o)’ A2BA2
+302/'(0)" A48 — 24f (0) AsBADe} ) + O(el).  (18)

On substituting (15), (16), (17) and (14) into the second step of (4), and using geometric
series then we obtain

o = a4 (243 — AyAs)ed + (—2A5A, + 14A24;5 — 10A% — f/(0)° A28 — 2A2)eD
44 (145A7 4+ 86 A2 A4 + 247 Ay + - + 83f () > Ay BA2
— Tf' (@)’ AyBA5 — 33f () AyBAs) el + O(e). (19)

Similar to (7), evaluating (6) in x = z,, and using (19), we get

F(zn) = 1(0) (24 = A Ag)el + (~2445 — 1043 - 243 + 14434,
— Bf (@)’ A2)ed + - + (149A7 — 65245 A4
—TBf(a)? Ay As 4 - — 6Asf'(a)° B2 A3 — 2024, A3
—1343f/(a)’ BAg)e} ) + O(eh). (20)
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Then using (20), (16), (7), (19), (15) and noting z,, = e,, + «, we have

% =1 — Age, + (243 — Ag)el + (—Ay + 4Ar A3 — 4A3)e) + - -

+ (—171A5 — 281 f' ()’ A3BA, — T6f' () A2BA2 — - ..

48 A3 A4 A
— 2727/ (0) A3 Ay + T 73 a) ARH)ES + OeD), (1)
2
and
f(zn) _ 3 4 24 103 A28 QA o042

2f[2m yn] - f[znv xn]
— 245A4)€% + -+ (1494, A% + 29 ()’ A3 As
— Tf(@)’AyBAs — - + T6f'(a) > Ay B A
—33f"(a)? Ay BAs + 126445 A3)eS + O(e2).  (22)
On substituting (19), (21) and (22) in the third step of (4), and since €,,11 = T, 11 — @
we obtain the following error equation:
eni1 = — As(f'(@) ASB A3 + Ay Ay Ag + 24545 — A — 243A4 — 2f'(a)’ A3B)e,
O (23)
From the definition of order of convergence [10] the method defined by equation (4)
has an eight-order convergence and Theorem 1 proved. O

Equation (4) is a derivative free iterative method that requires four evaluation functions,
namely f(w,), f(x,), f(y,) and f(z,). This new iterative method is optimal in the
sense of Kung and Traub conjecture [9] and has the efficiency index 8'/4 ~ 1.682.

3. NUMERICAL EXPERIMENTS

In this section, the effectiveness of the proposed method is discussed by applying it
to the given test functions. The proposed method (DFM) in (4) for 3 = 1.5 x 1073
is compared with the existing optimal eight-order derivative-free iterative methods,
Soleymani et al. (SVPM) [16], Cordero et al. (CHMTM) [7], Soleimani et al. (SSSM)
[15], Choubey and Jaiswal (CIJM) [5] and Sharma and Arora (SAM) [12].

We consider the following test functions for comparing the proposed method
() fi(z) =e T2 —cos(x+ 1)+ 2%+ 1, ae[-1,0, [I1],
() fo(z) = 2% —€® — 3z + 2, a € [0,1], [14],

(iii) f3(z) = 3z + sin(x) — €7, a€[0,2], [15],
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(v) fi(z) = 23 + 42* — 15, a € [1,2], [13],

V) f5(x) =xe ™™ —0.1, a € [0,5], [15].
To perform computational tests we use ¢ = 1.0 x 1072%°, and we stop the iteration if
| f(2n41)| < € and the maximum iteration is reaching 100. The computational order of
convergence (COC) [8] is approximated using the formula

o lf (o)) f (20 )
COC ™ g F (rn) [ (rm)]

Table 1 shows the comparison of computational results of the six methods where f;
denote the functions of the nonlinear equations, n is the number iteration, COC is
computational order of convergence and | f(z,1)| is the absolute value of the function.

Based on numerical comparison in Table 1, all of the discussed methods successfully
found the approximate root for the given test functions and there is no significant
difference among the discussed methods in terms of number of iteration needed to
obtain an approximate root. On computational test for function f;, DFM take less
number of iterations than those of the existing optimal eight-order derivative-free
iterative methods. For the function f;, DFM requires the same number iteration with
CJM and take less number of iterations than those of SVPM, CHMTM, SSSM and
SAM. As for functions f5, f3 and f5, DFM requires the same number of iterations
with the other existing optimal eight-order derivative-free iterative methods and have
accuracy higher than the existing methods. It can be observed that the computational
order of convergence (COC) is in accordance with the theoritical order of convergence.

It can be seen from Table 1 that the proposed method shows better performance in
terms of number of iterations as compared with the existing optimal derivative-free
eight-order methods, especially for the functions f; and f,. However, the proposed
method has equal performance as compared with the existing optimal derivative-free
eight-order methods as can be seen in functions f5, f3 and f5. Therefore the proposed
method can be said to be competitive or used as an alternative method to solve nonlinear
equations.
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Table 1: Comparison of computational results of the discussed iterative methods

Methods n  COC  |f(zps1)]

fi(@)

xo = 1.475

SVPM 15 8.00 1.66e — 1318
CHMTM 11 8.00 1.54e — 689
SSSM 16  8.00 7.10e — 595
CIM 8 T7.97 1.77e — 638
SAM 8 7.94 1.88¢ — 337
DFM 6 7.99 3.00e —644
fo()

To = —2.6

SVPM 4  8.00 1.84e— 706
CHMTM 4  8.00 1.58e— 1003
SSSM 3 7.1 1.82e — 206
CIM 4 8.00 1.56e — 1007
SAM 3  7.11 1.39¢ — 265
DFM 4  8.00 4.59e — 1597
f3(@)

zo = 0.5

SVPM 3 823 1.56e —402
CHMTM 3 826 2.64e — 376
SSSM 3 810 4.12e — 555
CIM 3 808 21le—-613
SAM 3  8.09 2.75e — 530
DFM 3 806 3.52¢—613




An Optimal Three-Step Iterative Method Free From Derivative...

Methods n COC  |f(zp41)]
fal)

xo = 0.0

SVPM 9 7.36 1.68e—243
CHMTM 8§ 7.31 7.28e — 240
SSSM 13 7.61 1.87e— 341
CIM 4 814 8.64e —491
SAM 14 796 2.95e — 615
DFM 4 8.09 3.06e — 512
f5(x)

g = —1.0

SVPM 4 784 8.60e — 376
CHMTM 4 771 1.28e —290
SSSM 4 796 3.85e— 738
CIM 4 8.01 1.00e—934
SAM 4 795 2.72e—574
DFM 4 799 1.16e — 936
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