Vertex Polynomial of Graphs with New Results

A. M. Anto,

Assistant Professor of Mathematics, Malankara Catholic College, India.

P. Paul Hawkins,

Assistant Professor of Mathematics, VTM College of Arts and Science, India.

Abstract:

The Vertex Polynomial of the graph G is defined as $V(G,x) = \sum_{k=0}^{\Delta(G)} v_k x^k$, where $\Delta(G) = \max\{d(v)/v \in V\}$ and v_k is the number of vertices of degree k. In this paper I found some results on Vertex Polynomial.

2010 AMS Classification: 05C12.

Keywords: Vertex Polynomial, Splitting graph, Degree splitting graph, corona.

1. Introduction:

Here, I consider simple undirected graphs. The terms not defined here we refer Frank Harary [2]. The vertex set is denoted by V and the edge set by E. For $v \square V$, d(v) is the number of edges incident with v, the maximum degree of G is defined as $\Delta(G) = \max\{d(v)/v \in V\}$. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs, the union $G_1 \cup G_2$ is defined to be G = (V, E) where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$, the sum $G_1 + G_2$ is defined as $G_1 \cup G_2$ together with all the lines joining points of V_1 to V_2 . If G is of order n, the corona of G with H, G \odot H is the graph obtained by taking one copy of G and n copies of H and joining the i^{th} vertex of G with an every vertex in the i^{th} copy of H. The graph G with $V = S_1 \cup S_2 \cup ... \cup S_i \cup T$, where each S_i is a set of vertices having at least two vertices and having the same degree and $V = V \cup V_1$. The degree splitting graph of G denoted by $V \cup V_2$ and is obtained from G by adding the vertices $V \cup V_2$ and $V \cup V_2$ and joining $V \cup V_2$ and is obtained from G by adding the vertices $V \cup V_2$ and $V \cup V_2$ and joining $V \cup V_2$ and joining $V \cup V_3$ and joining $V \cup V_4$ and joining joining

2. MAIN RESULTS:

Theorem 2.1: If H is a sub graph of a simple graph G, then the degree of the vertex polynomial of H is less than or equal to the degree of the vertex polynomial of G.

Proof:

Let H be a sub graph of a simple graph G. Then the order of H is less than or equal to the order of G and degree of each vertex of H is less than or equal to degree of each vertex of G. This gives, the degree of the vertex polynomial of H is less than or equal to the degree of the vertex polynomial of G.

Theorem 2.2: If G and H are two isomorphic graphs, then the vertex polynomial of G and the vertex polynomial of H are equal.

Proof:

Let G and H be two isomorphic graphs. Then G and H have the same degree sequence. Therefore, the graphs G and H have the same vertex polynomial.

Remark 2.3: If the vertex polynomial of two graphs G and H are equal, then G and H need not be isomorphic.

For example, we consider two graphs G and H as given in figure 2.1(a) and figure 2.1(b).

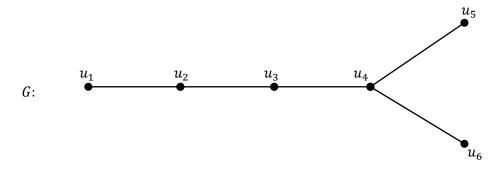


Figure 2.1(a)

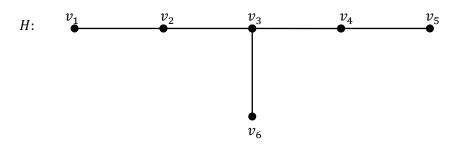


Figure 2.1(b)

Here, the vertex polynomial of the graph G is $V(G, x) = x^3 + 2x^2 + 3x$.

And the vertex polynomial of the graph *H* is $V(H, x) = x^3 + 2x^2 + 3x$.

The vertex u_4 in G corresponds to the vertex v_3 in H as both have the same degree 3. But, there are two pendant vertices adjacent to the vertex u_4 and there is only one pendant vertex adjacent to v_3 . So, adjacency relation not preserved and hence G and H are not isomorphic.

Theorem 2.4: Let G be a graph and $\zeta = G \cup G \cup ... \cup G$ (*m times*), then $V(\zeta, x) = mV(G, x)$.

Proof:

Let G be a graph and take m copies of G. From the definition of union of graphs, the number of vertices of the graph G increased by m copies but degree of each vertex remains unchanged in ζ . Therefore, each coefficient of the vertex polynomial of G is multiplied by m gives the result.

Example 2.5: Consider the graph $K_{1,3}$ with 3 copies. That is, $\zeta = K_{1,3} \cup K_{1,3} \cup K_{1,3}$. Then $V(\zeta, x) = 3V(K_{1,3}, x)$.

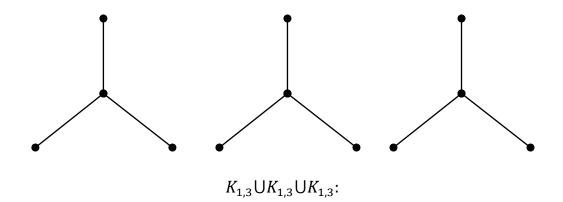


Figure 2.2

Here,
$$V(K_{1,3}, x) = x^3 + 3x$$
.
Now, $V(K_{1,3} \cup K_{1,3} \cup K_{1,3}, x) = 3x^3 + 9x$.
 $= 3(x^3 + 3x)$.
 $= 3V(K_{1,3}, x)$.

Theorem 2.6: Let G be a graph with order n.

Then
$$V(mG, x) = mx^{(m-1)n}V(G, x)$$
.

Proof:

Let G be a graph with order n and take mG. Using the definition of sum of the graphs, each vertex of the graph G is increased by m times in mG and each vertex of mG is adjacent to all vertices of (m-1) copies of G. Since G has order n, when we multiply $\max^{(m-1)n}$ to vertex polynomial of G we get vertex polynomial of V(mG, x). That is, $V(mG, x) = \max^{(m-1)n} V(G, x)$.

Example 2.7: Consider the graph $K_{1,3}$ and take $K_{1,3} + K_{1,3}$.

Then
$$V(K_{1,3} + K_{1,3}, x) = 2x^4V(K_{1,3}, x)$$
.

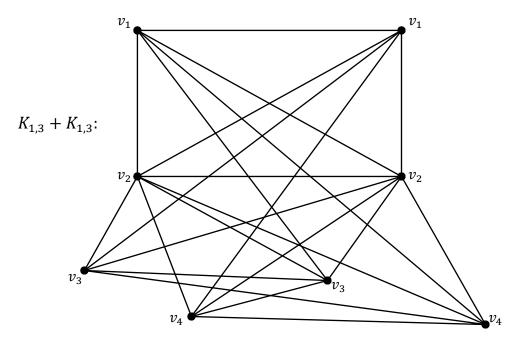


Figure 2.3

Here,
$$V(K_{1,3}, x) = x^3 + 3x$$
.
Now, $V(K_{1,3} + K_{1,3}, x) = 2x^7 + 6x^5$.
 $= 2x^4(x^3 + 3x)$.
 $= 2x^4V(K_{1,3}, x)$.

Theorem 2.8: Let G be a graph with order n and H be a graph of order m, then $V(G \odot H, x) = x^m V(G, x) + nxV(H, x)$.

Proof:

Let G be a graph with order n and H be a graph of order m. From the definition of Corona, we have n copies of H, order of H has been increased by n times and each degree of the vertices of the n copies H has been increased by one. This gives the

term nxV(H,x). Also, each degree of the vertices of G has been increased by m. This gives the term $x^mV(G,x)$. Adding these two terms, we get the vertex polynomial of $V(G \odot H,x) = x^mV(G,x) + nxV(H,x)$.

Example 2.9: Consider the graphs C_4 and P_3 , then

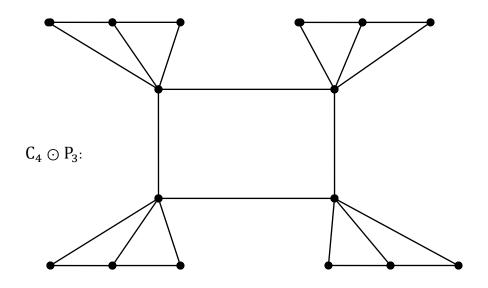


Figure 2.4

Here,
$$V(C_4, x) = 4x^2$$
.
 $V(P_3, x) = x^2 + 2x$.
Now, $V(C_4 \odot P_3, x) = 4x^5 + 4x^3 + 8x^2$.
 $= x^3(4x^2) + 4x(x^2 + 2x)$.
 $= x^3V(C_4, x) + 4xV(P_3, x)$.

Theorem 2.10: If G is an n-regular graph with order m, then $V(S(G), x) = x^n V(G, x) + V(G, x)$.

Proof:

Let G be an n-regular graph with order m. From the definition of splitting graph, each new vertex corresponding to every vertices of G has same degree as in G and every existing vertices of G has twice the degree. This gives the result $x^nV(G,x) + V(G,x)$ which is equal to V(S(G),x).

Example 2.11: Consider 2-regular graph with order 4, that is C_4 . The graph $S(C_4)$ illustrated as follows;

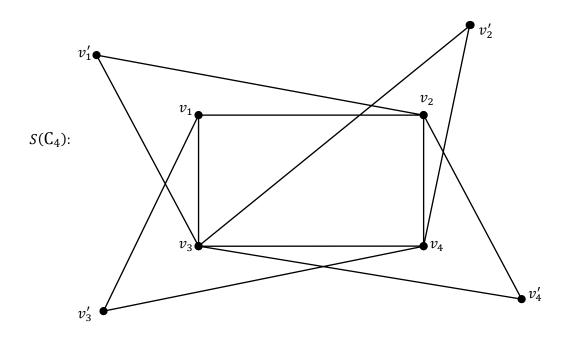


Figure 2.5

Here,
$$V(C_4, x) = 4x^2$$
.
 $V(S(C_4), x) = 4x^4 + 4x^2$.
 $= x^2(4x^2) + 4x^2$.
 $= x^2V(C_4, x) + V(C_4, x)$.

Theorem 2.12: If G is an *n*-regular graph with order *m*, then

$$V(DS(G), x) = x^{m} + xV(G, x).$$

Proof:

Let G be an n-regular graph with order m. That is, G has order m and each vertex of G has same degree n. Therefore, from the definition of degree splitting graph, we introduce the new vertex w, the vertex w adjacent to every vertices of G. That is, w is adjacent to m vertices of G. Therefore, w has degree m and degree of each vertices of G has been increased by one. This gives the term $x^m + xV(G, x)$ and is equal to the vertex polynomial for the degree splitting graph of G. Hence, $V(DS(G), x) = x^m + xV(G, x)$.

Example 2.13: Consider 2-regular graph with order 4. that is C_4 . The graph $DS(C_4)$ illustrated as follows;

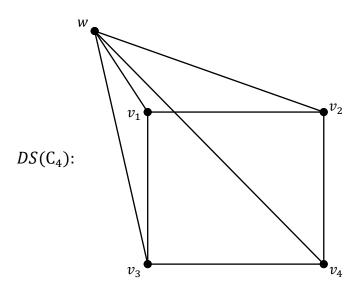


Figure 2.6

Here,
$$V(C_4, x) = 4x^2$$
.
 $V(DS(C_4), x) = x^4 + 4x^3$.
 $= x^4 + x(4x^2)$.
 $= x^4 + xV(C_4, x)$.

REFERENCES

- [1] E.Sampathkumar and H.B.Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci., (25-26) (1980-81), 13-16.
- [2] Frank Harary, 1872,"Graph Theory", Addition Wesley Publishing Company.
- [3] Gary Chartrant and Ping Zank, "Introduction to Graph Theory", Tata McGraw-Hill Edition.
- [4] J.Devaraj, E.Sukumaran "On Vertex Polynomial", International J. of Math.sci & Engg Appls(IJMESA) Vol. 6 No. 1 (January, 2012), pp. 371-380.
- [5] S. S. Sandhya, C. Jeyasekaran, C. D. Raj (2013), "Harmonic Mean Labelling Of Degree Splitting Graphs" Bulletin of Pure and Applied Sciences, 32E, 99-112.