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Abstract

Communicable diseases are generally referred to as those that spread from one
person to another through contact with blood and body fluids, breathing in an
airborne virus or being bitten by a virus carriers. We consider a communicable
disease model in which transmission assume no immunity or permanent immunity.
In this paper, a delay differential equation model is developed to give an account
of the transmission dynamics of these diseases in a population. The stability
of the equilibrium is analyzed with delay: the endemic equilibrium is locally
stable without delay; and the endemic equilibrium is stable if the delay is under
some condition.The basic reproductive number was established and analysed. The
equilibrium points of the model was examined for local stability and its associated
reproductive rate. It was found to be locally asymptotically stable whenever the
reproductive number was less than one. Bifurcation analysis was conducted and it
was noted that immunity duration is a sensitive parameter for dynamics of disease
transmission. We performed numerical simulations of the system of equations of
the model and compared the results with our theoretical analysis.
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1. INTRODUCTION

Communicable diseases are those that spread from one person to another through a
variety of ways that include; contact with blood and body fluids; breathing in an
airborne virus or being bitten by a virus carriers. These diseases have claimed millions
of lives in the world annually, especially in developing countries. Such diseases include
Tuberculosis, malaria, influenza and Rabbles. Communicable disease modeling are
basically employed to control such diseases and prevent outbreak. These models
have significant biological implications as far as the investigation of the transmission
dynamics of infectious diseases in host population are concerned [1, 2]

Different infectious agents display different traits and thus different dynamics arise,
parameter that depend and the specific agent include the transmission rate, the recovery
rate and finally immunity duration corresponding to the specific infection. Parameter
that are independent of the infective agent typically include the natural birth and death
rates of population relevant to an infective agents’ dynamics is an incidences function,
or a function that describe how infected and susceptible individual contact [3, 4].

Bifurcation theory ideally refers to the study of differences in qualitative structure in
a given system. Such as integral curves of system of vector field and the solutions
of coupled differential equations. This commonly applied to the study of dynamical
system. Bifurcation is said to occur when small changes are made to the parameter
values of a system, causes a sudden qualitative change in its behaviour. This can happen
in both continuous systems and discrete systems [3, 5].

[6] formulated models by considering varying population size and considered SEIR
model with varying population size. In their study, natural birth rate and death rate
were incorporated. Additionally, death rate as a result disease were considered death
in their models. Total population size might be varying with time. In their analysis,
stability of their model was analysed with normalisation approach or method.

Alternative approach was presented in analysing or proving local and global stability
of endemic equilibria. In the work done by [7], a review of work done in the field of
malaria modeling was analysed. [8] created a model by considering immunity to this
disease.

However, [9] initiated and formulated a model and analysed it for malaria infection
when endemic. In the work of [10], they analysed a SEIR model with limited resources
in the case of treatment. A general approach or method for analysing compartmental
models in diseases was given by [1].

[11] also gave details approach and analyses on basic reproductive number, (R0). The
phenomenon of class or compartmental models is to ensure the division of population
into groups of classes or compartments according to their epidemiological status.
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Modeling of dynamic of infectious diseases are done through various models such
as; Susceptible, Infection and Recovered, (SIR) which implies that susceptible people
become infected recover and remain immune to any further infection. Susceptible,
infectious, recovered and susceptible, (SIRS), implying that susceptible people get
infected recover and finally become susceptible again after immunity wears off [12, 13].

Susceptible, exposed infected, and recover, (SEIR). Implying that susceptible people
enter latent period called exposed state where the diseases is contagious meaning they
carry the infectious agent but are not able to transmit. After a period of time expose
people become infected and finally recover. Models are being assumed differently other
assume that recovered person will not exhibit any sort of immunity where other models
incorporated opened of immunity after recover [14, 15, 16].

2. MODEL DESCRIPTION AND FORMULATION

2.1 Model without Delay Differential Equation

The model without delay takes the form,

dS
dt

= B−βSI−µS

dE
dt

= βSI− (ν +µ)E

dI
dt

= νE− (ρ +µ +δ )I

dR
dt

= ρI−µR



(2.1)

where S > 0, E ≥ 0 ,I > 0, R≥ 0 and B is recruitment rate by birth. Since the epidemic
occurs in a short time period, we ignore loss of temporary immunity.

2.2 Model with Delay Differential Equation

In the system dynamical behavior of the disease, the standard incidence rate is given as;
β s(t)I(t)

N(t)
and the bi-linear incidence rate isβ s(t)I(t) . When I(t) reach the maximum

number of effective contacts between the infectious and susceptible individuals, the
susceptible may saturate at high infective levels due to crowding of infective individuals
or due to the protection measures by the susceptible individuals.
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Considering a delayed SIR model with the saturation incidence rate;

βS(t− τ)I(t− τ)e−µτ

1+αI(t− τ)
(2.2)

and exponential birth rate. We consider a delayed SIR model with the saturated
incidence rate;

βS(t− τ)I(t− τ)e−µτ

1+αI(t− τ)
. (2.3)

When the parameter measure α = 0, the saturation incidence rate will become a
bi-linear incidence rate;

βS(t− τ)I(t− τ)e−µτ . (2.4)

Considering the following SIR model with the saturation incidence rate;

βS(t− τ)I(t− τ)e−µτ

1+αI(t− τ)
(2.5)

and a time delay describing a latent period.

Where S(t) denotes susceptible individuals, I(t) denotes infective individuals, and
R(t) denotes recovered individuals. The following are the system of delay differential
equations obtained from the model model:

dS(t)
dt

= b(S(t)+ I(t)+R(t))− βS(t− τ)I(t− τ)e−µτ

1+αI(t− τ)
−µS(t)

dI(t)
dt

=
βS(t− τ)I(t− τ)e−µτ

1+αI(t− τ)
− (µ +ρ +δ )I(t)

dR(t)
dt

= ρI(t)−µR(t)


(2.6)

Where natural birth rate, b > 0, natural death rate, µ > 0 and birth rate is greater than
natural death rate, (b > µ).

Where,δ > 0 is the disease-related death rate, ρ > 0 is the rate of recovery,
1
τ

is the
incubation period andα is the parameter that measure infections with the inhibitory
effect.
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3. THE POSITIVITY AND SOLUTION BOUNDEDNESS

In this section, we consider the following system of differential equations;

dS
dt

= B−βSI−µS

dE
dt

= βSI−νE−µE

dI
dt

= νE− (ρ +µ +δ )I


(3.1)

By summing above system of equations;
dS
dt

+
dE
dt

+
dI
dt

= B−βSI−µS+βSI−νE−µE +νE− (ρ +µ +δ )I

d(S+E + I)
dt

= (S+E + I) = B−µ(S+E + I)−δ I−ρI ≤ B−µ(S+E + I)

This implies;

limsup(S+E + I)≤ B
µ

t→∞

(3.2)

So, the feasible region for (4) is

Λ = {S,E, I) : S+E + I ≤ B
µ
,S > 0,E > 0, I > 0} (3.3)

4. EQUILIBRIUM POINTS

4.1 Disease free equilibrium

In this section, we compute the models endemic equilibrium points.The disease free
equilibrium is obtained by setting the system of differential equations to zero. At
disease free equilibrium, there are no infections and recovery. The disease free
equilibrium is given by;

(S∗,E∗, I∗,R∗) =
(

B
µ
,0,0,0

)
(4.1)

4.2 Endemic equilibrium

In this section, we compute the models endemic equilibrium points.This is obtained by
setting the system of differential equations to zero. The models endemic equilibrium
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point is given by;

(S∗, I∗,R∗).

S∗ ,
(µ +ρ +δ )(I +αI∗)

βe−µτ

I∗ ,
µ(b−µ)(µ +ρ +δ )

βe−µτ{µ(µ +ρ +δ )−b(µ +ρ)}−αµ(b−µ +δ )

R∗ ,
ρI∗

µ


(4.2)

5. BASIC REPRODUCTIVE NUMBER

The basic reproduction number is defined as the number of secondary infection that one
infected individual can produce in a completely susceptible population. This number
or threshold value determines the spread of the infection. Using the next generation
matrix approach in [15, 12, 1], we compute the basic reproduction number, (R0).

The disease free equilibrium of the system is given by the relation;

ξ0 = [
B
µ
,0,0]

Therefore, I has to be less than its initial value I0. Let X
′
= (E, I,S)T .

Therefore

X
′
=

dX
dt

= F(X)−V (X) (5.1)

Where F(X) denotes the rate of appearance of new infections in the compartment and
V (X) gives the transfer of individuals.

F =


βSI

0

0

 and V =


(ν +µ)E

−νE +(ρ +µ +δ )I

−B+βSI +µS


The partial derivatives of F and V at disease free equilibrium (ξ0) are given by;

F =

[
∂Fi(X0)

∂X j

]
,V =

[
∂Vi(X0)

∂X j

]
Where i = 1,2; j = 1,2.
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This gives;

F =

 0
βB
µ

0 0

 (5.2)

And

V =

 µ +ν 0

−µ (µ +ρ +δ )

 (5.3)

Where;

FV−1 =


νβB

µ(µ +ν)(µ +ρ +δ )

βB
µ(µ +ρ +δ )

0 0

 (5.4)

Hence, basic reproduction number, R0 is given by;

R0 =
νβB

µ(µ +ν)(µ +ρ +δ )
(5.5)

6. STABILITY

6.1 Stability of the disease free equilibrium

The disease free equilibrium, ξ0 is locally asymptotically stable if all the eigenvalues
of the matrix D(ξ0) = F(ξ0)−V (ξ0)

have positive real parts.

Theorem 1. Consider the disease transmission model given by with X
′
.

If ξ0, is a disease free equilibrium of the model, then ξ0 is locally asymptotically

stable if R0 < 1, but unstable if R0 > 1, where R0 is defined as;

R0 =
νβB

µ(µ +ν)(µ +ρ +δ )
. (6.1)

Proof. Let J = F −V . Since V is a non-singular matrix and F is non-negative,
J = F−V has the Z sign pattern. Thus,
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S(J)< 0− J is non-singular matrix; S(J) is spectral abscissa of J.

Since FV−1 is non-negative, −JV−1 = 1−FV−1also has the Z sign pattern.

Then;

Since, FV−1is non-negative, all eigen values of FV−1have magnitude less than or equal
to ρFV−1. Thus, 1−FV−1is a non-singular matrix.

⇐⇒ ρ(FV−1)< 1

Hence,

S(J)< 0 if and only if R0 < 1

Similarly it follows that 1−FV−1 is a singular matrix

⇐⇒ ρ(FV−1) = 1

Hence,

S(J) = 0 if and only if R0 = 1

It follows that;

S(J)> 0 if and only if R0 > 1.

For;

R0 =
νβB

µ(µ +ν)(µ +ρ +δ )
(6.2)

The disease free equilibrium ξ0 is locally asymptotically stable if all the eigenvalues of
the matrix;

Dξ0{= F(ξ0)−V (ξ0)} (6.3)

Have positive real parts.

6.2 Stability of the endemic equilibrium

Theorem 2. If R0 < 1, the solution of system of differential equation is

(S(t), I(t),R(t))→ (∞,0,0)

with t → ∞. If, system of differential equation has a unique endemic equilibrium,
E∗ = (S∗, I∗,R∗).
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Where the endemic equilibrium points are defined as;

S∗ =
(µ +ρ +δ )(I +αI∗)

βe−µτ

I∗ =
µ(b−µ)(µ +ρ +δ )

βe−µτ{µ(µ +ρ +δ )−b(µ +ρ)}−αµ(b−µ +δ )

R∗ =
ρI∗

µ


(6.4)

Proof. Considering the two cases: I(t) = 0 and I(t) > 0. If I(t) = 0, it implies that

R(t) = 0, then it follows that
dS(t)

dt
= (b− µ)S(t). When t → ∞, we have S(t)→ ∞.

Then the solution of system of the system of differential equation; (S(t), I(t),R(t))→

(∞,0,0). If I(t)> 0, then it implies that: R∗ =
ρI∗

µ
and from the endemic equilibrium

point, S∗ =
(µ +ρ +δ )I +αI∗

βe−µτ
.

Then substituting the above equations into (7) we get the unique root

I∗ =
µ(b−µ)(µ +ρ +δ )

βe−µτ{µ(µ +ρ +δ )−b(µ +ρ)}−αµ(b−µ)(µ +ρ +δ )
(6.5)

If I∗ > 0 , then we must have;

βe−µτ{µ(µ +ρ +δ )−b(µ +ρ)}−αµ(b−µ)(µ +ρ +δ )> 0

This means that R0 > 1. Thus we get if R0 > 1.

Now analysing the stability of the endemic equilibrium E∗with R0 > 1. The
characteristic equation at the endemic equilibrium, E∗ is of the form;

f1(λ ) = (λ 3 + p1λ
2 + p2λ + p3)+(q1λ

2 +q2λ +q3)e−λτ (6.6)

where;

P1 = (2µ−b)+(µ +ρ +δ ),

q1 =
β I∗e−µτ

I +αI∗
− βS∗e−µτ

(I +αI∗)2

P2 = (2µ−b)(µ +ρ +δ )−µ(b−µ)
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q2 = (2µ−b)
(

β I∗e−µτ

I +αI∗
− βS∗e−µτ

(I +αI∗)2 +
(ρ +δβ I∗e−µτ)

I +αI∗

)

P3 = −µ(b−µ)(µ +ρ +δ )

q3 = µ(µ +ρ +δ )−b(µ +ρ)
β I∗e−µτ

I +αI∗
+µ(b−µ)

βS∗e−µτ

(I +αI∗)2

Theorem 3. If R0 > 1, suppose 2µ −b > 0 and when τ = 0, the endemic equilibrium
E∗ is stable, and when τ = 0 , it is unstable.

Proof. Considering the case without τ = 0, the characteristic equation would be given
as:

(λ 3 +a1λ
2 +a2λ +a3 = 0 (6.7)

This implies that;

a1 = p1 +q1 = (2µ−b)+
αI∗(µ +ρ +δ )

I +αI∗
+

β I∗e−µτ

I +αI∗

a2 = p2 +q2 = (2µ−b)
αI∗(µ +ρ +δ )

I +αI∗
+

µ(b−µ)(µ +ρ +δ )(µ +ρ +δ −b)
µ(µ +ρ +δ )−b(µ +ρ)

+
µ2b(b−µ)+bµρ(b−µ)

µ(µ +ρ +δ )−b(µ +ρ)

a3 = p3 +q3 = µ(b−µ)(µ +ρ +δ )
I

I +αI∗
> 0

By Ruth-Hurwitz criterion, when τ = 0, the endemic equilibrium, E∗the system of
differential equation is stable.

When τ = 0, the system of differential equation has a purely imaginary root ωi(ω > 0),
then by separating real and imaginary parts, we have

ω3−ωρ2 = ωq2cos(ωτ)+(ω2q1−q3)sin(ωτ)

ω2ρ1− p3 = ωq2sin(ωτ)+(−ω2q1 +q3)cos(ωτ)

Hence,
ω

6 +a4ω
4 +a5ω

2 +a6 = 0 (6.8)

where,
a4 = p2

1−2p2−q2
1

a5 = p2
2−2p1 p3 +2q1q3−q2

2

a6 = p2
3−q2

3
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Suppose,

f (ω) = ω
6 +a4ω

4 +a5ω
2 +a6, (6.9)

and let ω2 = z,

Then;

f (z) = z3 +a4z2 +a5z+a6 (6.10)

This implies that, a6 = p2
3−q2

3 < 0, then f (0)< 0 and f (∞)→ ∞.

Thus, the equation, f (z) = z3 +a4z2 +a5z+a6 has at least one positive root z1.

Equation ω6 +a4ω4 +a5ω2 +a6 = 0 has at least one positive root, denoted by;

ω1 =
√

z1.

7. BIFURCATION ANALYSIS

By considering the delay, τ as a bifurcation parameter. Moreover, considering the
equation;

f1(λ ) = (λ 3 + p1λ
2 + p2λ + p3)+(q1λ

2 +q2λ +q3)e−λτ (7.1)

as functions of the bifurcation parameter τ .

Let λ (t) = y(τ) + iω(τ) be the eigen values of f1(λ ) = (λ 3 + p1λ 2 + p2λ + p3) +

(q1λ 2 +q2λ +q3)e−λτ .

Such that for some initial value of the bifurcation parameter τ1, we have y(τ1) = 0, and
ω(τ1) = ω(τ1). Assuming ω1 > 0.

From;

ω
3−ωρ2 = ωq2cos(ωτ)+(ω2q1−q3)sin(ωτ) (7.2)

and
ω

2
ρ1− p3 = ωq2sin(ωτ)+(−ω

2q1 +q3)cos(ωτ). (7.3)

We have;

τ1 =
1

ω1
arcos

(
(p1q1−q2)ω

4
1 +(p2q2− p3q3)ω

2
1

q2
2ω2

1 +(q3−q1ω2
1 )

2 +
p3q3

q2
2ω +(q3−q1ω2

1 )
2

)
+2 jπ .

Also, if
dReλ (τ)

d(τ)
> 0. By continuity the real part of λ (τ) becomes positive when

τ > τ1 and the steady state becomes unstable.
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A Hopf bifurcation occurs when τ passes through the critical value.

Considering the Delayed SIR Model when α = 0, the standard incidence rate;

βS(t− τ)I(t− τ)e−µτ . (7.4)

The model becomes:

dS(t)
dt

= b(S(t)+ I(t)+R(t)−βS(t− τ)I(t− τ)e−µτ −µS(t)

dI(t)
dt

= βS(t− τ)I(t− τ)e−µτ − (µ +ρ +δ )I(t),

dR(t)
dt

= ρI(t)−µR(t)


(7.5)

Theorem 4. If, R < 1, the solution of system (14) is (S(t), I(t),R(t))→ (∞,0,0)

with t→ ∞. When R̄0 < 1, the system has a unique endemic equilibrium

P∗ = (S∗, I∗,R∗).

Where;

S∗ =
µ(µ +ρ +δ )e−µτ

β

I∗ =
µ(b−µ)(µ +ρ +δ )e−µτ

β{µ(µ +ρ +δ )−b(µ +ρ)}

R∗ =
ρ(b−µ)(µ +ρ +δ )e−µ

β{µ(µ +ρ +δ )−b(µ +ρ)}

Proof. When t→∞, consider the two cases: I(t) = 0 and I(t)> 0. If I(t) = 0, it implies
that R(t) = 0.

From
dS(t)

dt
= (b−µ)S(t). When t→ ∞, we have S(t)→ ∞. Then, (S(t), I(t),R(t))→

(∞,0,0) with t→ ∞. If I(t) = 0, from the system of differential equation,

R∗ =
ρI∗

µ
.

Moreover,

S∗ =
µ(µ +ρ +δ )e−µτ

β

I∗ =
µ(b−µ)(µ +ρ +δ )e−µτ

β{µ(µ +ρ +δ )−b(µ +ρ)}
Then, we ensure that, R∗ ≥ 0, I∗ ≥ 0,S∗ ≥ 0.
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We must have µ(µ +ρ +δ )−b(µ +ρ)> 0.

This means there exists the endemic equilibrium with R0 > 1.

Analysing the stability of the endemic equilibrium, P∗ with R0 > 1.

Theorem 5. If R0 > 1 and when τ = 0, the endemic equilibrium,

P∗ is stable, and when τ > 0, P∗is unstable.

Proof. When τ = 0 , the characteristic equation of system of differential equation
becomes:

λ
3 + c1λ

2 + c2λ + c3 = 0 (7.6)

This means, c1 > 0,c2 > 0 and c3 > 0. By Ruth-Hurwitz criterion, the system is stable
with τ = 0. When τ > 0, the system has a purely imaginary root ωi(ω > 0), then:

f (z) = z3 + c4z2 + c5z+ c6 (7.7)

Where c6 = p2
3 = q2

3. Then, f
′
(0)< 0 and f

′
(∞)→+∞.

Thus;

f (z) = z3 + c4z2 + c5z+ c6 (7.8)

has at least one positive root z2.

Also,

dReλ (τ)

dτ
> 0 (7.9)

A Hopf bifurcation occurs when τ passes through the critical value.

8. NUMERICAL SOLUTIONS

Numerical simulations was performed on the system of differential equation of the
model parameters to see the dynamics of the population of susceptible, infectious and
recovered in the system. This is done to see the how the population of the susceptible,
infectious and the recovered change with time. The numerical simulations was done
using Range-Kutta fourth order scheme. The following parameter values were taken
from existing published data and others assumed for the numerical simulations;
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8.1 Susceptible, Infectious and Recovered population

The numerical simulations the system in 1, support the claim in the theoretical or
qualitative analysis of the model. The endemic equilibrium of the delayed epidemic
model with the saturated incidence rate and the bi-linear incidence rate are locally
asymptotically stable without delay.

Comparing the system of the standard incidence rate and that of the saturated incidence
rate, it can be seen that the proportion of susceptible population is higher in the saturated
incidence rate and the proportions of infectious and recovered are lower.

Figure 1: Population dynamics of Susceptible, Infectious and Recovery with time.

8.2 Population density of Susceptible, Infectious and Recovered at
τ = 0

The diagram in 2 of the delay model indicates that the endemic equilibrium point is
locally asymptotically stable when τ = 0 with both the saturated and standard incidence
rate.

Figure 2: The endemic equilibrium is locally stable τ = 0 with saturated and standard
incidence rate.
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8.3 Stable and unstable endemic equilibrium of SIR model

The diagram in 3showed that the endemic equilibrium of the delayed epidemic model
is locally asymptotically stable when τ = 0.1 and unstable when τ = 0.85.

Figure 3: The endemic equilibrium is asymptotically stable with τ = 0.1 and unstable
with τ = 0.85.

Figure 4: Endemic equilibrium stability of Susceptible, Infectious and Recovered.

8.4 Stable and unstable endemic equilibrium of the SIR model

Considering the diagram in 5, when τ = 0.1, we can find some stability the dynamics
of the susceptible, infectious and recovered populations. But looking at the second
diagram in the same figure, we find that it is unstable when the value of τ = 0.85.
Moreover, the diagram in 6, the endemic equilibrium in the system of the standard
incidence rate showed an existence of periodic solution.
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Figure 5: The endemic equilibrium is asymptotically stable with τ = 0.1 and unstable
with τ = 0.85.

Figure 6: Existence of periodic solution at standard incidence rate.

9. CONCLUSION

The numerical simulations of the model showed that the endemic equilibrium point
is locally asymptotically stable without time delay. The diagram 1in indicates that
it is more effective to consider the inhibition effect of the population change of the
infectious. This would reduce the infectious population. Moreover, the diagrams in 3
and 5 showed that the endemic equilibrium in system of the delay differential equation
at saturated and standard incidence rate is locally asymptotically stable. It showed that
endemic equilibrium of system is locally asymptotically stable whenever τ is suitably
small. It also showed the existence of periodic solutions.
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