
A Note on Hausdorff Domination

Annie Sabitha Paul1 and Raji Pilakkat Paul2

1Dept. of Mathematics, Govt. College of Engineering Kannur , Kannur, Kerala, India.
Email: anniesabithapaul@gmail.com

2Dept. of Mathematics, University of Calicut, Kerala, India
Email: rajipilakkat@gmail.com

Global Journal of Pure and Applied Mathematics.
ISSN 0973-1768 Volume 15, Number 4 (2019), pp 349–364
c© Research India Publications

http://www.ripublication.com

Abstract

A set D ⊆ V of a graph G(V,E) is called a dominating set if every vertex
in G is either in D or is adjacent to an element of D. A simple graph G is
said to be Hausdorff, if for any two distinct vertices u and v of G, either one
of u and v is isolated or there exists two nonadjacent edges e1 and e2 of G
such that e1 is incident with u and e2 is incident with v. A dominating set
D such that the subgraph 〈D〉 induced by D is Hausdorff is called a Hausdorff
dominating set. If 〈D〉 is connected and Hausdorff, then it is called a connected
Hausdorff dominating set. The minimum cardinality of all Hausdorff dominating
sets and connected Hausdorff dominating sets are respectively called Hausdorff
domination number γH(G) and connected Hausdorff domination number γcH(G).
In this paper Hausdorff domination number and connected Hausdorff domination
number are introduced and some results on these new parameters are established.

Keywords: Domination number, Hausdorff domination number, connected
Hausdorff domination number.
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1. INTRODUCTION

Graphs G = (V (G), E(G)) discussed in this paper are finite, simple and undirected.
Any undefined term in this paper may be found in [2,8]. The degree [2] of a vertex v
in graph G is denoted by dG(v), which is the number of edges incident with v. The
maximum and minimum degrees of G are denoted respectively by 4(G) and δ(G).
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The complement G [9] of graph G has V (G) = V (G) and uv ∈ E(G) if and only if
uv is not in E(G). For a graph G, the number of vertices is called the the order [9] of
G and is denoted by O(G). An empty graph [2] is a graph with no edges. An isolated
vertex [8] is one whose degree is zero. A vertex in a graph is called a pendant vertex
[14] if its degree is one. Any vertex adjacent to a pendant vertex is called a support
vertex. A simple graph in which each pair of distinct vertices is joined by an edge is
called a complete graph [2]. A complete graph on n vertices is denoted by Kn. A
bipartite graph G is one whose vertex set can be partitioned into two subsets X and
Y so that each edge has its ends in X and Y respectively. Such a partition (X, Y ) is
called a bipartition of G. A complete bipartite graph [2] is a simple bipartite graph
with bipartition (X, Y ) in which every vertex of X is joined to every vertex of Y .
The complete bipartite graph with |X| = m and |Y | = n is denoted by Km,n. The
graph H is said to be an induced subgraph [3] of the graph G if V (H) ⊆ V (G) and
two vertices in H are adjacent if and only if they are adjacent in G. If two vertices
u and v are connected in G, the length of the shortest u-v path in G is called the
distance [2] between u and v and is denoted by d(u, v). The diameter [2] of G is the
maximum distance between two vertices of G and is denoted by diam(G). A tree [2]
is a connected acyclic graph. A cut edge [2] of a graph G is an edge such that whose
removal makes the graph disconnected. The open neighborhood [9] of v in V (G)

consists of those vertices adjacent to v in G and it is denoted by N(v). The closed
neighborhood [9] of v is N [v] = N(v) ∪ {v}. The corona [7] of two graphs G1 and
G2 is the graph G = G1 o G2 formed from one copy of G1 and |V (G1)| copies of G2,
where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2. The girth
g(G) [9] of a graph G is length of the shortest cycle in G.

Let G = (V,E) be a graph. A set D ⊆ V is called a dominating set [9] if every
vertex in G is either in D or is adjacent to an element of D. The minimum cardinality
of all dominating sets in G is called the domination number and is denoted by γ(G).
Different types of dominating sets have been studied by imposing conditions on the
dominating sets. A detailed survey can be found in [9,10,11]. A dominating set D
is called an independent dominating set [5] if 〈D〉 is the empty graph. A dominating
set D is called a connected dominating set [15] if 〈D〉 is connected. D is called total
dominating [4] if 〈D〉 has no isolated vertices. D is global dominating [16] if it is a
dominating set of G, the complement of G. D is cycle dominating [12] if 〈D〉 is a
cycle and D is a dominating clique [13], if 〈D〉 is a complete graph. The corresponding
minimum cardinality of independent dominating set, connected dominating set, total
dominating set, global dominating set, cycle dominating set and clique dominating set
are respectively called independent domination number, connected domination number,
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total domination number, global domination number, cycle domination number and
clique domination number and are denoted respectively by i(G), γc(G), γt(G), γg(G),
γcy(G) and γcl(G). The maximum size of an independent set of vertices in a graph G
is called independence number and is denoted by α(G) [6]. In [17], V Seena and Raji
Pilakkat defined the Hausdorff Graph as follows

A simple graph G is said to be Hausdorff, if for any two distinct vertices u and v of G,
one of the following hold

1. At least one of u and v is isolated.

2. There exists two nonadjacent edges e1 and e2 of G such that e1 is incident with u
and e2 is incident with v.

In this paper, a new domination parameter, Hausdorff domination number is introduced
using this concept. A Hausdorff dominating set is any dominating set D ⊆ V such that
〈D〉 is Hausdorff. In this paper it is proved that every independent dominating set in
a graph is Hausdorff dominating. So that every graph has a Hausdorff dominating set.
Hence the property of Hausdorff domination is applicable to all simple graphs. Also the
domination chain can be extended using Hausdorff domination number and an upper
bound for γ(G) is obtained in terms of γH(G).

An example of a real life situation where the notion of a non independent Hausdorff
dominating set can be used is given below. In a battlefield, sometimes it is needed to
locate the places where additional weapons, energy sources, medicines etc are to be
located so that it can be accessed easily from more than one or interconnected sources
in case of emergency. These resources are represented by a non independent Hausdorff
dominating set and the clients are represented by the non isolated vertices outside this
set. Self sufficient units are denoted by isolated vertices of the Hausdorff dominating
set.

2. HAUSDORFF DOMINATION

Hausdorff domination is defined as follows.

DEFINITION 2.1. A dominating set D ⊆ V is said to be Hausdorff dominating, if
〈D〉 is Hausdorff. Minimum cardinality of all Hausdorff dominating sets is called the
Hausdorff domination number and is denoted by γH(G). Such a Hausdorff dominating
set with cardinality γH(G) is referred to as a γH -set.

For any graph G, γ(G) ≤ γH(G)
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Theorem 2.1 gives a characterization result for a dominating set to be Hausdorff
dominating.

Theorem 2.1. Let G = (V,E) be any graph. A dominating set D ⊆ V is a Hausdorff
dominating set if and only if one of the following statements hold.

1. 〈D〉 is an empty graph

2. If 〈D〉 is triangle free and if v ∈ D is not an isolated vertex in 〈D〉, then the
degree of v, d〈D〉(v) ≥ 2

3. If 〈D〉 contains K3 as an induced subgraph, then d〈D〉(v) ≥ 3 for at least two
vertices ofK3 and for all other vertices which are non isolated in 〈D〉 have degree
≥ 2.

Proof. Assume that D ⊆ V is a Hausdorff dominating set of G. If for any two distinct
vertices u and v of 〈D〉, both u and v are isolated, then 〈D〉 is an empty graph hence
there is nothing to prove.

Suppose that 〈D〉 contains at least one nontrivial connected component. Such
components cannot have a vertex of degree one, since then by definition, 〈D〉 cannot
be Hausdorff. Hence for every vertex v in any nontrivial connected component of 〈D〉,
d〈D〉(v) ≥ 2.

If 〈D〉 contains K3 and d〈D〉(v) < 3 for at least two vertices of K3 then those vertices
in pairs will not have two non adjacent edges incident with them. Hence 〈D〉 cannot
be Hausdorff. On the other hand if d〈D〉(v) = 2 only for one vertex or d〈D〉(v) ≥ 3 for
all vertex in K3 then there are nonadjacent edges incident with every pair of vertices in
K3. Hence in 〈D〉, for every non isolated vertex v, d〈D〉(v) ≥ 2 and d〈D〉(v) ≥ 3 for at
least two vertices in every K3 which is an induced subgraph of 〈D〉.

Conversely, assume that D is a dominating set for which one of the three stated
conditions hold. Then it is proved that D is a Hausdorff dominating set. If 〈D〉 is
the empty graph, then clearly D is a Hausdorff dominating set.

Suppose that (2) holds. Let (u, v) be a pair of distinct vertices in 〈D〉. If one of them
is an isolated vertex or if u and v belong to different components of 〈D〉, then there is
nothing to prove. If both of them are non isolated and belongs to the same component
of 〈D〉, then there arise the following cases.

Case (i) u and v are adjacent. Then since d〈D〉(u) and d〈D〉(v) are greater than or equal
2, there exists u1, v1 in 〈D〉, such that u1 is adjacent to u, v1 is adjacent to v and the
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edges uu1 and vv1 are non adjacent. Here u1 6= v1, otherwise {u, u1(= v1), v} will
form the vertices of K3 in the triangle free graph 〈D〉.

Case (ii) u and v are non adjacent. Then they are joined by at least one path of length
two or greater than two. If the u-v path is of length 2, there exists a vertex w such that
uwv is a u-v path and since, d〈D〉(u) ≥ 2, there exists a vertex x 6= w adjacent to u. So
that xu and wv are non adjacent edges incident with u and v respectively. If the length
of the u-v path is greater than 2, then there exists at least two vertices u1 6= v1 such
that, uu1...v1v is is a u-v path in 〈D〉 and u1u and v1v are non adjacent edges incident
with u and v respectively.

Now let (3) hold. Consider two adjacent vertices u, v in 〈D〉. If {u, v} does not belongs
to the vertex set of any K3 in 〈D〉 then by the above reasoning, non adjacent edges
incident with u and v can be found. Otherwise, there existsw ∈ D such that 〈{u, v, w}〉
is K3. Then either d〈D〉(u) ≥ 3 or d〈D〉(v) ≥ 3 or both d〈D〉(u) and d〈D〉(v) ≥ 3.

Without loss of generality assume that d〈D〉(u) = 2 or 3 and d〈D〉(v) ≥ 3 then ∃ a
vertex x different from u and w in D adjacent to v in 〈D〉. Thus in this case the edges
e1 and e2 are non adjacent, where e1 = wu is incident with u and e2 = xv is incident
with v. Hence 〈D〉 is Hausdorff.

Corollary 2.2 follows directly from Theorem 2.1.

Corollary 2.2. If D ⊆ V is a Hausdorff dominating set of a graph G(V,E) then 〈D〉
has no vertices of degree one. In other words, 〈D〉 is free of pendant vertices.

3. HAUSDORFF DOMINATION AND INDEPENDENT DOMINATION

Theorem 3.1. Every independent dominating set is Hausdorff dominating

Proof. Let G = (V,E) be any graph, let D ⊆ V be an independent dominating set of
G. Then 〈D〉 is the empty graph. Hence by Theorem 2.1, it is Hausdorff.

Corollary 3.2. For any graph G, γH(G) ≤ i(G)

Corollary 3.3. The domination chain [7] γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) can be
extended as γ(G) ≤ γH(G) ≤ i(G) ≤ α(G) ≤ Γ(G).

Remark 3.4. The converse of Theorem 3.1 need not be true. For example in figure
1, {a, b, c, d} is both independent and Hausdorff dominating while {e, f, g, h} is
Hausdorff dominating but not independent
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Figure 1

Theorem 3.5. 1. γH(Pn) = dn
3
e, for any path Pn on n vertices.

2. γH(Cn) = dn
3
e, for any cycle Cn on n vertices.

Proof. (1) For any path Pn on n vertices, a dominating set D can be Hausdorff
dominating if and only if 〈D〉 is an empty graph. Otherwise, 〈D〉 will contain two
or more pendant vertices and hence by corollary 2.2, it cannot be Hausdorff. Therefore
dn
3
e = γ(Pn) ≤ γH(Pn) ≤ i(Pn) = dn

3
e

(2) For any cycle Cn on n ≥ 4 vertices the set of all vertices constitute a Hausdorff
dominating set. By the same reasoning as in the case of paths Pn, any dominating set
D ofCn of cardinality< n, will be Hausdorff dominating if and only if 〈D〉 is an empty
graph. Hence dn

3
e = γ(Cn) ≤ γH(Cn) ≤ i(Cn) = dn

3
e

Theorem 3.6. Let G = (V,E) be any graph on n vertices then,

1. γH(G) = 1 if and only if4(G) = n− 1

2. γH(G) = 2 if and only if i(G) = 2

3. γH(G) = 3 if and only if i(G) = 3

4. γH(G) = n if and only if G = Kn

Proof. (1) If γH(G) = 1, then there exists a vertex v of G which is adjacent to all other
vertices of G. Therefore d(v) and hence4(G) = n− 1

Conversely, if4(G) = n− 1, then G has a vertex v which dominate every vertex of G
and 〈v〉 is Hausdorff. Hence γH(G) = 1

(2) Suppose γH(G) = 2. Let D ⊆ V (G) be a γH-set. Since the only Hausdorff graph
on two vertices isK2, 〈D〉 has no edges. Therefore,D is independent dominating. Also
since γH(G) ≤ i(G), it follows that i(G) = 2
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Conversely, let i(G) = 2. Then γH(G) = 2. Otherwise γH(G) = 1. In this case,
a singleton subset of V dominates all the vertices of G. Therefore, i(G) = 1, a
contradiction.

(3) Suppose γH(G) = 3. Let D ⊆ V (G) be a γH-set. Then as in the proof of part
(2), the only Hausdorff graph on three vertices is K3. Therefore, D is independent
dominating. Hence by Corollary 3.2, it follows that i(G) = 3.

Conversely, let i(G) = 3. Then γH(G) cannot be 1 or 2, as in these cases, every
γH-set is also an independent dominating set of cardinality less than i(G). Therefore,
γH(G) = 3.

(4) Let γH(G) = n. Then for any γH-set D, |D| = n. ie., every vertex of G belongs to
every γH-set. Hence 〈D〉 =G. By Corollary 3.2, γH(G) ≤ i(G). Also sinceO(G) = n,
i(G) = n. Hence G = Kn, an empty graph on n vertices.

The converse is obvious.

Since all the graphs G mentioned in Corollary 3.7 have 4(G) = n − 1, it follows
immediately from Theorem 3.6.

Corollary 3.7. 1. For any complete graph Kn, γH(Kn) = 1,∀n > 1

2. For any star graph K1,n, γH(K1,n) = 1, n > 1

3. For any wheel graph Wn+1 = Cn +K1, γH(Wn+1) = 1, n > 3

Corollary 3.8. If i(G) = 4, then γH(G) = 4

Proof. Let i(G) = 4. By Corollary 3.2, γH(G) ≤ i(G). Therefore γH(G) < 4 will
imply that the γH-set is independent dominating, which contradicts i(G) = 4. Hence
γH(G) = 4

Corollary 3.9. If i(G) ≤ 4, then γH(G) = i(G)

Remark 3.10. By Theorem 3.6, whenever i(G) ≤ 3 the i-set and γH-set are the
same. But when i(G) = 4 even though γH(G) = 4, there may exist γH-set which
is different from an i-set. For example, the graph G(V,E) in Figure 1 has A ⊂ V ,
B ⊂ V , where, A = {a, b, c, d} forms an i-set which is also Hausdorff dominating.
But B = {e, f, g, h} is a γH-set which is not independent.

Remark 3.11. The conclusion of Corollary 3.9 need not be true for i(G) ≥ 5. The
graph in figure 2 has γH(G) = 4 < i(G) = 5
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Figure 2

Theorem 3.12. For any complete bipartite graph Km,n,

γH(Km,n) =


1, if either m or n = 1;
2, if m ≥ 2, n ≥ 2 and at least one of m or n is 2;
3, if m ≥ 3, n ≥ 3 and at least one of m or n is 3;
4, if m ≥ 4 and n ≥ 4.

Proof. γH(Km,n) = 1 if either m or n = 1 is a particular case of Corollary 3.7.

Since γ(Km,n) = 2 for m ≥ 2 n ≥ 2 and i(Km,n) = 2 if m ≥ 2, n ≥ 2 and at least one
of m or n is 2 then since γ(Km,n) ≤ γH(Km,n) ≤ i(Km,n), γH(Km,n) = 2 if m ≥ 2,
n ≥ 2 and at least one of m or n is 2

When m ≥ 3, n ≥ 3 and at least one of m or n is 3 then since Km,n does not have a
vertex of degree m+ n− 1, by Theorem 3.6, γH(Km,n) 6= 1. Suppose if possible, D is
a γH-set of Km,n of cardinality 2 then either 〈D〉 is K2 or an empty graph on 2 vertices.
In the first case 〈D〉 is not Hausdorff and in the second case, D is not dominating.
Hence γ(Km,n) = 3 = min{m,n} if m ≥ 3, n ≥ 3 and at least one of m or n is 3.

If m ≥ 4 and n ≥ 4, then four vertices, two each from the bipartite sets will form a
Hausdorff dominating set. So γH(Km,n) ≤ 4. Suppose, if possible, γH(Km,n) < 4.
Then by the above reasoning, γH(Km,n) cannot be 1 or 2. IfD is a γH-set of cardinality
3, then either 〈D〉 is P3 or K2 ∪K1 or an empty graph on three vertices. If 〈D〉 is P3

or K2 ∪K1 then it is not Hausdorff and D is not dominating if 〈D〉 an empty graph on
three vertices. Hence γH(Km,n) cannot be 3.

Corollary 3.13. For any complete bipartite graph Km,n, m ≥ 1, n ≥ 1, γH(Km,n) ≤ 4

Theorem 3.14. The graph induced by any Hausdorff dominating set which is not
independent, contains a cycle Cm on m > 4 vertices

Proof. Let D ⊆ V be any Hausdorff dominating set. Suppose D is not an independent
dominating set. Then 〈D〉 is not an empty graph. Let v ∈ D. If v is not an isolated
vertex in 〈D〉, then v is a vertex of a connected component G1 of 〈D〉. Since 〈D〉
is Hausdorff, the subgraph G1 also should be Hausdorff. Then by Theorem 2.1,
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dG1(v) ≥ 2 , ∀v ∈ V (G1). So that G1 cannot be a tree. Hence G1 is not acyclic
and contains a cycle Cm for m ≥ 3. Now if dG1(v) = 2 ∀v ∈ V (G1), then G1 is a cycle
Cm with m vertices. Since G1 is Hausdorff, m ≥ 4. If G1 contains K3, by Theorem
2.1, dG1(v) ≥ 3 for at least two vertices of K3. Let u1 and u2 be the vertices adjacent
to the vertices of K3 of degree > 2 in G1. Consider the following cases.

Case 1: u1 = u2, then u1 together with the vertices of K3 will form a cycle of length 4

Case 2: u1 6= u2, and if u1 and u2 are adjacent. In this case, two internally disjoint paths
can be found from u1 to u2, one along the vertices of K3 and the other along the edge
u1u2. Adjoining these two paths from u1 to u2 a cycle of length 5 will be obtained.

Case 3: u1 6= u2, and u1 and u2 are not adjacent in G1. Since dG1(u1) and dG1(u2) are
greater than or equal to 2, if at least one of u1 or u2 is adjacent to the third vertex of K3

under consideration, then there is a cycle of length 4 in G1. If u1 and u2 are joined by
a path not along the vertices of K3 then also a cycle of length greater 4 can be obtained
by adjoining these two internally disjoint u1-u2 paths.

Case 4: u1 and u2 are not connected through any path other than that along the vertices
of K3. In this case, suppose if possible the other end blocks in the direction opposite
to that of K3 from u1 and u2 do not contain any cycle of length greater than or equal to
4. Then these blocks are either a triangle or a pendant edge. In both cases G1 cannot
be Hausdorff. Hence both these blocks should contain a cycle of length greater than or
equal to 4.

Now let G1 be triangle free. Let u, v ∈ V (G1). As G1 is a connected Hausdorff graph,
the order of G1 is ≥ 4. Let e be any edge in G1 with end points v1 and v2, which is not
a cut edge of G1. Since G1 is not a tree such an edge will exist. As G1 is Hausdorff and
d(v) ≥ 2 for all v ∈ G1, a path from v1 to v2 not through e can be found. Then since
G1 is triangle free this path together with e will form a cycle of length ≥ 4. Hence the
proof.

Since any tree is acyclic, the corollary follows from Theorem 3.14

Corollary 3.15. For any tree T , the Hausdorff dominating set and independent
dominating set are the same. Hence γH(T ) = i(T ), for any tree T.

Theorem 3.16. For any graph G of order n ≥ 2, 3 ≤ γH(G) + γH(G) ≤ n+ 1

Proof. Let G be any graph of order n ≥ 2. If γH(G) = 1, then by Theorem 3.6, ∃ a
vertex v of degree n − 1 in G. Hence v is an isolated vertex in G. Hence γH(G) ≥ 2.

Similarly if γH(G) = 1, then γH(G) ≥ 2. In this case, γH(G) + γH(G) ≥ 3 Also the
lower bound is obvious when γH(G) ≥ 2.
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Now an upper bound is obtained by proceeding as follows. Since i(G) ≤ n − ∆(G)

[1] and since γH(G) ≤ i(G),

γH(G) + γH(G) ≤ i(G) + i(G)

≤ n−∆(G) + n−∆(G)

= 2n− [∆(G) + ∆(G)]

≤ 2n− [∆(G) + δ(G)]

= 2n− (n− 1)

= n+ 1

Remark 3.17. The bounds are sharp. By considering G = K1,n−1, n ≥ 5 γH(G) = 1,
γH(G) = 2, we see that the lower bound is sharp. Also by considering G =

Kn, γH(G) = 1, γH(G) = n we get γH(G) + γH(G) = n+ 1

Theorem 3.18. If G is a connected triangle free graph of order ≥ 2, then γH(G) = 2

Proof. Since G is a connected graph of order ≥ 2, it contains an edge say uv. If
O(G) = 2 then G is isomorphic to K2 and G is isomorphic to an empty graph on two
vertices. Therefore, γH(G) = 2. If O(G) > 2, then no vertex of G is adjacent to both
u and v, because G is triangle free. Therefore every vertex in G which are adjacent to
u are dominated by v in G and those vertices adjacent to v in G are dominated by u
in G and all vertices which are non adjacent to both u and v are dominated by both u
and v in G. So {u, v} forms an independent dominating set of G. Therefore it is also
a Hausdorff dominating set of G. Hence γH(G) ≤ 2. Now let if possible γH(G) = 1,

then G would have an isolated vertex, a contradiction. Which proves γH(G) = 2

4. CONNECTED HAUSDORFF DOMINATION

DEFINITION 4.1. Let G = (V,E) be any graph. A dominating set D ⊆ V is called
a connected Hausdorff dominating set, if 〈D〉 is both connected and Hausdorff. Any
connected Hausdorff dominating set with minimum cardinality γcH(G), is called a γcH
-set and γcH(G) is called the connected Hausdorff domination number of G.

Theorem 4.1. For any graph G, γH(G) ≤ γcH(G)

Proof. Since every connected Hausdorff dominating set is Hausdorff dominating, it
follows that γH(G) ≤ γcH(G).
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DEFINITION 4.2. [14] A star graph K1,n, n ≥ 0 is a tree on n pendant vertices and one
central vertex of degree n.

Theorem 4.2. No tree other than the star graph has a connected Hausdorff dominating
set.

Proof. For K1,n, n ≥ 1 the vertex of degree n will form a connected Hausdorff
dominating set.

Let T be any tree other than K1,n, n ≥ 1. If possible, let T have a connected Hausdorff
dominating set D. Then 〈D〉, which is a subgraph of T is connected and Hausdorff.
〈D〉 being a connected subgraph of T , it is acyclic and hence a tree. As every tree of
order greater than one contains at least two pendant vertices, and since any graph with
pendant vertices is not Hausdorff, |D| = 1 ie., D = {v} a singleton subset of V . But in
this case, the given graph T is a star, a contradiction. Hence T cannot have a connected
Hausdorff dominating set.

Observation 4.3. If a graph G has a spanning cycle Cn, n ≥ 4, it contains a connected
Hausdorff dominating set. In particular, Every Hamiltonian graph with more than
four vertices contains a connected Hausdorff dominating set. But the condition is not
sufficient, ie, the existence of a connected Hausdorff dominating set in a graph G need
not imply that G is Hamiltonian. For example, the graph G in figure 3 has a connected
Hausdorff dominating set. But G is not Hamiltonian.

t
t t t t

ttt

Figure 3

Theorem 4.4. For any nontrivial connected Hausdorff dominating set D of any graph
G ∃ a subset V1 of D such that 〈V1〉 = Cm, for m > 4

Proof. Proof follows directly from Theorem 3.14

Corollary 4.5. For any nontrivial connected Hausdorff dominating set D ⊆ V of G,
|D| ≥ 4. In particular γcH(G) ≥ 4

Corollary 4.6. If G is triangle free and has a nontrivial connected Hausdorff
dominating set then the girth g(G) ≥ 4.
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Remark 4.7. For the wheel graph G = Wn+1 = K1 + Cn, n ≥ 4, the vertex v of
degree n is a Hausdorff dominating set. Also the graph induced by the vertices of Cn is
connected Hausdorff, for n ≥ 4. For this graph, bothD = {v} and V −D are connected
Hausdorff dominating sets and γH(G) = γcH(G) = 1

Theorem 4.8. Unicyclic graphs can have a connected Hausdorff dominating set if and
only if G ∼= Cm for m ≥ 4 or G contains a cycle Cm for m ≥ 4 with one or more
pendant vertices adjacent to all or some of the vertices of Cm

Proof. If G is any of the two types of graphs as mentioned in the statement, then
the vertices of Cm, m ≥ 4 forms a connected Hausdorff dominating set of G with
γcH(G) = m

Conversely, let G be any uni-cyclic graph with a connected Hausdorff dominating set
D. Then by Theorem 4.4, 〈D〉 contains at least one cycle Cm where m ≥ 4. ie.,
the unique cycle of G is in fact contained in the graph induced by every connected
Hausdorff dominating set. If G = Cm, then there is nothing to prove. On the other
hand, let v ∈ V − V (Cm). Since G has a connected Hausdorff dominating set, G
itself is connected. Therefore there exists a path from v to every vertex of Cm. It is
claimed that there do not exist two internally disjoint paths from v to the vertices of
Cm. Otherwise G contains more than one cycle. Hence there exists exactly one vertex
u ∈ V (Cm) and exactly one path from v to u such that d(u, v) is minimum.

Now it is claimed that v is a pendant vertex of G, which is adjacent to a vertex of Cm.
If v is not a pendant vertex,then a pendant vertex say u in V (G) and a unique path
containing v, joining u to the nearest vertex say w in Cm can be found. Since G has a
connected Hausdorff dominating set D, in order to dominate all the vertices in this u-w
path they should belong toD. Hence either the pendant vertex u or a support vertex of u
belong to D⇒ 〈D〉 is not Hausdorff. Now if v is a pendant vertex, but it is not adjacent
to any vertex of Cm, then either v is dominated by a support vertex u, where u ∈ D or
v ∈ D. In both cases 〈D〉 contains a pendant vertex and hence is not Hausdorff. Hence
if v ∈ V − V (Cm) then it should be adjacent to a vertex of Cm

Theorem 4.9. If D is a γcH-set of a connected graph G, then both endpoints of every
cut edge of G belongs to D.

Proof. Suppose, if possible, any or both endpoints of a cut edge do not belong to the
γcH-set D. Then the graph induced by D is disconnected, a contradiction to D is a
γcH-set of G.
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5. RELATION OF HAUSDORFF DOMINATING
SET AND CONNECTED HAUSDORFF DOMINATING SET WITH OTHER
DOMINATION PARAMETERS

From the very definition, Every nontrivial connected Hausdorff dominating set is
connected dominating and total dominating. Therefore, γc(G) ≤ γcH(G) and γt(G) ≤
γcH(G)

Theorem 5.1. Every cycle dominating set D with |D| ≥ 4 is connected Hausdorff
dominating. In particular γcy(G) = γcH(G)

Theorem 5.2. If G is the corona CmoK1, m ≥ 4 then i(G) = γH(G) = γt(G) =

γc(G) = γcy(G) = γcH(G) = m

Proof. In CmoK1, m ≥ 4 the pendant vertices will form a γH-set. This set is also
independent dominating. Since, γH(G) ≤ i(G) by Corollary 3.2, i(G) = γH(G) = m.

Clearly vertices of Cm will form a total dominating, connected dominating,cycle
dominating and connected Hausdorff dominating set. So γt(G) = γc(G) = γcy(G) =

γcH(G) = m

Theorem 5.3. Every clique dominating set of a graphGwith clique domination number
γcl(G) ≥ 4 is a connected Hausdorff dominating set.

Proof. Since every complete graphKn is Hausdorff for n ≥ 4, every dominating clique
is a connected Hausdorff dominating set.

Corollary 5.4. If a graph G has a dominating clique with γcl(G) ≥ 4, then γcH(G) ≤
γcl(G)

Remark 5.5. [7] If G has a dominating clique and if γ(G) ≥ 2, then γ(G) ≤ γt(G) ≤
γc(G) ≤ γcl(G)

Therefore ifG has a dominating clique with γcl(G) ≥ 4 and if γ(G) ≥ 2, then the above
domination chain can be extended as γ(G) ≤ γt(G) ≤ γc(G) ≤ γcH(G) ≤ γcl(G). If
γ(G) = 1, Then γ(G) = γt(G) = γc(G) = γH(G) = γcH(G) = γcl(G)

Corollary 5.4 need not hold if γcl(G) < 4 Figures 4 and 5 are examples of graphs for
which γcl(G) = 3 < γcH(G) = 4 and γcl(G) = 2 < γcH(G) = 4 respectively.
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The corona KpoK1 has γ = γt = γc = γcH = γcl = p if p ≥ 4

Theorem 5.6. IfD is a γH-set of the graphG such that 〈D〉 contains an isolated vertex,
and if diam(G) ≥ 5, then D is a global dominating set.

Proof. Consider any graph G with diam(G) ≥ 5. Let D be a γH-set of G such
that 〈D〉 contains at least one isolated vertex. It is asserted that that D is a global
dominating set of G. As diam(G) ≥ 5, D must contain more than one vertices
otherwise diam(G) = 2. Since 〈D〉 contains an isolated vertex it will dominate all the
vertices ofD inG. Now it is claimed that for every vertex v ∈ V \D, |N [v]∩D| < |D|.
Otherwise, there exists a vertex v ∈ V \D such that |N [v] ∩D| = |D|. Then for any
two vertices u1, u2 of G, there arise the following cases.

Case(i) If u1, u2 are in D, then u1vu2 is a path connecting u1 and u2. Hence
d(u1, u2) ≤ 2

Case(ii) Let u1, u2 are in V \D, then there exists u′
1, u′

2 in D such that u1 is adjacent to
u

′
1 and u2 is adjacent to u′

2. So that u1u
′
1vu

′
2u2 is a path joining u1 and u2, when v 6= u1

and v 6= u2. If v = u1 or v = u2 then u1 = vu
′
2u2, u1u

′
1v = u2 respectively form u1-u2

paths and hence d(u1, u2) ≤ 4

Case(iii) If u1 ∈ D and u2 ∈ V \D and if u′
2 ∈ D dominates u2 then u1vu

′
2u2 is a path

joining u1 and u2. Therefore d(u1, u2) ≤ 3
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So that the distance between any pair of vertices is at most four, a contradiction to
diam(G) ≥ 5. Hence if v ∈ V \D, then |N [v] ∩D| < |D|. So there exists a vertex u
in D which is not in N [v]∩D and dominates v in G. Thus D is a dominating set of G.
Hence the theorem.

Corollary 5.7. IfD is a γH-set ofG containing an isolated vertex, and if diam(G) ≥ 5,
then γg(G) ≤ γH(G)

Remark 5.8. Theorem 5.6 need not hold for graphs with diameter ≤ 4. For example,
complete graphs Kn, n ≥ 2 has diameter 1. γH(Kn) = 1 and γg(Kn) = n. For K1,3,
diameter = 2, γH(K1,3) = 1 and γg(K1,3) = 2 In figure 6, diameter of the graph G is 3,
γH(G) = 3 and γg(G) = 4 and in figure 7, diameterH is 4, γH(H) = 4 and γg(H) = 5
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CONCLUSION

In this paper Hausdorff domination number and connected Hausdorff domination
number are introduced. A characterization property for a dominating set to be
Hausdorff dominating is proved. The relation between Hausdorff domination and
independent domination are discussed. Also an attempt is made to compare Hausdorff
domination with other domination parameters. Still there are many characterizations
which are not dealt with and hence there is a wide scope for future study.
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