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Abstract

In this paper, we consider the boundedness of solutions to the following
chemotaxis-haptotaxis model:

ut = ∆u − ∇ · (χ(u)∇v) − ξ∇ · (u∇w) + µu(1 − ur−1 − w), x ∈ Ω, t > 0,

vt = ∆v − v + uη, x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,

under zero-flux boundary conditions in a smooth bounded domain Ω ⊂ Rn(n ≥ 2),
with parameters r ≥ 2, η ∈ (0, 1] and the parameters ξ > 0, µ > 0. χ(u) is assumed
to satisfy χ(u) ≤ ρuβ, χ(0) > 0 for all u > 0 with some β ∈ R and ρ > 0. It is
proved that if β < 3

2 −
nη

n+2 , then for sufficiently smooth initial data (u0, v0,w0),
the corresponding initial-boundary problem possesses a unique classical solution
which is global in time and bounded.
Keywords: Chemotaxis, Haptotaxis, Boundedness, Logistic source, Nonlinear
production
MSC: 35B65 ; 35K55 ; 35Q92 ; 92C17

1. INTRODUCTION

The chemotaxis-haptotaxis model was first introduced by Chaplain and Lolas [3], it describe
processes of cancer cell invasion of surrounding healthy tissue. In addition to random
motion,cancer cells bias their movement toward increasing concentrations of a diffusible
enzyme as well as according to gradients of non-diffusible tissue by detecting matrix molecules
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such as vitronectin adhered therein. The directed cell motion in response to concentration
gradients of some chemical signal is commonly referred to as chemotaxis and the directed
migration toward immovable cues is commonly referred to as haptotaxis. Apart from that, in
this modeling context the cancer cells are usually also assumed to follow a logistic growth
competing for space with healthy tissue. The enzyme is produced by cancer cells and it is
supposed to be influenced by diffusion and degradation. The tissue, also named extracellular
matrix, can be degraded by enzyme upon contact; on the other hand, the tissue might
possess the ability to remodel the healthy level. In [7, 8], authors studied the following
chemotaxis-haptotaxis system:

ut = ∇ · (D(u)∇u) − ∇ · (S 1(u)∇v) − ∇ · (S 2(u)∇w) + u f (u,w), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,

− D(u)
∂u
∂ν

+ S 1(u)
∂v
∂ν

+ S 2(u)
∂w
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω, ∂∂ν denotes the outward
normal derivative on ∂Ω, the unknown functions u, v and w represent the cancer cell density, the
enzyme concentration and the extracellular matrix density, respectively, D(u), S 1(u) and S 2(u)
stand for the density-dependent motility of cancer cells through the extracellular matrix, the
density-dependent chemotactic sensitivity and the density- dependent haptotactic sensitivity,
respectively, and f (u,w) denotes the proliferation rate of the cells. For the sake of simplicity,
they don’t take the remodeling of the extracellular matrix into account here. For D, S 1, S 2 and
f are the following assumptions:

D, S 1, S 2 ∈ C2([0,∞)) and f ∈ C1([0,+∞) × [0,+∞))

and there exist m, q1, q2 ∈ R,CD > 0,CS 1 > 0,CS 2 > 0, µ > 0 and b > 0 such that

CD(u + 1)m−1 ≤ D(u), S 1 ≤ CS 1u(u + 1)q1−1, S 2 ≤ CS 2u(u + 1)q2−1 for all u ≥ 0

and
f (u,w) ≤ µ − bu for all u ≥ 0 and w ≥ 0.

Liu et al. [7, 8] show that besides the impact of the nonlinear diffusion, the dampening effect
of the source of logistic type in tumor cells can also contribute to the boundedness of the
solutions to (1.1) and proved the global existence, uniqueness and the boundedness of the
solutions to (1.1) for space dimension n = 1 if q1 <

m
2 + 1, q2 < min{m2 + 1, 2} or for n = 2 if

q1 <
m+1

2 , q2 < min{m2 + 1, 3
2 } or for n ≥ 3 if q1 <

m
2 + 2

n+2 , q2 < min{m2 + 1, 2 − n−2
n+2 }.

With D(u) = 1, S 1(u) = χu, S 2(u) = ξu, f (u,w) = (a − µur−1 − λw), (1.1) transforms into the
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following chemotaxis-haptotaxis system:

ut = ∆u − χ∇ · (u∇v) − ξ∇ · (u∇w) + u(a − µur−1 − λw), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,
∂u
∂ν

=
∂v
∂ν

=
∂w
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.2)

in smoothly bounded domain Ω ⊂ Rn, n ≥ 1, a ∈ R, where χ > 0, ξ > 0, µ > 0, λ > 0
are parameters. Zheng and Ke [17] shown that when r > 2, or r = 2, with µ > µ∗ =

(n−2)+

n (χ + Cβ)C
1

n
2 +1
n
2 +1 the problem (1.2) possesses a global classical solution which is bounded,

where Cβ and C n
2 +1 are a positive constants.

For the special case a = µ, λ = µ, r = 2 in (1.2), Tao and Wang[12] proved that model (1.2)
possesses a unique global-in-time classical solution for any χ > 0 in one space dimension, or
for small χ

µ > 0 in two and three space dimensions. Later, Tao [11] improved the result of
[12] for any µ > 0 in two space dimensions. Hillen, Painter and Winkler [5] studied the global
boundedness and asymptotic behavior of the solution to (1.2) in one space dimension. Tao [10]
proved that the model has a unique classical solution which is global-in-time and bounded in
two space dimensions. Cao [2] proved that the model has a unique classical solution which is
global-in-time and bounded in three space dimensions. Wang and Ke [16] proved that the model
possesses a unique global-in-time classical solution that is bounded in the case 3 ≤ n ≤ 8 and µ
is appropriately large.

Chen and Tao [4] considered the following chemotaxis-haptotaxis model with generalized
logistic source

ut = ∆u − χ∇ · (u∇v) − ξ∇ · (u∇w) + µu(1 − u − w), x ∈ Ω, t > 0,

vt = ∆v − v + g(u)h(w), x ∈ Ω, t > 0,

wt = −vw + ςw(1 − u − w), x ∈ Ω, t > 0,
∂u
∂ν
− χu

∂v
∂ν
− ξu

∂w
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.3)

in a bounded convex domain Ω ⊂ R3 with smooth boundary, where χ, ξ, µ and ς are positive
parameters, g and h are prescribed nonnegative and C1-smooth functions and g(u) is assumed
to satisfy g(u) ≤ Kuη for all u > 0 with some η ∈ (0, 1] and K > 0. Chen and Tao [4] proved
that if 0 < η < 5

6 , then for any given suitably regular initial data the corresponding Neumann
initial-boundary problem possesses a unique global-in-time classical solution that is uniformly
bounded.
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Inspired by the above papers, in the present paper, we consider the boundedness of solutions to
the following chemotaxis-haptotaxis model:

ut = ∆u − ∇ · (χ(u)∇v) − ξ∇ · (u∇w) + µu(1 − ur−1 − w), x ∈ Ω, t > 0,

vt = ∆v − v + uη, x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,
∂u
∂ν
− χ(u)

∂v
∂ν
− ξu

∂w
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.4)

under zero-flux boundary conditions in a smooth bounded domain Ω ⊂ Rn(n ≥ 2), with
parameters r ≥ 2, η ∈ (0, 1] and the parameters ξ > 0, µ > 0. This paper mainly aims
to understand the competition among the haptotaxis, the nonlinear chemotaxis, the nonlinear
logistic source and the nonlinear production.

The functions u0, v0,w0 are supposed to satisfy the smoothness assumptions
u0 ∈ C(Ω̄) with u0 ≥ 0 in Ω and u0 , 0,

v0 ∈ W1,∞(Ω) with v0 ≥ 0 in Ω,

w0 ∈ C2+ϑ(Ω̄) for some ϑ ∈ (0, 1) with w0 ≥ 0 in Ω̄ and
∂w0

∂ν
= 0 on ∂Ω.

(1.5)

We furthermore assume that
χ ∈ C2([0,∞)), χ(0) > 0 (1.6)

and
χ(u) ≤ ρuβ for all u ≥ 0 (1.7)

with some β ∈ R and ρ > 0.

We give the main result of this paper reads as follow.

Theorem 1.1. Let n ≥ 2, ξ > 0, µ > 0, r ≥ 2 and η ∈ (0, 1], and let χ be a function satisfying
(1.6) and (1.7) with β < 3

2 −
nη

n+2 . Then for any initial data fulfilling (1.5), the problem (1.4)
admits a unique nonnegative classical solution which is global and bounded in Ω × (0,∞).

Remark 1.1. From our results, it is worth to point out that the nonlinear production affect the
nonlinear chemotaxis to guarantee the global boundedness of the solution to (1.4).

This paper is structured as follows. In section 2, we collect basic facts which will be used later.
Section 3 we prove global existence and boundedness by use some Lp-estimate techniques and
Moser-Alikakos iteration (see e.g.[1] and Lemma A.1 in [13]).



Boundedness of solutions in a chemotaxis-haptotaxis model with logistic source 339

2. PRELIMINARIES

We first state one result concerning local-in-time existence of classical solution to the model
(1.4).

Lemma 2.1. Let ξ > 0, µ > 0 and assume that u0, v0 and w0 satisfy (1.5). Then the problem
(1.4) admits a unique classical solution

u ∈ C0(Ω̄ × [0,Tmax)) ∩C2,1(Ω̄ × (0,Tmax)),

v ∈ C0(Ω̄ × [0,Tmax)) ∩C2,1(Ω̄ × (0,Tmax)),

w ∈ C2,1(Ω̄ × (0,Tmax))

(2.1)

with u ≥ 0, v ≥ 0 and 0 ≤ w ≤ ‖w0‖L∞(Ω) for all (x, t) ∈ Ω × [0,Tmax), where Tmax denotes the
maximal existence time. In addition, if Tmax < +∞, then

‖u(·, t)‖L∞(Ω) → ∞ as t ↗ Tmax. (2.2)

Proof. The proof method can referred to [7, 18]. �

The following lemma provides the basic estimates of solutions of (1.4).

Lemma 2.2. Let (u, v,w) be the solution of (1.4). Then there exists C > 0 depending on
n, ‖v0‖L1(Ω) and ‖u0‖L1(Ω) such that

‖u(·, t)‖L1(Ω) ≤ C, ‖v(·, t)‖L1(Ω) ≤ C, ‖∇v(·, t)‖L2(Ω) ≤ C for all t ∈ (0,Tmax). (2.3)

Proof. The proof method can referred to [16]. �

Lemma 2.3. Let (u, v,w) be the classical solution of (1.4) in Ω× (0,Tmax). Then for any k > 1,

−

∫
Ω

uk−1∇ · (u∇w) ≤ c1

(∫
Ω

uk +

∫
Ω

ukv + k
∫

Ω

uk−1|∇u|
)

(2.4)

with constant c1 > 0 independent of k.

Proof. The proof method can referred to [14]. �

Lemma 2.4. Let n ≥ 2, η ∈ (0, 1], β < 3
2 −

nη
n+2 , θ1 =

2(k+1)
3−2β , θ2 =

2(k+1)(m−1)
k−2η+1 and κi =

m
2 −

m
θi

m
2 −

1
2 + 1

n
, i =

1, 2. Then for all sufficiently large k > 1, there exists large m > 1 such that the following
inequalities are valid

θi > 2, m >
n − 2

2n
θi, 2m > max{θiκi, k + 1} for i = 1, 2. (2.5)
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Proof. Since 2m > θiκi is equivalent to m > θi
2 −

2
n , it is sufficient to show that if β < 3

2 −
nη

n+2 ,
then for all sufficiently large k > 1, there exists large m > 1 satisfying m > θi

2 −
2
n (i = 1, 2)

and 2m > k + 1, which can be achieved by the fact that m > θi
2 −

2
n (i = 1, 2) is equivalent to

k+1
3−2β −

2
n < m < (k+1)(n+2)

2nη − 2
n . �

3. PROOF OF THEOREM 1.1

In this section, we use test function arguments to derive the bound of u in Lk(Ω) and ∇v in
L2m(Ω) for all sufficiently large k,m > 1 and going to establish an iteration step to proof of
Theorem 1.1.

Lemma 3.1. Let n ≥ 2, r ≥ 2, ξ > 0, µ > 0, and assume that χ satisfies (1.6) and (1.7) with
β < 3

2 −
nη

n+2 . Then for all large numbers m > 2, k > 1 as provided by Lemma 2.4, there exists
C > 0 such that the solution of (1.4) enjoys the property

‖u(·, t)‖Lk(Ω) ≤ C, ‖∇v(·, t)‖L2m ≤ C for all t ∈ (0,Tmax). (3.1)

Proof. Multiplying the first equation in (1.4) by kuk−1 and integrating over Ω, we get

d
dt
‖u‖kLk(Ω) + k(k − 1)

∫
Ω

uk−2|∇u|2 + kµ
∫

Ω

uk+r−1

≤ k(k − 1)
∫

Ω

χ(u)uk−2∇u · ∇v − kξ
∫

Ω

∇ · (u∇w)uk−1 + kµ
∫

Ω

uk.

(3.2)

By (1.7) and using the Young’s inequality, the first item on the right side of the inequality (3.2)
becomes

k(k − 1)
∫

Ω

χ(u)uk−2∇u · ∇v ≤ k(k − 1)ρ
∫

Ω

uk+β−2∇u · ∇v

≤
k(k − 1)

4

∫
Ω

uk−2|∇u|2 + k(k − 1)ρ2
∫

Ω

uk+2β−2|∇v|2.
(3.3)

The second item of the right side of the inequality (3.2), combining with (2.4), yields

− kξ
∫

Ω

uk−1∇ · (u∇w) ≤ c1kξ
∫

Ω

uk + c1kξ
∫

Ω

ukv + c1k2ξ

∫
Ω

uk−1|∇u|

≤ c1kξ
∫

Ω

uk + c1kξ
∫

Ω

ukv +
k(k − 1)

4

∫
Ω

uk−2|∇u|2 +
c2

1ξ
2k3

k − 1

∫
Ω

uk.

(3.4)
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Hence, inserting (3.3) and (3.4) into (3.2) yields

d
dt
‖u‖kLk(Ω) +

δk(k − 1)
2

∫
Ω

uk−2|∇u|2 + kµ
∫

Ω

uk+r−1

≤ k(k − 1)ρ2
∫

Ω

uk+2β−2|∇v|2 + c1kξ
∫

Ω

uk + c1kξ
∫

Ω

ukv

+
c2

1ξ
2k3

k − 1

∫
Ω

uk + kµ
∫

Ω

uk.

(3.5)

Furthermore, using the Young’s inequality, we can find

d
dt
‖u‖kLk(Ω) + c2

∫
Ω

uk+1 ≤ k(k − 1)ρ2
∫

Ω

uk+2β−2|∇v|2 + c2

∫
Ω

vk+1 + c2, (3.6)

where c2 > 0, as all subsequently appearing constants c3, c4, ...c16 possibly depend on
k,m, µ, ξ, r, η, |Ω| and ρ.

Differentiating the second equation in (1.4), we obtain

d
dt
|∇v|2 = 2∇v · ∇∆v − 2|∇v|2 + 2∇uη · ∇v,

and hence, according to identity

∆|∇v|2 = 2∇v · ∇∆v + 2|D2v|2,

we obtain
d
dt
|∇v|2 = ∆|∇v|2 − 2|D2v|2 + 2∇uη · ∇v.

Testing this by m|∇v|2m−2 yields

d
dt

∫
Ω

|∇v|2m + m(m − 1)
∫

Ω

|∇v|2m−4
∣∣∣∇|∇v|2

∣∣∣2 + 2m
∫

Ω

|∇v|2m−2|D2v|2 + 2m
∫

Ω

|∇v|2m

≤ 2m
∫

Ω

|∇v|2m−2∇uη · ∇v + m
∫
∂Ω

∂|∇v|2

∂ν
|∇v|2m−2.

(3.7)

Based on the estimate of Mizoguchi-Souplet [9], the Gagliardo-Nirenberg inequality and
boundedness of ∇v in L2(Ω), we can conclude that

m
∫
∂Ω

∂|∇v|2

∂ν
|∇v|2m−2 ≤ c3

(∫
Ω

|∇|∇v|m|2
)b

+ c3 (3.8)

with some b ∈ (0, 1). Therefore, combining (3.7) with (3.8) and applying the Young’s inequality,
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we have

d
dt

∫
Ω

|∇v|2m +
m(m − 1)

2

∫
Ω

|∇v|2m−4
∣∣∣∇|∇v|2

∣∣∣2 + 2m
∫

Ω

|∇v|2m−2|D2v|2 + 2m
∫

Ω

|∇v|2m

≤ 2m
∫

Ω

|∇v|2m−2∇uη · ∇v + c4,

(3.9)

due to
∫
Ω
|∇v|2m−4|∇|∇v|2|2 = 4

m

∫
Ω
|∇|∇v|m|2.

Hence, due to the pointwise identities ∇|∇v|2m−2 = (m − 1)|∇v|2m−4∇|∇v|2 and |∆v|2 ≤ n|D2v|2,
and together with an integration by the right part in (3.9) and using Young’s inequality, we have

2m
∫

Ω

|∇v|2m−2∇uη · ∇v

= −2m(m − 1)
∫

Ω

uη|∇v|2m−4∇v · ∇|∇v|2 − 2m
∫

Ω

uη|∇v|2m−2∆v

≤
m(m − 1)

4

∫
Ω

|∇v|2m−4
∣∣∣∇|∇v|2

∣∣∣2 + 4m(m − 1)
∫

Ω

u2η|∇v|2m−2

+
m
n

∫
Ω

|∇v|2m−2|∆v|2 + mn
∫

Ω

u2η|∇v|2m−2

≤
m(m − 1)

4

∫
Ω

|∇v|2m−4
∣∣∣∇|∇v|2

∣∣∣2 + (4m(m − 1) + mn)
∫

Ω

u2η|∇v|2m−2

+ m
∫

Ω

|∇v|2m−2|D2v|2.

(3.10)

Hence, inserting (3.10) into (3.9) yields

d
dt

∫
Ω

|∇v|2m + (m − 1)
∫

Ω

|∇|∇v|m|2 + 2m
∫

Ω

|∇v|2m

≤ (4m(m − 1) + mn)
∫

Ω

u2η|∇v|2m−2 + c4.

(3.11)

Hence combining (3.6) with (3.11) and using the Young’s inequality, we can find

d
dt

∫
Ω

(uk + |∇v|2m) + c5

∫
Ω

(
∣∣∣∇|∇v|m

∣∣∣2 + |∇v|2m) + c5

∫
Ω

uk+1

≤ c6

∫
Ω

uk+2β−2|∇v|2 + c6

∫
Ω

u2η|∇v|2m−2 + c6

∫
Ω

vk+1 + c6

≤
c5

2

∫
Ω

uk+1 + c7

∫
Ω

(|∇v|θ1 + |∇v|θ2) + c6

∫
Ω

vk+1 + c6

(3.12)

with θi(i = 1, 2) as shown in Lemma 2.4. According to the Gagliardo-Nirenberg inequality,
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(2.3) and Lemma 2.4, we have

c7

∫
Ω

|∇v|θi = c7‖|∇v|m‖
θi
m

L
θi
m

≤ c8

(
‖∇|∇v|m‖κi

L2(Ω)
‖|∇v|m‖1−κi

L
2
m (Ω)

+ ‖|∇v|m‖
L

2
m (Ω)

) θi
m

≤ c9‖∇|∇v|m‖
θiκi
m

L2(Ω)
+ c9

≤
c5

2
‖∇|∇v|m‖2L2(Ω) + c10.

(3.13)

Due to the boundedness of ‖v‖W1,2(Ω) (see Lemma 2.2) and Lemma 2.4, and by the Sobolev
inequality and Young’s inequality, we can find

c6

∫
Ω

vk+1 ≤ c11‖v‖k+1
L∞(Ω) ≤ c12‖v‖k+1

Ln+1(Ω) +c12 ≤ c13‖v‖k+1
L2m(Ω) +c12 ≤

c5

2

∫
Ω

|∇v|2m +c14. (3.14)

Hence substituting (3.13) and (3.14) into (3.12) yields

d
dt

∫
Ω

(uk + |∇v|2m) +
c5

2

∫
Ω

(uk+1 + |∇v|2m) ≤ c15,

by the Young’s inequality, we can find

d
dt

∫
Ω

(uk + |∇v|2m) +
c5

2

∫
Ω

(uk + |∇v|2m) ≤ c16,

for sufficiently large k > 1,m > 1. Consequently, y(t) :=
∫
Ω

(uk + |∇v|2m) satisfies y′(t) +
c5
2 y(t) ≤

c16.

Upon an ODE comparison argument, we have y(t) ≤ max{y(0), 2c16
c5
} for all t ∈ (0,Tmax). The

proof of Lemma 3.1 is complete. �

Due to ‖u(·, t)‖Lk(Ω) ≤ C is bounded for any large k, by the fundamental estimates for Neumann
semigroup (see[6, Lemma 2.1]) or the standard regularity theory of parabolic equation, we
immediately have the following Corollary.

Corollary 3.1. Let T ∈ (0,Tmax), ξ > 0 and µ > 0, and assume that (u0, v0,w0) satisfy (1.5).
Then there exists C > 0 independent of T such that the solution (u, v,w) of (1.4) satisfies

‖v(·, t)‖W1,∞(Ω) ≤ C for all t ∈ (0,T ). (3.15)

Next we can prove our main result. Use the standard Moser-Alikakos iteration and choose (3.5)
as a starting point for our proof.

Lemma 3.2. Let n ≥ 2,T ∈ (0,Tmax), ξ > 0, µ > 0, % > 0, and assume Lemma 3.1. Then there
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exists C > 0 independent of T such that the solution (u, v,w) of (1.4) satisfies

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0,T ). (3.16)

Proof. We begin with (3.5)

d
dt
‖u‖kLk(Ω) +

δk(k − 1)
2

∫
Ω

uk−2|∇u|2 + kµ
∫

Ω

uk+r−1

≤ k(k − 1)ρ2
∫

Ω

uk+2β−2|∇v|2 + c1kξ
∫

Ω

uk + c1kξ
∫

Ω

ukv

+
c2

1ξ
2k3

k − 1

∫
Ω

uk + kµ
∫

Ω

uk

which, along with (3.15), implies that

d
dt
‖u‖kLk(Ω) +

δk(k − 1)
2

∫
Ω

uk−2|∇u|2 + kµ
∫

Ω

uk+r−1

≤ c17k(k − 1)
∫

Ω

uk+2β−2 + c17k
∫

Ω

uk +

c1kξ +
c2

1ξ
2k3

k − 1
+ kµ

 ∫
Ω

uk,

where c17 > 0, as all subsequently appearing constants c18, c19, . . . are independent of k as
well as T .

By the Young’s inequality and an obvious rearrangement implies, we can find

d
dt

∫
Ω

uk + c18

∫
Ω

|∇u
k
2 |2 ≤ c19k2

∫
Ω

uk. (3.17)

Let ki = 2i, i ∈ N and Mi := supt∈(0,T )

∫
Ω

uki , i ∈ N. Since ki ≥ 1, it is easy to find c20 > 0 such
that

d
dt

∫
Ω

uki + c18

∫
Ω

|∇u
ki
2 |2 +

∫
Ω

uki ≤ c19k2
i

∫
Ω

uki +

∫
Ω

uki ≤ c20k2
i

∫
Ω

uki . (3.18)

Using the Gagliardo-Nirenberg inequality, we find c21 > 0 independent of k, such that∫
Ω

uki = ‖u
ki
2 ‖2L2 ≤ c21‖∇u

ki
2 ‖2a

L2(Ω) · ‖u
ki
2 ‖

2(1−a)
L1(Ω)

+ c21‖u
ki
2 ‖2L1(Ω),

for all t ∈ (0,T ), with a =
n
2

1+ n
2
∈ (0, 1).
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By the Young’s inequality and ensure that there are c22 > 0 and e > 1 satisfying

c20k2
i

∫
Ω

uki ≤ c18

∫
Ω

|∇u
ki
2 |2 + c22(k2

i )
1

1−a

(∫
Ω

u
ki
2

)2

+ c20c21k2
i

(∫
Ω

u
ki
2

)2

≤ c18

∫
Ω

|∇u
ki
2 |2 + ei

(∫
Ω

u
ki
2

)2

,

(3.19)

Combining (3.18) and (3.19) we find that

d
dt

∫
Ω

uki +

∫
Ω

uki ≤ ei
(∫

Ω

u
ki
2

)2

= eiM2
i−1.

Upon an ODE comparison argument, we have

Mi ≤ max
{
‖u0‖

ki
L∞(Ω), e

iM2
i−1

}
.

If ‖u0‖
ki
L∞(Ω) ≥ eiM2

i−1 for infinitely many i ≥ 1, which implies that

sup
t∈(0,T )

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω)

and thereby proves the lemma in this case.

Otherwise, a direct induction entails

Mi ≤ eiM2
i−1 ≤ ei+

∑i−1
j=1 2 j(i− j)M2i

0 for all i ≥ 1. (3.20)

Here we observe that

i +

i−1∑
j=1

2 j(i − j) = 2 + 22 + 23 + · · · + 2i − i ≤ 2i+1 for all i ≥ 1.

From this and (3.20) we infer

M
1
ki
i ≤ e2M0 for all i ≥ 1.

which implies that
sup

t∈(0,T )
‖u(·, t)‖L∞(Ω) ≤ e2M0

and thereby yields the assertion in this case. �

Now, we prove Theorem 1.1.
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Proof of Theorem 1.1. First we see that boundedness of u and v follows from Lemma 3.2 and
Corollary 3.1. Therefore the assertion of Theorem 1.1 is immediately obtained from Lemma
2.1. �
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