General Quasilinear Problems Involving \((p_1(x), p_2(x))\)-Laplace Type Equation With Robin Boundary

H. Belaouidel\(^1\), A. Ourraoui\(^2\) and N. Tsouli\(^3\)

\(^1\)Faculty of Sciences, University Mohamed I, Oujda, Morocco, E-mail address: belaouidelhassan@hotmail.fr.

\(^2, 3\)Department of Mathematics and Computer Science, Faculty of Sciences, University Mohamed I, Oujda, Morocco, E-mail address: anas.our@hotmail.com, E-mail address: tsouli@hotmail.fr

Abstract

In this article, we study the existence of infinitely many nontrivial solutions for the class of \((p_1(x), p_2(x))\)-laplacian elliptic problem involving concave-convex nonlinearities with Robin boundary, our method is based on the Ljusternik-Schnirelman principle in Banach spaces.

Keywords: \(p(x)\)-laplacian, Ljusternik-Schnirelman principle; multiple solutions, critical point theory

Mathematical Subject Classification[2010]: 39A05, 34B15

1. INTRODUCTION

This paper is concerned with the existence and multiplicity of solutions for the following equation

\[
\begin{align*}
-\Delta_{p_1(x)} u - \Delta_{p_2(x)} u &= h(x)|u|^{r_1(x)} - 2u \\
\frac{\partial u}{\partial \nu_{p_1 p_2}} + a(x)|u|^{p_1(x)-2} u + b(x)|u|^{p_2(x)-2} u &= \lambda g(x)|u|^{\alpha(x)-2} u \\
\end{align*}
\]

in \(\Omega\),

on \(\partial\Omega\), \(1.1\)

where \(\Omega\) is an open bounded subset of \(\mathbb{R}^N\) \((N \geq 2)\), with smooth boundary, by \(-\Delta_{p_i(x)}, i = 1, 2\) we denote the \(p_i(x)\)-Laplacian differential operator \(-\Delta_{p_i(x)} u = -d_i v(\nabla u|^{p_i(x)-2}\nabla u)\) for all \(u \in W^{1,p_i(x)}(\Omega), i = 1, 2\) and \(p_i \in C_+(\bar{\Omega})\) with

\[1 < p_i^- := \inf_{\Omega} p_i(x) \leq p_i^+ := \sup_{\Omega} p_i(x) < N\]
and $p_i(x) < p_i^*(x)$ where

$$p_i^*(x) = \begin{cases} \frac{Np_i(x)}{N-p_i(x)} & \text{if } p_i(x) < N, \\ +\infty & \text{if } p_i(x) \geq N \end{cases}$$

for any $x \in \Omega$ and $i = 1, 2$. and $1 < \alpha^- := \inf_{x \in \Omega} \alpha(x) \leq \alpha^+ := \sup_{x \in \Omega} \alpha(x)$,

$$p_i^\theta(x) = (p_i(x))^\theta = \begin{cases} \frac{(N-1)p_i(x)}{Np_i(x)} & \text{if } p_i(x) < N, \\ +\infty & \text{if } p_i(x) \geq N, \end{cases}$$

and $1 < r^- := \inf_{x \in \Omega} r(x) \leq r^+ := \sup_{x \in \Omega} r(x)$.

In the boundary condition $\frac{\partial u}{\partial n}$ denotes the conormal derivative of u defined by extension of the map: $C^1(\Omega) \ni u \rightarrow [|\nabla u|^{p_1(x)-2}\nabla u + |\nabla u|^{p_2(x)-2}\nabla u] \frac{\partial u}{\partial n}$ with $n(.)$ being the outward unit normal on $\partial \Omega$. This generalized normal derivative is dictated by the nonlinear Greens identity (see Gasinski-Papageorgiou ([24], p.210)). It is also used by Lieberman [26].

Recently, the study of differential equations and variational problems involving $p(x)$-growth conditions have been extensively investigated and received much attention because they can be presented as models for many physical phenomena which arouse in the study of elastic mechanics [38], electro-rheological fluid dynamics [33, 32] and image processing [10], electrical resistivity and polycrystal plasticity [6, 7] and continuum mechanics [5] etc, for an overview of this subject, and for more details we refer readers to [16] and [9, 15] and the references therein. The existence of nontrivial solutions to nonlinear elliptic boundary value problems has been extensively studied by many researchers [1, 2, 12, 19, 23, 28] and references therein.

It is known that the extension $p(x)$-Laplace operator possesses more complicated structure than the p-Laplacian. For example, it is inhomogeneous and usually it does not have the so-called first eigenvalue, since the infimum of its spectrum is zero.

In recent years, the kind of problems of the form (1.1) with convex and concave nonlinearities have been extensively studied by many authors, using various methods.

Our direction is based on the paper [25] where authors have been considered the following nonlinear elliptic equation with Robin Boundary

$$-\Delta_p u = \lambda |u|^{p-2}u + a(x)|u|^{q-2}u \quad \text{in } \Omega, \quad (1.2)$$
General Quasilinear Problems Involving \((p_1(x), p_2(x))\)-Laplace Type Equation...

\[|\nabla u|^{p-2} \frac{\partial u}{\partial \eta} + b(x)|u|^{p-2}u = \mu \rho(x)|u|^{r-2}u \quad \text{on } \partial \Omega, \quad (1.3) \]

where \(\frac{\partial u}{\partial \eta}(x)\) denotes the outward unit normal at \(x \in \partial \Omega\), \(\lambda, \mu\) are parameters, \(\mu > 0\), \(a : \Omega \to \mathbb{R}\), \(b, \rho : \partial \Omega \to \mathbb{R}\) are essentially bounded functions, with \(b(x) \geq 0\) and \(\text{meas}\{x \in \partial \Omega : b(\cdot) > 0\} > 0\). and provided the existence results concerning positive solutions to (1.2)-(1.3) when \(q\) is either subcritical or critical, \(r\) is subcritical and \(\lambda \leq \lambda_1\), whith \(\lambda_1\) is the first eigenvalue of the associated eigenvalue problem.

The aim of this work is to extend the results obtained in [8] to the more general problems (1.1). Precisely, we prove the existence and multiplicity of nontrivial solutions for the non-linear elliptic problem (1.1).

We assume \(\lambda\) is positive parameter and \(a, b, h, g\) are continuous positive functions defined on \(\mathbb{R}^N\) such that

\((A_1)\) \(a(\cdot) \geq 0, b(\cdot) \geq 0\) on \(\partial \Omega\), \(\text{meas}\{x \in \partial \Omega : a(\cdot) > 0, b(\cdot) > 0\} > 0\),

\((A_2)\) \(h(\cdot) \geq 0\) on \(\Omega\), \(g(\cdot) \geq 0\) on \(\partial \Omega\), \(\text{meas}\{x \in \Omega : h(\cdot) > 0\} > 0\), and \(\text{meas}\{x \in \partial \Omega : g(\cdot) > 0\} > 0\).

Denote

\[p_m(x) := \min(p_1(x), p_2(x)), \quad p_M(x) := \max(p_1(x), p_2(x)), \]

for all \(x \in \Omega\), and

\[p_m^- := \min(p_1^-, p_2^-), \quad p_M^+ := \max(p_1^+, p_2^+). \]

Depending on the relative ordering of the exponents \(p_i(x), r(x), p_i^0(x)\) and \(\alpha(x)\).

The main result of this paper can state as follow:

Theorem 1.1. Assume that \((A_1) - (A_2)\) hold. In addition, if we assume the following conditions:

\[1 < p_M^+ < \min\{r^-, \alpha^-\}. \]

Then the problem (1.1) has infinitely many solutions for every \(\lambda > 0\).

The remainder of this paper is organized as follows, in Section 2 we introduce some technical results and required hypotheses in order to solve our problem, in Section 3 we prove the main results of this work.
2. PRELIMINARIES

In the sequel, let \(p(x) \in C_+(\overline{\Omega}) \), where

\[
C_+(\overline{\Omega}) = \{ h : h \in C(\overline{\Omega}), h(x) > 1 \text{ for any } x \in \overline{\Omega} \}.
\]

The variable exponent Lebesgue space is defined by

\[
L^{p(x)}(\Omega) = \{ u : \Omega \to \mathbb{R} \text{ measurable and } \int_{\Omega} |u(x)|^{p(x)} \, dx < +\infty \}
\]

furnished with the Luxemburg norm

\[
|u|_{L^{p(x)}(\Omega)} = |u|_{p(x)} = \inf \{ \sigma > 0 : \int_{\Omega} \frac{|u(x)|}{\sigma}^{p(x)} \, dx \leq 1 \}.
\]

Remark 2.1. Variable exponent Lebesgue spaces resemble to classical Lebesgue spaces in many respects, they are separable Banach spaces and the Hölder inequality holds. The inclusions between Lebesgue spaces are also naturally generalized, that is, if \(0 < \operatorname{mes}(\Omega) < \infty \) and \(p, q \) are variable exponents such that \(p(x) < q(x) \) a.e. in \(\Omega \), then there exists a continuous embedding \(L^{q(x)}(\Omega) \hookrightarrow L^{p(x)}(\Omega) \).

The variable exponent Sobolev space is defined by

\[
W^{1,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \}
\]

equipped with the norm

\[
\|u\|_{W^{1,p(x)}(\Omega)} = |u|_{L^{p(x)}(\Omega)} + |\nabla u|_{L^{p(x)}(\Omega)}.
\]

Proposition 2.2. [20, 21] The spaces \(L^{p(x)}(\Omega) \) and \(W^{1,p(x)}(\Omega) \) are separable, uniformly convex, reflexive Banach spaces. The conjugate space of \(L^{p(x)}(\Omega) \) is \(L^{q(x)}(\Omega) \), where \(q(x) \) is the conjugate function of \(p(x) \); i.e.,

\[
\frac{1}{p(x)} + \frac{1}{q(x)} = 1,
\]

for all \(x \in \Omega \). For \(u \in L^{p(x)}(\Omega) \) and \(v \in L^{q(x)}(\Omega) \) we have

1. \[
\left| \int_{\Omega} u(x)v(x) \, dx \right| \leq \left(\frac{1}{p(x)} + \frac{1}{q(x)} \right) |u|_{p(x)} |v|_{q(x)}.
\]

2. If \(p_1, p_2 \in C_+(\overline{\Omega}) \), \(p_1(x) \leq p_2(x) \) for any \(x \in \overline{\Omega} \) \(L^{p_2(x)} \hookrightarrow L^{p_1(x)} \) and the embedding is continuous.
Moreover, if \(h_1, h_2, h_3 : \overline{\Omega} \to (1, \infty) \) are Lipschitz continuous functions such that \(\frac{1}{h_1} + \frac{1}{h_2} + \frac{1}{h_3} = 1 \), then for any \(u \in L^{h_1(x)}(\Omega) \), \(v \in L^{h_2(x)}(\Omega) \), \(w \in L^{h_3(x)}(\Omega) \), the following inequality holds see [19, Proposition 2.5]

\[
\int |uvw| \, dv \leq \left(\frac{1}{h_1} + \frac{1}{h_2} + \frac{1}{h_3} \right) |u|_{h_1(x)} |v|_{h_2(x)} |w|_{h_3(x)}.
\]

(2.1)

Proposition 2.3. [17] Let \(p(x) \) and \(q(x) \) be measurable functions such that \(p(x) \in L^\infty(\Omega) \) and \(1 \leq p(x)q(x) \leq \infty \), for a.e. \(x \in \Omega \). Let \(u \in L^{q(x)}(\Omega) \), \(u \neq 0 \). Then

\[
|u|_{p(x)q(x)} \leq 1 \Rightarrow |u|_{p(x)q(x)}^{p(x)} \leq |u|_{p(x)q(x)}^{q(x)} \leq |u|_{p(x)q(x)}^{p(x)},
\]

\[
|u|_{p(x)q(x)} \geq 1 \Rightarrow |u|_{p(x)q(x)}^{p(x)} \leq |u|_{p(x)q(x)}^{q(x)} \leq |u|_{p(x)q(x)}^{p(x)}.
\]

In particular if \(p(x) = p \) is a constant, then

\[
|u|_{p(x)}^{p(x)} = |u|_{p(x)}^{p(x)}.
\]

Proposition 2.4. [20, 21] Assume that the boundary of \(\Omega \) possesses the cone property and \(p, r \in C_+(\overline{\Omega}) \) such that \(r(x) \leq p^*(x) (r(x) < p^*(x)) \) for all \(x \in \overline{\Omega} \), then there is a continuous (compact) embedding

\[
W^{1,p(x)}(\Omega) \hookrightarrow L^{r(x)}(\Omega),
\]

Proposition 2.5. [14] For \(p \in C_+(\overline{\Omega}) \) and such \(r \in C_+(\partial \Omega) \) that \(r(x) \leq p^0(x) (r(x) < p^0(x)) \) for all \(x \in \overline{\Omega} \), there is a continuous (compact) embedding

\[
W^{1,p(x)}(\Omega) \hookrightarrow L^{r(x)}(\partial \Omega).
\]

Proposition 2.6 ([13], Theorem 2.1). For any \(u \in W^{1,p(x)}(\Omega) \), let

\[
\| u \|_\partial := |u|_{L^{p(\cdot)}(\partial \Omega)} + |\nabla u|_{L^{p(\cdot)}(\partial \Omega)}.
\]

Then \(\| u \|_\partial \) is a norm on \(W^{1,p(x)}(\Omega) \) which is equivalent to

\[
\| u \|_{W^{1,p(x)}(\Omega)} = |u|_{L^{p(\cdot)}(\Omega)} + |\nabla u|_{L^{p(\cdot)}(\Omega)}.
\]

Let us now consider the weighted variable exponent Lebesgue space. Let a measurable function \(c : \Omega \to \mathbb{R} \). Define

\[
L^{p(x)}(c(x)) = \{ u : \Omega \to \mathbb{R} \text{ measurable and} \int_\Omega c(x) |u(x)|^{p(x)} \, dx < +\infty \}
\]

furnished with the Luxemburg norm

\[
|u|_{L^{p(x)}(c(x))} = |u|_{(p(x),c(x))} = \inf \{ \sigma > 0 : \int_\Omega c(x) \frac{|u(x)|^p}{\sigma} \, dx \leq 1 \}.
\]

Then, \(L^{p(x)}(c(x)) \) is a Banach space.
Proposition 2.7 ([18]). Set \(\rho(u) = \int_{\Omega} b(x)|u(x)|^{p(x)} \). For \(u \in L^{p(x)}_{b(x)}(\Omega) \), we have

(i) \(|u|_{p(x),b(x)} < 1 (= 1; > 1) \Leftrightarrow \rho(u) < 1 (= 1; > 1) \);

(ii) If \(|u|_{p(x),b(x)} < 1 \Rightarrow |u|^+_{p(x),b(x)} \leq \rho(u) \leq |u|^p_{p(x),b(x)} \);

(iii) If \(|u|_{p(x),b(x)} > 1 \Rightarrow |u|^p_{p(x),b(x)} \leq \rho(u) \leq |u|^p_{p(x),b(x)} \).

Proposition 2.8 ([18]). Assume that the boundary of \(\Omega \) possesses the cone property and \(p \in C(\bar{\Omega}) \). Suppose that \(h \in L^{\gamma(x)}(\Omega) \), \(h(x) > 0 \) for \(x \in \Omega \), \(\gamma \in C(\bar{\Omega}) \) and \(\gamma^- > 1 \), \(\gamma^- \leq \gamma_0(x) \leq \gamma_0^+(1/\gamma(x) + 1/\gamma_0(x) = 1) \). If \(r \in C(\bar{\Omega}) \) and

\[
1 < r(x) < \frac{\gamma(x) - 1}{\gamma(x)} p^+(x) \quad \text{for all } x \in \bar{\Omega} \tag{2.2}
\]

or

\[
1 < \gamma(x) < \frac{N\gamma(x)}{N\gamma(x) - r(x)(N - p(x))},
\]

then the embedding from \(W^{1,p(x)}(\Omega) \) to \(L^{r(x)}_{h(x)}(\Omega) \) is compact. Moreover, there is a constant \(c_0 > 0 \) such that the inequality

\[
\int_{\Omega} h(x)|u|^{r(x)} \leq c_0\left(\|u\|^{r^-} + \|u\|^{r^+}\right) \tag{2.3}
\]

holds.

Remark 2.9. Let \(u \in W^{1,p(x)}(\partial\Omega) \). Then, by Proposition 2.8, there are positive constants \(c_1, c_2 > 0 \) such that the following inequalities hold:

\[
\int_{\Omega} h(x)|u|^{r(x)} dx \leq \begin{cases}
 c_1 \|u\|^{r^+} & \text{if } \|u\| > 1, \\
 c_2 \|u\|^{r^-} & \text{if } \|u\| < 1.
\end{cases}
\]

\(L^{p(x)}_{c(x)}(\partial\Omega) = \{ u : \partial\Omega \to \mathbb{R} \text{ measurable and } \int_{\partial\Omega} c(x)|u(x)|^{p(x)} d\sigma x < +\infty \} \)

furnished with the Luxemburg norm

\[
|u|_{L^{p(x)}_{c(x)}(\partial\Omega)} = |u|_{p(x),c(x)} = \inf \{ \sigma > 0 : \int_{\partial\Omega} c(x)\frac{u(x)}{\sigma}^{p(x)} d\sigma x \leq 1 \},
\]

Proposition 2.10 ([18]). Set \(\rho(u) = \int_{\partial\Omega} b(x)|u(x)|^{p(x)} d\sigma x \). For \(u \in L^{p(x)}_{b(x)}(\partial\Omega) \), we have

(i) \(|u|_{p(x),b(x)} < 1 (= 1; > 1) \Leftrightarrow \rho(u) < 1 (= 1; > 1) \);
Define:

\(c \) - constants

Remark 2.12.

Let \(\gamma \) holds.

\(C \) - constant \(c \)

General Quasilinear Problems Involving \((p_1(x), p_2(x))\)-Laplace Type Equation...

(ii) If \(|u|_{p(x), b(x)} < 1 \Rightarrow |u|^{p^+}_{p(x), b(x)} \leq \rho(u) \leq |u|^{p^-}_{p(x), b(x)} \);

(iii) If \(|u|_{p(x), b(x)} > 1 \Rightarrow |u|^{p^-}_{p(x), b(x)} \leq \rho(u) \leq |u|^{p^+}_{p(x), b(x)} \).

Proposition 2.11 ([30]). Assume that the boundary of \(\Omega \) possesses the cone property and \(p \in C(\Omega) \). Suppose that \(g \in L^\gamma(x)(\partial \Omega) \), \(g(x) > 0 \) for \(x \in \Omega \), \(\gamma \in C(\Omega) \) and \(\gamma^- > 1 \), \(\gamma_0^- \leq \gamma_0(x) \leq \gamma_0^+(1/\gamma(x) + 1/\gamma_0(x) = 1) \). If \(\alpha \in C(\Omega) \) and

\[
1 < \alpha(x) < \frac{\gamma(x) - 1}{\gamma(x)p_0(x)} \quad \text{for all } x \in \Omega
\]

or

\[
1 < \gamma(x) \leq \frac{N\gamma(x)}{\gamma(x) - \alpha(x)(N - p(x))},
\]

then the embedding from \(W^{1,p(x)}(\Omega) \) to \(L^{\alpha(x)}(\partial \Omega) \) is compact. Moreover, there is a constant \(c_3 > 0 \) such that the inequality

\[
\int_{\partial \Omega} g(x)|u|^{\alpha(x)}d\sigma x \leq c_3(\|u\|^{\alpha^-} + \|u\|^{\alpha^+})
\]

holds.

Remark 2.12. Let \(u \in W^{1,p(x)}(\Omega) \). Then, by Proposition 2.11, there are positive constants \(c_4, c_5 > 0 \) such that the following inequalities hold:

\[
\int_{\partial \Omega} g(x)|u|^{\alpha(x)}d\sigma x \leq \begin{cases} c_4\|u\|^{\alpha^+} & \text{if } \|u\| > 1, \\ c_5\|u\|^{\alpha^-} & \text{if } \|u\| < 1. \end{cases}
\]

Define:

\[
p^0_{\alpha(x)}(x) := \frac{\alpha(x) - 1}{\alpha(x)}p^0(x),
\]

for all \(x \in \partial \Omega \).

Proposition 2.13 ([14]Theorem 2.1.). Assume that the boundary of \(\Omega \) possesses the cone property and \(p \in C(\Omega) \) with \(p^+ > 1 \). Suppose that \(g \in L^{\alpha(x)}(\partial \Omega) \), with \(\alpha \in C(\partial \Omega) \) with \(\alpha(x) > \frac{p^0_{\alpha(x)}(x)}{p^0(x)-1} \) for all \(x \in \partial \Omega \). If \(q \in C(\partial \Omega) \) and \(1 < q(x) < p^0_{\alpha(x)}(x) \) for all \(x \in \partial \Omega \).

Then, there exists a compact embedding \(W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega) \). In particular, there is a compact embedding \(W^{1,p(x)}(\Omega) \hookrightarrow L^{p_0(x)}(\Omega) \) where \(1 \leq q_0(x) < p^0(x) \), for all \(x \in \partial \Omega \).
Now, for any \(u \in X_i := W^{1,p_i(x)}(\Omega) \) define

\[
\|u\|_i := \inf \left\{ \sigma > 0 : \int_{\Omega} \left| \frac{\nabla u(x)}{\sigma} \right|^{p_i(x)} \, dx + \int_{\partial \Omega} c(x) \left| \frac{u(x)}{\sigma} \right|^{p_i(x)} \, d\sigma_x \leq 1 \right\}.
\]

Where \(c \in L^\infty(\Omega) \) and \(d\sigma_x \) is the measure on the boundary \(\partial \Omega \). Then by Proposition 2.6, \(\| \cdot \|_i \) is also a norm on \(W^{1,p_i(x)}(\Omega) \) which is equivalent to \(\| \cdot \|_{W^{1,p_i(x)}(\Omega)} \) and \(\| \cdot \|_\partial \). Now, we introduce the modular \(\rho : X_i \to \mathbb{R} \) defined by

\[
\rho(u) = \int_{\Omega} |\nabla u|^{p_i(x)} \, dx + \int_{\partial \Omega} c(x) |u(x)|^{p_i(x)} \, d\sigma_x
\]

for all \(u \in X_i \). Here, we give some relations between the norm \(\| \cdot \|_i \) and the modular \(\rho \).

Proposition 2.14 ([20]). For \(u \in X \) we have

(i) \(\|u\|_i < 1 (= 1 ; > 1) \Leftrightarrow \rho(u) < 1 (= 1 ; > 1) \);

(ii) If \(\|u\|_i < 1 \Rightarrow \|u\|_i^{p_i^+} \leq \rho(u) \leq \|u\|_i^{p_i^-} \);

(iii) If \(\|u\|_i > 1 \Rightarrow \|u\|_i^{p_i^-} \leq \rho(u) \leq \|u\|_i^{p_i^+} \).

Definition 2.15. Assume that spaces \(E, F \) are Banach spaces, we define the norm on the space \(E \cap F \) as \(\|u\| = \|u\|_E + \|u\|_F \).

We denote

\[
X := X_1 \cap X_2,
\]

Remark 2.16. Note that:

1. The weak solutions of problem (1.1) are considered in the generalized Sobolev space \(X \) equipped with the norm

\[
\|u\| = \|u\|_{p_1} + \|u\|_{p_2}.
\]

We observe that \(X \) endowed with the above norm is a separable and reflexive Banach space.

2. By Proposition 2.4 and Proposition 2.5 there is a continuous (compact) embeddings

\[
X \hookrightarrow L^{p_M(x)}(\Omega) \ and \ X \hookrightarrow L^{p_M(x)}(\partial \Omega).
\]
Definition 2.17. We say that $u \in X$ is weak solution of (1.1) if

$$
\int_{\Omega} |\nabla u|^{p_1(x)} - 2 \nabla u \nabla v \, dx + \int_{\Omega} |\nabla u|^{p_2(x)} - 2 \nabla u \nabla v \, dx
+ \int_{\partial \Omega} a(x)|u|^{p_1(x) - 2} u v d\sigma(x) + \int_{\partial \Omega} b(x)|u|^{p_2(x) - 2} u v d\sigma(x)
= \int_{\Omega} h(x)|u|^{r(x) - 2} u v \, dx + \lambda \int_{\partial \Omega} g(x)|u|^{\alpha(x) - 2} u v d\sigma(x).
$$

(2.6)

for all $v \in X$.

The functional associated to (1.1) is given by

$$
I(u) = I_1(u) + I_2(u) - I_3(u),
$$

(2.7)

where

$$
I_1(u) = \int_{\Omega} \frac{1}{p_1(x)} |\nabla u|^{p_1(x)} \, dx + \int_{\partial \Omega} \frac{1}{p_1(x)} a(x)|u|^{p_1(x)} d\sigma(x),
$$

(2.8)

$$
I_2(u) = \int_{\Omega} \frac{1}{p_2(x)} |\nabla u|^{p_2(x)} \, dx + \int_{\partial \Omega} \frac{1}{p_2(x)} b(x)|u|^{p_2(x)} d\sigma(x),
$$

(2.9)

$$
I_3(u) = \int_{\Omega} \frac{1}{r(x)} h(x)|u|^{r(x)} \, dx + \lambda \int_{\partial \Omega} \frac{1}{\alpha(x)} g(x)|u|^{\alpha(x)} d\sigma(x).
$$

(2.10)

The functional I is of class $C^1(X, \mathbb{R})$ and

$$
I'(u).v = I'_1(u)v + I'_2(u)v - I'_3(u)v,
$$

for ever $v \in X$,

where

$$
I'_1(u)v = \int_{\Omega} |\nabla u|^{p_1(x) - 2} \nabla u \nabla v \, dx + \int_{\partial \Omega} a(x)|u|^{p_1(x) - 2} u v d\sigma(x),
$$

(2.11)

$$
I'_2(u)v = \int_{\Omega} |\nabla u|^{p_2(x) - 2} \nabla u \nabla v \, dx + \int_{\partial \Omega} b(x)|u|^{p_2(x) - 2} u v d\sigma(x),
$$

(2.12)

$$
I'_3(u)v = \int_{\Omega} h(x)|u|^{r(x) - 2} u v \, dx + \lambda \int_{\partial \Omega} g(x)|u|^{\alpha(x) - 2} u v d\sigma(x).
$$

(2.13)

Then, we know that a weak solution of (1.1) corresponds to critical point of the functional I.

As in [37] we have the followings results
Lemma 2.18. For $i = 1, 2, 3$

1. $I_i' : X \to X^*$ is a continuous bounded and strictly monotone operator;
2. $I_i' : X \to X^*$ is of type (S_+), namely $u_n \to u$ and $\limsup_{n \to +\infty} L(u_n)(u_n - u) \leq 0$ implies $u_n \to u$;
3. $I_i' : X \to X^*$ is a homeomorphism.

Remark 2.19. Through the Lemma 2.18, we can conclude that the operator I' is a strictly monotone, continuous bounded homeomorphism and is of type (S_+). The main tools used in proving Theorem 1.1 are the well known the Ljusternik-Schnirelman principle in Banach spaces.

Let Y be an Banach space and $\Sigma := \{A \subseteq Y \backslash \{0\} : A$ is closed and $A = -A\}$. The genus of a set $A \in \Sigma$ is defined by

$$\gamma(A) := \min\{n \in \mathbb{N} : \exists \varphi \in C(A, \mathbb{R}^n \backslash \{0\}) \text{ with } \varphi(x) = -\varphi(-x)\}.$$

Theorem 2.20. [4] Suppose that $I : Y \to \mathbb{R}$ is an even $C^1(Y, \mathbb{R})$ function such that:

(i) I satisfies the Palais-Smale condition.
(ii) $I(u) > 0$ if $0 < \|u\| < \varrho$ and $I(u) \geq c > 0$ if $\|u\| = \varrho$, for some $\varrho > 0$.
(iii) There exists a subspace $Y_m \subseteq Y$ of dimension m and a compact subset $A_m \subseteq Y_m$ with $I < 0$ on A_m such that 0 lies in a bounded component of $Y_m - A_m$ in Y_m.

Let $\Gamma := \{h \in C(Y, Y) : h(0) = 0, h \text{ is an odd homeomorphism}, I(h(B_1)) \geq 0\}$, $K_m := \{K \subseteq Y : K \text{ is compact}, K = -K, \gamma(K \cap h(\partial B_1)) \geq m \text{ for every } h \in \Gamma\}$, where B_1 denotes the unit ball of Y. Then

$$c_m := \inf_{K \in K_m} \max_{u \in K} I(u)$$

is a critical value of I with $0 < c < c_m \leq c_{m+1} < +\infty$. Furthermore, if $c_m = c_{m+1} = \cdots = c_{m+n}$, then $\gamma(K_{c_m}) \geq n + 1$, where $K_{c_m} := \{u \in X : I'(u) = 0, I(u) = c_m\}$.

3. PROOF OF MAIN RESULT

Proof of Theorem 1.1

Proof. I satisfies the Palais-Smale condition on X i.e there exists a sequence $(u_n) \subset X$ which satisfies the:

$$I(u_n) \to d \text{ and } I'(u_n) \to 0 \text{ as } n \to +\infty. \quad (3.1)$$
possesses a convergent subsequence in X.

Let (u_n) be a sequence in X which satisfies (3.1). We prove that (u_n) possesses a convergent subsequence in X.

We assume by contradiction $\|u_n\| \to \infty$ as $n \to +\infty$. By (2.8)-(2.10), (3.1), Remark 2.9 and Remark 2.12, we have

$$I(u_n) = \int_{\Omega} \frac{1}{p_1(x)} |\nabla u_n|^{p_1(x)} \, dx + \int_{\partial \Omega} \frac{1}{p_1(x)} a(x) |u_n|^{p_1(x)} \, d\sigma(x)$$

(3.2)

$$+ \int_{\Omega} \frac{1}{p_2(x)} |\nabla u_n|^{p_2(x)} \, dx + \int_{\partial \Omega} \frac{1}{p_2(x)} b(x) |u_n|^{p_2(x)} \, d\sigma(x)$$

$$- \int_{\Omega} r(x) h(x) |u_n|^r(x) \, dx - \lambda \int_{\partial \Omega} \frac{1}{\alpha(x)} g(x) |u_n|^\alpha(x) \, d\sigma(x)$$

$$\geq \frac{1}{p_M} \|u_n\|^{\tilde{p}_M} - \int_{\Omega} \frac{1}{r(x)} h(x) |u_n|^r(x) \, dx - \lambda \int_{\partial \Omega} \frac{1}{\alpha(x)} g(x) |u_n|^\alpha(x) \, d\sigma(x),$$

and by (2.11)-(2.13), (3.1), Remark 2.9 and Remark 2.12, we obtain

$$\frac{1}{K} I'(u_n)u_n = \frac{1}{K} \int_{\Omega} |\nabla u_n|^{p_1(x)} \, dx + \frac{1}{K} \int_{\partial \Omega} a(x) |u_n|^{p_1(x)} \, d\sigma(x)$$

(3.3)

$$+ \frac{1}{K} \int_{\Omega} |\nabla u_n|^{p_2(x)} \, dx + \frac{1}{K} \int_{\partial \Omega} b(x) |u_n|^{p_2(x)} \, d\sigma(x)$$

$$- \frac{1}{K} \int_{\Omega} h(x) |u_n|^r(x) \, dx - \frac{\lambda}{K} \int_{\partial \Omega} g(x) |u_n|^\alpha(x) \, d\sigma(x)$$

$$\geq \frac{1}{K} \|u_n\|^{\tilde{p}_M} - \frac{1}{K} \int_{\Omega} h(x) |u_n|^r(x) \, dx - \frac{\lambda}{K} \int_{\partial \Omega} g(x) |u_n|^\alpha(x) \, d\sigma(x),$$

where $K = \max\{r, \alpha\}$.

By (3.2)-(3.3)

$$d + 1 + \|u_n\|$$

$$\geq I(u_n) - \frac{1}{K} I'(u_n)u_n$$

$$\geq \frac{1}{p_M} \|u_n\|^{\tilde{p}_M} - \frac{1}{K} \int_{\Omega} h(x) |u_n|^r(x) \, dx - \lambda \int_{\partial \Omega} \frac{1}{\alpha(x)} g(x) |u_n|^\alpha(x) \, d\sigma(x)$$

$$- \frac{1}{K} \|u_n\|^{\tilde{p}_M} + \frac{1}{K} \int_{\Omega} h(x) |u_n|^r(x) \, dx + \frac{\lambda}{K} \int_{\partial \Omega} g(x) |u_n|^\alpha(x) \, d\sigma(x)$$

$$\geq \left(\frac{1}{p_M} - \frac{1}{K} \right) \|u_n\|^{\tilde{p}_M} + c_1 \left(\frac{1}{K} - \frac{1}{r} \right) \|u_n\|^r + \lambda c_4 \left(\frac{1}{K} - \frac{1}{\alpha} \right) \|u_n\|^\alpha.$$
Since $p_M^+ < \min \{ r^-, \alpha^- \}$, the sequence (u_n) is bounded in X. Therefore, there exists a subsequence, again denoted by (u_n), and $u \in X$ such that

$$u_n \rightharpoonup u \text{ in } X,$$

$$u_n \to u \text{ in } L^{p_i}(\Omega), \quad u_n \to u \text{ in } L^{r_i}(\Omega),$$

$$u_n \to u \text{ in } L^{\alpha_i}(\partial \Omega) \text{ and } u_n \to u \text{ in } L^{p_i}(\partial \Omega),$$

where $i = 1, 2, m, M$. Using relation (3.1), we have

$$I'(u_n)(u_n - u) \to 0 \text{ as } n \to +\infty.$$

On the other hand, we have

$$I'(u_n)(u_n - u) = \int_{\Omega} |\nabla u_n|^{p_i(x)-2} \nabla u_n \nabla (u_n - \nabla u) \, dx + \int_{\partial \Omega} a(x)|u_n|^{p_i(x)-2} u_n(u_n - u) \, d\sigma(x) + \int_{\partial \Omega} b(x)|u_n|^{p_2(x)-2} u_n(u_n - u) \, d\sigma(x) - \int_{\Omega} h(x)|u_n|^{r_i(x)-2} u_n(u_n - u) \, dx - \int_{\partial \Omega} g(x)|u_n|^{\alpha_i(x)-2} u_n(u_n - u) \, d\sigma(x).$$

Then

$$I'(u_n)(u_n - u) + \int_{\Omega} h(x)|u_n|^{r_i(x)-2} u_n(u_n - u) \, dx$$

$$+ \int_{\partial \Omega} g(x)|u_n|^{\alpha_i(x)-2} u_n(u_n - u) \, d\sigma(x)$$

$$= \int_{\Omega} |\nabla u_n|^{p_1(x)-2} \nabla u_n \nabla (u_n - \nabla u) \, dx$$

$$+ \int_{\partial \Omega} a(x)|u_n|^{p_1(x)-2} u_n(u_n - u) \, d\sigma(x) + \int_{\Omega} b(x)|u_n|^{p_2(x)-2} u_n(u_n - u) \, d\sigma(x) - \int_{\partial \Omega} g(x)|u_n|^{\alpha_i(x)-2} u_n(u_n - u) \, d\sigma(x).$$

Since

$$u_n \to u \text{ in } L^{\alpha_i(x)}(\partial \Omega) \text{ and } u_n \to u \text{ in } L^{r_i(x)}(\Omega).$$
We obtain

\[
\int_{\Omega} h(x) |u_n|^{r(x)-2} u_n (u_n - u) dx \to 0 \text{ as } n \to +\infty,
\]

and

\[
\int_{\partial \Omega} g(x) |u_n|^{\alpha(x)-2} u_n (u_n - u) d\sigma(x) \to 0 \text{ as } n \to +\infty.
\]

Indeed,

\[
\left| \int_{\Omega} h(x) |u_n|^{r(x)-2} u_n (u_n - u) dx \right| \leq c_5 |h| \gamma(x) |u_n|^{r(x)-1} \theta(x) |u_n - u| r(x), h(x)
\]

\[
\leq c_6 |u_n|^{r(x)-1} \gamma_0(x)r(x) |u_n - u| r(x), h(x)
\]

\[
\leq c_7 |u_n|^{r(x)-1} \gamma_0(x)r(x) |u_n - u| r(x), h(x)
\]

\[
\leq c_8 \|u_n\| |u_n - u| r(x), h(x),
\]

where \(i = \pm \) and \(\theta \in C^1(\Omega) \) such that \(\frac{1}{\gamma(x)} + \frac{1}{\theta(x)} + \frac{1}{r(x)} = 1 \). Since

\[
|u_n - u| r(x), h(x) \to 0 \text{ as } n \to +\infty,
\]

it follows that

\[
\int_{\Omega} h(x) |u_n|^{r(x)-2} u_n (u_n - u) dx \to 0 \text{ as } n \to +\infty.
\]

Similarly we have

\[
\int_{\partial \Omega} g(x) |u_n|^{\alpha(x)-2} u_n (u_n - u) d\sigma(x) \to 0 \text{ as } n \to +\infty.
\]

Then according to (3.5) and Remark 2.19 we can obtain

\[
\int_{\Omega} |\nabla u_n|^{p_1(x)-2} \nabla u_n (\nabla u_n - \nabla u) dx + \int_{\partial \Omega} a(x) |u_n|^{p_1(x)-2} u_n (u_n - u) d\sigma(x)
\]

\[
+ \int_{\Omega} |\nabla u_n|^{p_2(x)-2} \nabla u_n (\nabla u_n - \nabla u) dx + \int_{\partial \Omega} b(x) |u_n|^{p_2(x)-2} u_n (u_n - u) d\sigma(x)
\]

\[
\to 0 \text{ as } n \to +\infty,
\]

and

\[
u_n \to u \text{ in } X.
\]
Where (i) is verified.

Let us now check (ii). Similarly to (3.2) we obtain
\[
I(u) = \int_{\partial \Omega} \frac{1}{p_1(x)} |\nabla u|^{p_1(x)} dx + \int_{\partial \Omega} \frac{1}{p_1(x)} a(x)|u|^{p_1(x)} d\sigma(x)
+ \int_{\partial \Omega} \frac{1}{p_2(x)} |\nabla u|^{p_2(x)} dx + \int_{\partial \Omega} \frac{1}{p_2(x)} b(x)|u|^{p_2(x)} d\sigma(x)
- \int_{\Omega} r(x)|u|^{r(x)} dx - \lambda \int_{\partial \Omega} \frac{1}{\alpha(x)} g(x)|u|^{\alpha(x)} d\sigma(x)
\geq \frac{1}{\mu^M} \|u\|^p - \frac{c_1}{r^+} \|u\|^{r^+} - \frac{c_2}{\alpha^+} \|u\|^{\alpha^+}
= g(\|u\|),
\]
where \(g(t) = \frac{1}{\mu^M} t^p - \frac{c_1}{r^+} t^{r^+} - \frac{c_2}{\alpha^+} t^{\alpha^+}\). As \(\mu^M < \min\{r^-, \alpha^-\}\), (ii) follows for \(\varrho > 0\) small enough.

Finally, to verify (iii), let us consider a sequence of subspace \(Y_m \subseteq X\) of dimension \(m\) such that \(u|\partial \Omega \neq 0\) if \(u \in Y_m \setminus \{0\}\). Hence
\[
\min_{x \in B_m} \int_{\partial \Omega} g(x)|u|^\alpha d\sigma(x) > 0,
\]
where \(B_m := \{u \in Y_m : \|u\| = 1\}\). Now, taking into account that \(\mu^M < \min\{r^-, \alpha^-\}\), we have
\[
I(tu) = \int_{\partial \Omega} \frac{1}{p_1(x)} |\nabla tu|^{p_1(x)} dx + \int_{\partial \Omega} \frac{1}{p_1(x)} a(x)|tu|^{p_1(x)} d\sigma(x)
+ \int_{\partial \Omega} \frac{1}{p_2(x)} |\nabla tu|^{p_2(x)} dx + \int_{\partial \Omega} \frac{1}{p_2(x)} b(x)|tu|^{p_2(x)} d\sigma(x)
- \int_{\Omega} r(x)|tu|^{r(x)} dx - \lambda \int_{\partial \Omega} \frac{1}{\alpha(x)} g(x)|tu|^{\alpha(x)} d\sigma(x)
\leq \frac{t^p}{\mu^M} \|u\|^p - \frac{t^{r^+}}{r^+} \int_{\Omega} h(x)|u|^{r(x)} dx - \lambda \frac{t^{\alpha^+}}{\alpha^+} \int_{\partial \Omega} g(x)|u|^{\alpha(x)} d\sigma(x)
\leq \frac{t^p}{\mu^M} \|u\|^p - \lambda \frac{t^{\alpha^+}}{\alpha^+} \min_{x \in B_m} \int_{\partial \Omega} g(x)|u|^{\alpha(x)} d\sigma(x)
< 0,
\]
for \(u \in B_m\) and \(t \geq t_0\) sufficiently large.

Therefore (iii) follows by taking \(A_m = t_0 B_m\). As the conditions of the Theorem 2.20 are verified, we deduce that we have many infinity of solutions, which completes the Theorem 1.1. □
REFERENCES

General Quasilinear Problems Involving \((p_1(x), p_2(x))\)-Laplace Type Equation...

[35] D. Zhao, X. L. Fan; On the Nemyskii operators from \(L^{p_1(x)}(\Omega)\) to \(L^{p_2(x)}(\Omega)\), J. Lanzhou Univ. 34 (1998), 1–5.

