Near– and far–field tsunami waves, displaced water volume, potential energy and velocity flow rates by a stochastic submarine earthquake source model

Khaled T. Ramadan

Department of Basic and Applied Sciences, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Abu Quir Campus, Alexandria, Egypt.
E-mail: kramadan@aast.edu

Abstract

Sources of tsunamis are non-uniform and generally uncorrelated and very hard to predict. The best way to show their aspects is through heterogeneous or stochastic source models which are more realistic. The effect of random fluctuation of submarine earthquake modeled by vertical time-dependent displacement of a stochastic source model is investigated on the tsunami generation and propagation waves. The noise intensity parameter controls the increase of the stochastic bottom amplitude which results in increasing the oscillations and amplitude in the free surface elevation which provides an additional contribution to tsunami waves. The L^2 norm of the free surface elevation, the displaced water volume and the potential energy are examined. These quantitative informations about predicting tsunami risk are useful for risk managers who decide to issue warnings and evacuation orders. The horizontal average velocity flow rates of the tsunami wave are investigated. The average velocity flow rates can provide valuable information about the stochastic bottom topography by the distinctive velocity oscillations. Flow velocity is of importance in risk assessment and hazard mitigation which may provide a clear signal of tsunami flows. Time series of the flow velocities and wave gauges under the effect the water depth of the ocean are investigated.

Keywords: tsunami waves, water displacement, tsunami energy, velocity flow rate, dynamic bottom displacements, stochastic process.
1. INTRODUCTION

Submarine earthquakes are by far the most common generator of tsunamis. They can generate tsunamis if they occur beneath an ocean, and if they result in predominantly vertical displacement. Recent catastrophic tsunami events caused by submarine earthquakes such as the Sumatran earthquake and tsunami, December 26, 2004 [1–3] and the 2011 Tohoku-Oki earthquake and tsunami [4–6] will be remembered for its fierceness, destruction and unprecedented loss of life for a long time. Since these destructive tsunami events, efforts have been made in warning methodology, pre-disaster preparedness and basic understanding of related phenomena to help building up coastal resilience and reducing losses [7]. One of the greatest uncertainties in both deterministic and probabilistic hazard assessments of tsunamis is computing sea floor deformation. This entry reviews past methodologies and current developments of seismogenic tsunami generation models [8].

A sudden upward or downward motion of a portion of the ocean floor will displace a large amount of water and generate a tsunami. A tsunami source of energy can be described by the water displacement event. The amount of water lifted above the sea level is tied up to gravitational potential energy. Much effort has been made showing quantitative information about the tsunami, including tsunami wave interaction with ocean floor bathymetric features. Nosov et al. [9] determined the displaced water volume and the potential energy of initial elevation of the tsunami source. Satake and Tanioka [10] summarised that the far-field tsunami surface elevations are proportional to the displaced water volume at the source, while the near-field tsunami surface elevations are determined by the potential energy of the displaced water. Satake and Kanamori [11] computed the displaced water volume at the source and the potential energy of the uplifted water and determined that the potential energy rather than the source volume determines the tsunami amplitude. The concept of displaced water volume has also been discussed for tsunamis associated with landslides, asteroids or explosions, e.g. [12, 13].

One of the most fundamental macroscopic quantities for interpreting the size of a tsunami, as well as for understanding the physical processes of tsunami propagation and coastal impacts is the energy transmitted by tsunami waves [14]. Dutykh et al. [15] studied the evolution of the potential energy during the tsunami generation process taking into account the contribution of horizontal displacements of the seabed displacements. Dutykh and Dias [16] computed the potential energy of the ocean by the displaced water volume from the bottom to the surface of the ocean in the framework of the dispersive linearized equations. Zhao et al. [17] investigated the potential energy transformation during the runup and rundown processes of the leading-depression N-wave over a plane beach using Boussinesq equations. Charvet et al. [18] estimated the potential energy of a typical elevated wave time series during the wave runup process to measure the capability of the wave to move up the beach.

The tsunami flow velocity is a significant physical parameter to understand tsunami behaviors. To measure, predict, and compute tsunami flow velocities is of importance in risk assessment and hazard mitigation which may provide a clear signal of tsunami
flows, where the arrival of the tsunami is indicated by the commencement of distinctive current velocity oscillations [19]. This enables us to visualize the tsunami generation process, including the velocity components. Fritz et al. [20] analyzed the tsunami current velocities and measured the tsunami height in the March 2011 Tohoku, Japan, tsunami in the Kesennuma Bay by using videos recorded by survivors. Lacy et al. [21] measured velocity profiles in northern Monterey Bay during the arrival of the 2010 Chile tsunami and found that the North-South velocity was highly correlated with the water surface elevation during the first five oscillations with a phase shift of approximately 90°. Lipa et al. [22] measured the orbital velocity components to observe the tsunami signal in HF radar. They formed a time series of the average velocity, which shows the characteristic oscillations produced by the tsunami. Zhao et al. [17] obtained details on the flow field in terms of the reconstruction of the full velocity field by using Boussinesq equations. Jamin et al. [23] performed combined measurements of the free-surface deformation and the fluid velocity field based on the role of the bottom kinematics.

Uniform slip dislocations will not accurately simulate details of the local tsunami wavefield and are largely insufficient to account for local tsunami amplitude variations caused by the combined effect of earthquake source complexity and inhomogeneous fault and earth structure in subduction zones. The best way to show their aspects is through heterogeneous or stochastic source models to account for source complexity which may be a key step for more realistic varying bathymetry in tsunami scenarios. The random components provide an additional contribution to tsunami waves. So, it is important to take into account the random components of bottom deformation in tsunami simulation, see [24–26]. Numerous studies considered stochastic source models for the investigation of tsunami generation and propagation waves caused by submarine earthquake. Geist [27] presented a broad range of synthetic slip distribution patterns, which can be generated by the stochastic source model to gauge the fluctuation of local tsunami amplitudes in a particular region. Geist [28] presented the maximum amplitude over time and the time series near the coast at different longshore positions for six stochastic slip realizations. Geist and Oglesby [29] used a variety of stochastic models to review the observed complexity and uncertainty associated with tsunami generation and propagation. Fukutani et al. [30] used a logic tree to create a fault model with a Tohoku-type earthquake fault zone having a random slip distribution and performed stochastic tsunami hazard analyses. They showed that the influence of the number of slip distribution patterns on the results of the stochastic tsunami hazard analysis greatly influenced the results of the hazard analysis for a relatively large wave height. Ruiz et al. [31] described earthquake size for simulating numerically tsunami runup in northern Chile based on generating stochastic finite fault slips. They concluded from their results that in the near field, it is very important to consider non-uniform slip distributions, because the runup is not underestimated as occurs with earthquake sources having uniform slip.

Submarine earthquakes are often represented as random phenomena, where white noise stochastic processes are adopted to properly model their frequency content [32]. Numerous studies used Gaussian white noise stochastic processes to account the
random components of bottom deformation in tsunami simulation, see [33–39].

Dynamic bottoms are often used to model the waves generated by some type of bottom motion. Numerical simulations, theory and experiments show that dynamics play an important role, where the seafloor evolves and interacts continuously with the water surface and traveled a non-negligible distance from the source region as conducted by numerous studies [e.g., 40–44]. For the 2011 Tohoku tsunami, Grilli et al. [45] showed that dynamic source models yield tsunami waveforms remarkably different than instantaneous source models and concluded that dynamic models show an excellent agreement with field measurements.

The objective of this study is to illustrate tsunami distributions predicted in the near- and far-field caused by a dynamic displacement of a stochastic source model resulting from submarine earthquakes. Stochastic effects have been incorporated by including two Gaussian white noise processes in the x– and y–direction to form a stochastic source model. Of particular interest in this study is to represent the displaced water volume, the potential energy, the L^2 norm of the free surface elevation and the surface average velocity flow rates caused by the stochastic source model during the generation and propagation processes. The flow velocity and wave gauges are represented at different locations, in order to make a contribution to the improvement the warning system of tsunami arrival. The problem is solved using the linearized water wave theory for constant water depth by transforming methods (Laplace in time and Fourier in space), with the forward and inverse Laplace transforms solved analytically, and the inverse Fourier transform computed numerically by the Inverse Fast Fourier Transform (IFFT).

2. MATHEMATICAL FORMULATION OF THE LINEAR WATER WAVE PROBLEM

It is considered that the fluid is incompressible and the flow is irrotational in the fluid domain $\Omega = \mathbb{R}^2 \times [-h, 0]$ bounded above by the free surface of the ocean $z = \eta(x, y, t)$ and below by the rigid ocean floor $z = -h + \zeta(x, y, t)$ as shown in figure 1, where $\eta(x, y, t)$ is the free surface elevation, h is the constant water depth and $\zeta(x, y, t)$ is the sea floor displacement function.
Near- and far-field tsunami waves, displaced water volume, potential energy...

The linearized problem can be expressed in terms of the velocity potential \(\phi(x, y, z, t) \) by the Laplace equation as:
\[
\nabla^2 \phi(x, y, z, t) = 0 \quad \text{where} \quad (x, y, z) \in \Omega ,
\]
subjected to the following boundary conditions
\[
\partial_z \phi(x, y, z, t)|_{z=0} = \partial_t \eta(x, y, t) ,
\]
\[
\partial_z \phi(x, y, z, t)|_{z=-h} = \partial_t \zeta(x, y, t) ,
\]
and
\[
\partial_t \phi(x, y, z, t)|_{z=0} + g \eta(x, y, t) = 0 .
\]

where \(g \) is the acceleration due to gravity. The initial conditions are given as
\[
\phi(x, y, z, 0) = \eta(x, y, 0) = \zeta(x, y, 0) = 0.
\]

The linear water wave theory has been developed as a fundamental theory in questions of stability for both near- and far-field problem in the open ocean which provides an ample understanding of the physical characteristics of the tsunami, see [23], [42], and [46–49]. Additionally, one of the notable consequences of the linear theory is that the height distribution at the surface is not always identical to the bottom, see [23] and [47]. Linear wave theory indicates that seismic displacement by stochastic source models and tsunami generation can constructively interfere [50]. Nonlinear effects become significant and dominant as tsunami enters the run-up phase, see [51–54].

We applied the transform methods (Laplace in time and Fourier in space) to solve analytical the linearized problem of the long traveling free surface elevation, \(\eta \), in the open ocean during the generation and propagation processes for constant water depth, \(h \) at resonance state (when, \(v = v_t = \sqrt{g h} \), i.e. maximum amplification, see [44]).

This solution is accurate if the depth of the water, \(h \), is much greater than the amplitudes of and \(\zeta \) (sea floor uplift) and \(\eta \) (free surface elevation) and if the

Figure 1. Fluid domain and coordinate system for an instantaneous movement of the stochastic curvilinear source model.
wavelength of the leading wave of the incoming tsunamis is very long in comparison with the local water depth, which is usually true for most tsunamis triggered by submarine earthquakes, slumps and slides, see [23], and [55–59]. All these studies neglected the nonlinear terms in the boundary conditions to study the generation of the tsunami waves using the transform methods.

In this paper, an analytical approach was used to illustrate the tsunami wave, the L^2 norms of the free surface elevation, the displaced water volume as a result of the bottom topography, the potential energy of the free surface elevation and the velocity flow rates in the open ocean during the generation and propagation processes for a given stochastic bottom profile $\zeta(x, y, t)$. All our studies took into account constant depths h for which the Laplace and Fast Fourier Transform (FFT) methods could be applied. After applying the Fourier–Laplace transform of the Laplace equation (2.1) and the boundary conditions (2.2) – (2.4), and using the initial conditions in (2.5), the velocity potential $\bar{\phi}(k_1, k_2, z, s)$ and the free surface elevation $\bar{\eta}(k_1, k_2, s)$ are obtained, respectively as seen in [39] as:

$$\bar{\phi}(k_1, k_2, z, s) = -\frac{g\zeta(k_1, k_2, s)}{\cosh(kh)(s^2 + \omega^2)} \left(\cosh(kz) - \frac{s^2}{gk} \sinh(kz) \right), \quad (2.6)$$

and

$$\bar{\eta}(k_1, k_2, s) = \frac{s^2 \zeta(k_1, k_2, s)}{\cosh(kh)(s^2 + \omega^2)}. \quad (2.7)$$

where $\omega = \sqrt{gk\tanh(kh)}$ is the gravity-wave dispersion relation and $k = \sqrt{k_1^2 + k_2^2}$ is the wavenumber.

A solution for $\eta(x, y, t)$ can be obtained from equation (2.7) by performing the inverse transforms. The above linearized solution is known as the linear water solution. The mechanism of the tsunami generation caused by submarine earthquake is initiated by a stochastic rapid uplift as shown in figure 2b, and then propagated randomly in the lateral positive $x-$direction with time $0 \leq t \leq t^*$, to a propagated length L with constant velocity v equal to the travel velocity of the tsunami wave $v_t = \sqrt{gh}$ to produce a dynamic stochastic bottom displacement as shown in figure 3b. In the $y-$direction, the model propagates instantaneously during the time $0 \leq t \leq t^*$.

The set of physical parameters used in the problem are given in Table 1.

Near- and far-field tsunami waves, displaced water volume, potential energy...

Table 1. Parameters used in the analytical solution of the problem

<table>
<thead>
<tr>
<th>Parameters used in the analytical solution of the problem</th>
<th>Values for the bottom displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Source width, D, km</td>
<td>50</td>
</tr>
<tr>
<td>- Propagated length L, km</td>
<td>100</td>
</tr>
<tr>
<td>- Water depth (uniform), h, km</td>
<td>2</td>
</tr>
<tr>
<td>- Acceleration due to gravity, g, km/sec</td>
<td>0.0098</td>
</tr>
<tr>
<td>- Tsunami velocity, $v_t = \sqrt{gh}$, km/sec</td>
<td>0.14</td>
</tr>
<tr>
<td>- Spreading velocity, v, km/sec</td>
<td>0.14</td>
</tr>
<tr>
<td>- Rise time, t^*</td>
<td>$t^* = \frac{L}{v} = 714$ sec = 11.9 min</td>
</tr>
</tbody>
</table>

The dynamic stochastic curvilinear slide model shown in figure 3 for $0 \leq t \leq t^*$ (generation process) is given by:

$$
\zeta(x,y,t) = \left[\zeta_1(x,y,t) + \zeta_2(x,y,t) + \zeta_3(x,y,t) \right] \left(1 + \sigma_x \xi_x (x + 50) + \sigma_y \xi_y (y + 50) \right), \quad (2.8)
$$

for $-50 \leq x \leq 50 + v t$ and $-50 \leq y \leq 100$.

For $y \in [-50,0]$

$$
\zeta_1(x,y,t) = \begin{cases}
\frac{\xi_0}{4} \left(1 + \cos \frac{\pi}{50} x \right) \left[1 - \cos \frac{\pi}{50} (y + 50) \right], & -50 \leq x \leq 0, \\
\frac{\xi_0}{2} \left[1 - \cos \frac{\pi}{50} (y + 50) \right], & 0 \leq x \leq v t, \\
\frac{\xi_0}{4} \left[1 + \cos \frac{\pi}{50} (x - v t) \right] \left[1 - \cos \frac{\pi}{50} (y + 50) \right], & v t \leq x \leq 50 + v t,
\end{cases}
$$

and for $y \in [0,50]$

$$
\zeta_2(x,y,t) = \begin{cases}
\frac{\xi_0}{2} \left(1 + \cos \frac{\pi}{50} x \right), & -50 \leq x \leq 0, \\
\zeta_0, & 0 \leq x \leq v t, \\
\frac{\xi_0}{2} \left[1 + \cos \frac{\pi}{50} (x - v t) \right], & v t \leq x \leq 50 + v t,
\end{cases}
$$

(2.10)
and for \(y \in [50, 100] \)

\[
\zeta_3(x, y, t) = \begin{cases}
\frac{\zeta_0}{4} \left(1 + \cos \frac{\pi}{50} x \right) \left[1 + \cos \frac{\pi}{50} (y - 50) \right], & -50 \leq x \leq 0, \\
\frac{\zeta_0}{2} \left[1 + \cos \frac{\pi}{50} (y - 50) \right], & 0 \leq x \leq vt, \\
\frac{\zeta_0}{4} \left[1 + \cos \frac{\pi}{50} (x - vt) \right] \left[1 + \cos \frac{\pi}{50} (y - 50) \right], & vt \leq x \leq 50 + vt,
\end{cases}
\]

(2.11)

where \(\zeta_0 \) denotes the initial uplift of the smooth bottom topography, \(\xi_x(x) \) and \(\xi_y(y) \) denote two independent Gaussian white noise processes with two real valued parameters \(\sigma_x, \sigma_y \geq 0 \) that control the strength of the induced noise in the \(x \)- and \(y \)-directions, respectively and \(v \) is the spreading velocity of the stochastic bottom in the \(x \)-direction. The deformation of the initial stochastic uplift shown in figure 2 resembles the initial elevation in the source of the March 11, 2011 illustrated in figure 2a in [60]. The deformation of the random submarine earthquake shown in figure 3 could represent the synthetic slip distributions from the stochastic source model demonstrated in figures 1 and 3 in [24], the bottom displacement presented in figure 6 in [15], the vertical displacement presented in figure 3 in [25] and the patterns shown in figure 2 in [30] who modeled Tohoku-type earthquake faults with different random slip distributions based on random two-dimensional Gaussian distribution. So, the evidence of a huge historical tsunami need for investigating the possibility of future tsunami generation and propagation by random submarine earthquakes.

![Figure 2](image1.png)

Figure 2. Normalized initial bottom topography represented by (a) deterministic uplift (b) stochastic uplift.
Near–and far-field tsunami waves, displaced water volume, potential energy...

For $t \geq t^*$ (propagation process), $\zeta(x, y, t^*)$ is the same as equation (2.8) except the time parameter t will be substituted by t^*. Laplace and Fourier transforms can be applied to the bed motion described by equation (2.8), then substituting into equation (2.7) and then inverting $\bar{\eta}(k_1, k_2, s)$ using the inverse Laplace transform and the Convolution theorem yields $\bar{\eta}(k_1, k_2, t)$. This is verified for $0 \leq t \leq t^*$ where $t^* = L/v$ as follows:

$$\bar{\eta}(k_1, k_2, t) = \bar{\eta}_1(k_1, k_2, t) + \bar{\eta}_2(k_1, k_2, t) + \bar{\eta}_3(k_1, k_2, t).$$ \hspace{1cm} (2.12)$$

See appendix A for the solution of equation (2.12).

We are interested in the velocity fields of the tsunami free surface elevation due to vertical displacement of the stochastic source model in the near and far field. The velocity potential can be expressed in terms of the free surface elevation from Equations (2.6) and (2.7) as:

$$\bar{\phi}(k_1, k_2, z, s) = -\frac{g}{s} \bar{\eta}(k_1, k_2, s) \left(\cosh(kz) - \frac{s^2}{gk} \sinh(kz) \right).$$ \hspace{1cm} (2.13)$$

Applying the inverse Laplace transform of equation (2.13) yields

$$\bar{\phi}(k_1, k_2, z, t) = \frac{1}{k} \sinh(kz) \frac{d}{dt} \int_0^t \bar{\eta}(k_1, k_2, \tau) d\tau - g \cosh(kz) \int_0^t \bar{\eta}(k_1, k_2, \tau) d\tau.$$ \hspace{1cm} (2.14)$$

Figure 3. Normalized bottom deformation represented by the spreading (a) deterministic source model (b) stochastic source model at $t = t^* = L/v = 100/v$.
To evaluate the velocity components along the free surface \((z = 0)\), let the horizontal velocities denoted by \(\mathbf{u} (U, V)\), and the horizontal gradient \(\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right)\) denoted by \(\nabla_h\). The Fourier transform parameters are denoted \(\mathbf{m} = (k_1, k_2)\). Taking into account that horizontal velocity does not depend on vertical coordinate, \(z\), hence the horizontal components of the velocity are defined as:

\[
\mathbf{u}(x, y, t) = \nabla_h \phi(x, y, t) ,
\]

(2.15)

The Fourier transforms of the horizontal and vertical components of the velocity field for \(0 \leq t \leq t^*\) (generation process) are given respectively as:

\[
\tilde{\mathbf{u}}(k_1, k_2, t) = -i\tilde{\phi}(k_1, k_2, t)\mathbf{m} \\
= i \left[g \int_0^t \tilde{\eta}(k_1, k_2, \tau) \, d\tau \right] \mathbf{m} ,
\]

(2.16)

For \(t \geq t^*\) (propagation process), the integration \(\int_0^t \tilde{\eta}(k_1, k_2, \tau) \, d\tau\) in equation (2.16) is written as \(\int_{t^*}^t \tilde{\eta}(k_1, k_2, \tau) \, d\tau + \int_0^{t^*} \tilde{\eta}(k_1, k_2, \tau) \, d\tau\).

The volume of water displaced as a result of the bottom motion can be determined as the integral of the function \(\eta\) taken over the entire tsunami source area. Then the total displaced water volume \(V(t)\) is given as:

\[
V(t) = \int_{R^2} \eta(x, y, t) \, dx \, dy .
\]

(2.17)

The accumulated potential energy, \(E_p(t)\), induced by the displacement of the free surface can be evaluated at any time by integration over the whole deformation area as:

\[
E_p(t) = \int_{R^2} \int_0^\eta \rho g z \, dz \, dx \, dy = \frac{1}{2} \rho g \int_{R^2} \eta^2 \, dx \, dy ,
\]

(2.18)

where \(\rho\) is the water density.

RESULTS AND DISCUSSIONS

Modeling earthquake-triggered tsunami generation and propagation is now standard for hazard analysis of vulnerable coastlines. The tsunami generation and propagation are illustrated by a vertical time-dependent displacement of a stochastic source model driven by two Gaussian white noise processes in the \(x–\) and \(y–\)directions.

The numerical results demonstrate the waveform in the near-field resulting from the
stochastic source elongation to one direction (length) that vertically displaces the water column, and the wave amplitudes decaying, due to geometric spreading and dispersion in the far-field. The L^2 norms of the free surface elevation normalised by the L^2 norm of the bottom topography, the displaced water volume as a result of the deterministic and stochastic bottom deformations and the potential energy of the tsunami wave are examined.

(a) Time-Evolution during Tsunami Generation and Propagation

Faults that produce vertical displacement change the shape of the ocean basin, which affect the entire water column and generate a tsunami. Moreover, the effect of the noise intensity on the generation of tsunami by the vertical displacement of the stochastic source model is investigated.

In figure 4 we put in place numerical wave gauges over maximum amplitudes of the stochastic bottom topography where the largest free surface elevation are expected, and compare with the free surface elevation at the same locations over the deterministic bottom topography. The maximum amplitudes of the free surface elevation at wave gauges (46,42), (65,42) and (77,42) are 4.1, 5.0 and 6.1 m, respectively in case of stochastic bottom displacement, where in case over the deterministic bottom displacement reaches a maximum amplitude of 3.6, 4.4 and 4.9 m. Hence, the inclusion of the random noise of bottom deformation provided an additional and a noticeable contribution to the amplitude in the free surface elevation.
Figure 4. Free surface elevation $\eta(x,y,t)$ at different location of wave gauges along (a) top view and (b) side view of maximum values of the stochastic deformation amplitude and (d) top view and (e) side view of deterministic deformation amplitude at constant water depth $h = 2$ km, propagated length $L = 100$ km and total width equal to 150 km.

We presented in Figure 5 the normalized tsunami generated and propagated amplitude for sliding length $L= 100$ km and width $D = 50$ km of the deterministic and stochastic source models at different noise intensities. It can be observed how the inclusion of the noise at the lateral slopes and to the central plateau of the source model leads to an increase in the tsunami amplitude in addition to an increase in oscillations in the free surface elevation. When the tsunami enters in the propagation regime, amplitude or leading wave height decreases with the distance from the source because of wave divergence and dispersion as seen in figure 5, and hence decreases the potential energy, while the kinetic energy increases, which makes the wave travel outward on the surface of the ocean in all directions away from the source area as seen in figures 6c and 6d. The leading wave crest was observed to propagate with relatively minor change in form with time, causing a train of small waves behind the main wave. At $t = 3t^*$, the first trailing wave becomes larger than the leading one and for large propagation times, the largest amplitudes will be found in the trailing waves. The leveling of the tsunami wave due to gravity, converts the potential energy of the water into kinetic energy resulting in dispersing wave energy over a larger area, and thereby creating a propagating wave field.

The propagation of long waves in the ocean is accompanied by effects of refraction and wave scattering due to reflections by a non-uniform ocean bottom which leads to stochastization of the wave field, see figure 5 in [61]. This stochastization is quite evident in the rear area in figures 5 and 6c and 6d, where the area is filled with secondary waves and is transformed into a random wave field. Hence, the stochastic source model shows more oscillations in the propagated free surface elevation.
Near- and far-field tsunami waves, displaced water volume, potential energy...
Figure 5. The normalized tsunami generated (blue) and propagated (red) amplitude at time $t = t^*$ and $3t^*$, respectively by the (b) deterministic bottom topography in x-direction and (c) deterministic bottom topography in y-direction, (e) stochastic bottom topography at $\sigma_x = \sigma_y = 0.4$ in the x-direction and (f) stochastic bottom topography at $\sigma_x = \sigma_y = 0.4$ in the y-direction, (h) stochastic bottom topography at $\sigma_x = \sigma_y = 0.8$ in the x-direction and (i) stochastic bottom topography at $\sigma_x = \sigma_y = 0.8$ in the y-direction for propagated length $L = 100$ km and width $D = 50$ km at constant water depth $h = 2$ km.

Figure 6. Top view of the normalized tsunami generated waveform by (a) the deterministic source model and (b) the stochastic source model at time $t = t^*$ and the normalized tsunami propagated waveform by (c) the deterministic source model and (d) the stochastic source model at time $t = 3t^*$.
Another way to take into account the bottom deformation can be done by estimating the L^2 norms of the free surface elevation normalised by the L^2 norm of the bottom topography. It can be observed in figure 7b and Table 2 that the estimated L^2 norms of the free surface elevation normalised by the stochastic bottom topography are smaller than in case when normalised by the deterministic bottom topography. This was due to the stochastic bottom topography results into a larger deformation than the deformation of the deterministic bottom topography. On the other hand, the estimated L^2 norms of the free surface elevation in case of the stochastic bottom topography are larger than in case the deterministic bottom topography as seen in figure 7a. Hence the estimated L^2 norm can be useful in the case that there are no adequate data about the bottom topography.

![Figure 7](image)

Figure 7. L^2 norms of (a) the free surface elevation (b) the free surface elevation normalised by the L^2 norm of the deterministic and stochastic bottom topography during the generation and propagation processes for $L = 50$ and 100 km at rise time $t = 357$ and 714 sec, respectively.

Table 2. Estimated L^2 norms of the generated free surface elevation and the normalised by the L^2 norm of the deterministic and stochastic bottom topographies at different rise times

<table>
<thead>
<tr>
<th>Rise time (t)</th>
<th>$L^2(\eta)$ deterministic</th>
<th>$L^2(\eta)$ stochastic</th>
<th>$L^2(\eta)/L^2(\zeta)$ deterministic</th>
<th>$L^2(\eta)/L^2(\zeta)$ stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0.1 \ t^*$</td>
<td>108.8</td>
<td>119.8</td>
<td>0.992</td>
<td>0.961</td>
</tr>
<tr>
<td>$t = 0.2 \ t^*$</td>
<td>111.2</td>
<td>121.0</td>
<td>1.015</td>
<td>0.977</td>
</tr>
<tr>
<td>$t = 0.3 \ t^*$</td>
<td>113.5</td>
<td>113.8</td>
<td>1.036</td>
<td>0.919</td>
</tr>
<tr>
<td>$t = 0.4 \ t^*$</td>
<td>114.4</td>
<td>113.0</td>
<td>1.044</td>
<td>0.912</td>
</tr>
<tr>
<td>$t = 0.5 \ t^*$</td>
<td>117.3</td>
<td>128.5</td>
<td>1.070</td>
<td>1.038</td>
</tr>
<tr>
<td>$t = 0.6 \ t^*$</td>
<td>122.9</td>
<td>124.2</td>
<td>1.122</td>
<td>1.003</td>
</tr>
<tr>
<td>$t = 0.7 \ t^*$</td>
<td>129.3</td>
<td>133.1</td>
<td>1.180</td>
<td>1.075</td>
</tr>
<tr>
<td>$t = 0.8 \ t^*$</td>
<td>136.0</td>
<td>151.7</td>
<td>1.421</td>
<td>1.225</td>
</tr>
<tr>
<td>$t = 0.9 \ t^*$</td>
<td>142.4</td>
<td>148.3</td>
<td>1.300</td>
<td>1.197</td>
</tr>
<tr>
<td>$t = t^*$</td>
<td>148.6</td>
<td>161.2</td>
<td>1.356</td>
<td>1.306</td>
</tr>
</tbody>
</table>
(b) Displaced Water Volume and Potential Energy

We are interesting to analyze wave elevation histories using the displaced water volume as a result of the deterministic and stochastic bottom motions and the potential energy of the free surface elevation. As the vertical displacement of the deterministic and stochastic source models increases during the generation process, results in more displaced water volume in the ocean, which is proportional to the source models spreading distance as seen in figure 8a. It can be observed that the displaced water volume of the stochastic source model for propagated length L = 50 and 100 km reaches a maximum of 1.035 and 1.574 km3, respectively, while in case of the deterministic source model, reaches a maximum of 1.000 and 1.500 km3. This indicates that the near-field tsunami amplitudes are roughly proportional to the source volume. In the propagation regime, the displaced water volume remains constant as a state of conservation of energy in an open ocean.

The amount of water lifted above the sea level is tied up to gravitational potential energy. Due to the sliding of the bottom topography which results in more displaced water volume, would raise the potential energy of the resulting wave in the generation region as seen in figure 8b. It can be observed that the potential energy induced by the stochastic source model for L = 50 and 100 km reaches a maximum of approximately 5.31×10^{13} and 1.49×10^{14} J, respectively at rise time $t = 357$ and 714 sec when the source model stops pushing the fluid, and reaches a maximum of approximately 4.53×10^{13} and 1.18×10^{14} J in the case of the deterministic source model. This indicated that the potential energy content of near-field tsunami depend on tsunami source displacement. When the tsunami enters the propagation regime, amplitude or wave height of the leading wave decreases with the distance from the source in response to gravity, and hence decreases the potential energy. The energy of the leading wave crest was found to decrease with the propagation distance attributed to the dispersion of the wave energy and migration through the tsunami wave train [62]. This was observed in the propagation region in figure 8b where the potential energy transfer to the trailing waves in the wave train led to the potential energy slightly increasing as a result of the tsunami wave train which comprises multiple amplitudes and frequency components formed immediately behind the leading wave.

It is also interesting to compare the tsunami energy computed with the energy of underlying events. USGS (United States Geological Survey) estimated the energy released by the 2004 Indian Ocean earthquake and tsunami to be 1.1×10^{18} J on the Earth’s surface and the energy released by the 2011 Tohoku earthquake and tsunami was roughly 1.9×10^{18} J of surface energy. The total energy of the Indian Ocean tsunami 2004 was estimated by [63], to be equal to 4.2×10^{15} J, and for the 2011 Tohoku earthquake and tsunami was calculated to be 3×10^{15} J by [14].
Near– and far-field tsunami waves, displaced water volume, potential energy...

Figure 8. Time evolution of (a) the displaced water volume as a result of the deterministic and stochastic bottom displacement to propagated lengths \(L = 50 \) and \(100 \) km at rise time \(t = 357 \) and \(714 \) sec, respectively and width \(D = 50 \) km and (b) the corresponding potential energy of the free surface elevation during the generation and propagation processes.

(c) Velocity Time Series and Wave Gauges

We are interested in representing the time series of the average velocity flow rates \(\bar{u} \) and \(\bar{v} \), induced by the vertical displacement of deterministic and stochastic source models over the whole range of \(R_x \) and \(R_y \) along the free surface \((z = 0) \). The time series of the average velocity components provides a clear signal of tsunami flows, where the arrival of the tsunami is indicated by the commencement of distinctive current velocity oscillations as it shows the characteristic oscillations produced by the tsunami [19, 22]. The surface average velocity flow rates are written as \(\bar{u} = \frac{Q_x}{\iint dx dy} \) and \(\bar{v} = \frac{Q_y}{\iint dx dy} \), where \(Q_x = \iint u dx dy \) and \(Q_y = \iint v dx dy \) are called volume flow rates.

Figure 9 represents the time series of the surface average velocities \(\bar{u} \) and \(\bar{v} \) of the tsunami generated and propagated waves by the spreading deterministic and stochastic source models of propagated length \(L = 100 \) km and width \(D = 50 \) km at water depth \(h = 2 \) km. It can be seen in figure 9 that the contribution of the randomness of the stochastic source model affected the average velocity flow rates by distinctive oscillations. Hence, the average velocity flow rates can provide valuable information about the ocean floor topography. In the \(y \)-direction, the stochastic source model propagates instantaneously as the water surface elevation builds up rapidly, and therefore the horizontal average velocity flow rate \(\bar{v} \) develops a spike with drastically frequency oscillations. The oscillations in the propagation region appear due to wave dispersion and the changes in the average velocity flow rates have minimal impacts. The peak average flow rates \(\bar{u} \) and \(\bar{v} \) reaches a maximum of 0.232 and 0.160 m/s, respectively in figure 9a, and a maximum of 0.327 and 0.307 m/s in
It is remarked that the average velocity flow rates is typically much smaller than the tsunami phase velocity v_t. Present day techniques allow surface velocity amplitudes as small as 2 mm/s to be measured.

![Graph](image1.png)

Figure 9. Time evolution of the surface average velocities \bar{u} and \bar{v} during the generation and propagation processes induced by the vertical displacement of the (a) deterministic source model and by (b) the stochastic source model at water depth $h = 2$ km.

In order to issue a tsunami warning and avoiding false alarms, it is important to detect actual generated tsunami waves by monitoring wave gauges and flow velocities. Wave gauges are deployed in order for measurement of usual sea level, which provides real-time information on the development of a tsunami following a seismic event, and thus are critical for guiding the issuance of tsunami warnings [64]. The flow velocities are considered as important physical parameters for understanding the mechanism of tsunami generation and for quick estimation of the tsunami intensities. Ammon et al. [65], Iinuma et al. [66] and Satake et al. [67] investigated the effect of different source models on the flow velocity.

Figure 10 presents the top view of the stochastic source model at $t^* = L/v$, showing the location of two selected gauges. We chose the locations of these gauges based on different altitudes of the stochastic source model. Wave gauge and current meter were used at same location to measure the wave height and flow velocity respectively.
Near- and far-field tsunami waves, displaced water volume, potential energy...

Figure 10. Location of the two numerical wave gauges superposed with the stochastic bottom displacement, with the following coordinates (x, y) in km: (30, 25) and (77, 55).

In this study, observations were made on water level and the tsunami flow velocity u at two locations, (30, 25) and (77, 55). The measurement points were chosen as a reference point for evaluating the effects of enlargement in the flow of the tsunami generation level and the flow velocity as shown in figures 11 and 12. Figure 11 presents the evolution of the free surface elevation during the generation time at each gauge at a water depth $h = 2$ and 4 km for measuring the vertical distance to the water surface resulting from the vertical displacement of the stochastic source model. The flow velocity at a water depth $h = 2$ and 4 km were demonstrated in figure 12 for measuring the velocity variations of the tsunami wave. Figures 11 and 12 confirmed that the free surface elevation and the flow velocity decreases with the increase in the water depth causing an apparent shift of the free surface elevation and the flow velocity. It can be observed from figures 11 and 12 that the flow velocity u is highly correlated with the free surface elevation η with the same periodicity. In figure 12, the maximum flow velocity for a water depth $h = 2 \text{ km}$ attained to 0.125 and 0.318 m/s at the gauges (30, 25) and (77, 55), respectively, and attained to 0.056 and 0.131 m/s for a water depth $h = 4 \text{ km}$. For tsunami-induced currents to be detected by HF radar they must have a magnitude approaching 0.2 m/s, implying a strong coastal amplification of a tsunami wave [68].

It is also interesting to compare the tsunami flow velocity computed with the velocity of underlying events. Flow velocities of the 2004 tsunami, Indonesia were estimated peak amplitude up to 0.35 m/s, of the 2010 Chile tsunami estimated peak amplitude up to 0.36 m/s during the largest tsunami wave [21] and of the 2011 Tohoku tsunami for approximately peak amplitude up to 0.84 m/s [69].
CONCLUSIONS

In this study, the tsunami distributions in the near– and far–field were investigated, resulting from submarine earthquakes modeled by a dynamic displacement of a stochastic source model driven by two Gaussian white noise processes in the x– and y–directions. We provided quantitative information by examining particular features of the L^2 norm of the free surface elevation, the displaced water volume by the bottom deformation, the potential energy, and the average velocity flow rates to gain insight into the nature of the tsunami’s genesis and propagation and to provide valuable information about the ocean floor topography. The wave gauges and the flow velocity were measured for helping tsunami warning centers to issue or cancel warnings and to make a contribution to the improvement the warning system of tsunami arrival. Through our analysis, the following understandings and conclusions were obtained:
(1) Increasing the noise intensity will increase the amplitude of the stochastic source model and hence increases the amplitudes and oscillations of the generated tsunami wave.

(2) The increase in the noise intensity was quite evident in the rear area of the propagated tsunami wave.

(3) Oscillations and fluctuations in the L^2 norms of the free surface elevation occur during generation as well as the stochastic bottom topographical effect. Additionally, the estimated L^2 norms of the free surface elevation normalised by the L^2 norm of the stochastic bottom topography is smaller than when normalized by the L^2 norm of the deterministic bottom topography.

(4) The inclusion of the random noise of bottom deformation provided an additional and a noticeable contribution to the displaced water volume and the potential energy of the free surface elevation.

(5) The amount of water displaced increased as the vertical displacement of the deterministic and stochastic source models increases (i.e. propagated length increases) during the generation process and then remained constant as entering the propagation regime a sort of conservation of energy.

(6) The potential energy in the near–field is increased by increasing the height of the wave due to focusing (convergence of wave energy), while in the far–field, the amplitude of the leading wave decreased with the distance from the source because of wave divergence and dispersion, and hence decreases the potential energy.

(7) When propagating more distant from the source, the potential energy slightly increased as a result of the tsunami wave train which comprises multiple amplitudes and frequency components formed immediately behind the leading wave.

(8) The time series of the average velocity flow rates can provide valuable information about the stochastic bottom topography by the distinctive velocity oscillations. This may be useful to provide warning of a tsunami approach, based on observation of velocity oscillations.

(9) In the y–direction, the stochastic source model propagates instantaneously, and therefore the horizontal average velocity flow rate \bar{v} develops a spike with drastically frequency oscillations.

(10) In the propagation region, the wave can be considered as motionless with its velocity being weak compared to those in the generation region due to no flow outlasts resulted from the bottom motion.

(11) The time-varying of the flow velocity is directly proportional to the time-varying sea surface elevation induced by the generated tsunami waves. Hence, the flow velocity happens may be a good illustrative characteristic for describing the tsunami wave field throughout the movement of the ocean bottom.

(12) The free surface elevation and the flow velocity are in good agreement with each other. Hence, the flow velocity can be related to the free surface elevation.

(13) As the water depth increases, the peak amplitude of the free surface elevation and the flow velocity decreases.
Appendix A. Solution for the free surface elevation

The free surface elevation (2.12) will be solved as follows:

\[\bar{\xi}_i(k_1, k_2, t) = \left[\frac{\xi_i}{4 \cosh(\kappa h)} \right] \left[\frac{e^{i 50 k_1 - 1}}{i k_2} - \frac{1}{1 - \left(\frac{2\pi}{\kappa h} \right)^2} \left[i k_2 \left(\frac{50}{\pi} \right)^2 + i k_2 \left(\frac{50}{\pi} \right)^2 e^{50k_2} \right] \right] \times \]

\[\left[\frac{e^{i 50 k_1 - 1}}{i k_2} - \frac{1}{1 - \left(\frac{2\pi}{\kappa h} \right)^2} \left[i k_2 \left(\frac{50}{\pi} \right)^2 \left(1 + e^{-50k_2} \right) \right] \right] \cos \omega t + \frac{2v}{\omega i \bar{\kappa}(\omega \sin(\omega t) + i k_1 \cos(\omega t) - i k_1 v e^{-i k_1 x})} + \left[\frac{1}{1 - \left(\frac{2\pi}{\kappa h} \right)^2} \left[i k_1 \left(\frac{50}{\pi} \right)^2 \left(e^{-i k_1 (50 + 1)} \right) \right] \right] \cos \omega t \]

where

\[I_{11} = \left[\frac{\xi_i}{4 \cosh(\kappa h)} \right] \sigma_x \int_{-\infty}^{0} e^{-i k_1 x} dW(y) \left[\frac{e^{i 50 k_1 - 1}}{i k_2} - \frac{1}{1 - \left(\frac{2\pi}{\kappa h} \right)^2} \left[i k_2 \left(\frac{50}{\pi} \right)^2 \left(1 + e^{-50k_2} \right) \right] \right] \cos \omega t \]

\[I_{21} = \left[\frac{\xi_i \cos \omega t}{4 \cosh(\kappa h)} \right] \frac{1}{1 - \left(\frac{2\pi}{\kappa h} \right)^2} \left[i k_2 \left(\frac{50}{\pi} \right)^2 + i k_2 \left(\frac{50}{\pi} \right)^2 e^{50k_2} \right] \sigma_x \int_{-\infty}^{0} e^{-i k_1 x} dW(x) \]

\[I_{31} = \left[\frac{\xi_i}{4 \cosh(\kappa h)} \right] \frac{2v}{\omega \bar{\kappa}(\omega \sin(\omega t) + i k_1 \cos(\omega t) - i k_1 v e^{-i k_1 x})} \]

\[I_{41} = \left[\frac{\xi_i}{2 \cosh(\kappa h)} \right] \sigma_x \int_{-\infty}^{0} e^{-i k_1 y} dW(y) \left[\frac{e^{i 50 k_1 - 1}}{i k_2} - \frac{1}{1 - \left(\frac{2\pi}{\kappa h} \right)^2} \left[i k_2 \left(\frac{50}{\pi} \right)^2 + i k_2 \left(\frac{50}{\pi} \right)^2 e^{50k_2} \right] \right] \]

\[I_{51} = \left[\frac{\xi_i \cos \omega t}{4 \cosh(\kappa h)} \right] \frac{1}{1 - \left(\frac{2\pi}{\kappa h} \right)^2} \frac{1}{\left[i k_1 \left(\frac{50}{\pi} \right)^2 \right]} \frac{1}{\left(e^{-i k_1 (50 + 1)} + e^{-i k_1 x} \right)} \cos \omega t \]

\[I_{61} = \left[\frac{\xi_i \cos \omega t}{4 \cosh(\kappa h)} \right] \frac{1}{1 - \left(\frac{2\pi}{\kappa h} \right)^2} \left[i k_1 \left(\frac{50}{\pi} \right)^2 e^{-i k_1 x} \right] \sigma_x \int_{-\infty}^{0} e^{-i k_1 x} dW(x) \]

The same can be done for \(\bar{\eta}_2(k_1, k_2, t) \) and \(\bar{\eta}_3(k_1, k_2, t) \).

\(\xi_x(x) \) and \(\xi_y(y) \) are the two independent Gaussian white noise processes which are random processes with zero mean and are the formal derivative of the standard Wiener processes \(W(x) \) and \(W(y) \), respectively. Thus, the integrals in (A1) is a stochastic integral that can be considered as Itô integrals, see [70] and [71].

Substituting equations \(\bar{\eta}_1(k_1, k_2, t) \), \(\bar{\eta}_2(k_1, k_2, t) \) and \(\bar{\eta}_3(k_1, k_2, t) \) into equation...
(2.12) gives \(\bar{\eta}(k_1, k_2, t) \) for \(0 \leq t \leq t^* \). In case for \(t \geq t^* \), \(\bar{\eta}(k_1, k_2, t) \) will have the expression as equation (2.12) except the term resulting from the convolution theorem, i.e.

\[
\int_{t-t^*}^t \cos(\omega \tau) e^{-i k_1 v(t - \tau)} d\tau = \frac{1}{\omega^2 - (k_1 v)^2} \left[\omega \sin \omega t + i k_1 v \cos \omega t \right] e^{-i k_1 v t^*} \left(\omega \sin \omega (t - t^*) + i k_1 v \cos \omega (t - t^*) \right),
\]

(A2)

instead of

\[
\int_0^t \cos(\omega \tau) e^{-i k_1 v(t - \tau)} d\tau = \frac{1}{\omega^2 - (k_1 v)^2} \left(\omega \sin \omega t + i k_1 v \cos \omega t - i k_1 v e^{-i k_1 v t} \right),
\]

(A3)

and

\[
\left[\frac{\zeta_0}{4 \cosh(k h)} \right] \left[\frac{1}{\frac{1}{1 - \frac{50}{\pi} k_1}} \right] e^{-i k_1 v t} e^{-i k_1 (50 + L)} + e^{i k_1 v t} e^{-i k_1 (50 + L)} \cos \omega t,
\]

(A4)

instead of

\[
\left[\frac{\zeta_0}{4 \cosh(k h)} \right] \left[\frac{1}{1 - \frac{50}{\pi} k_1} \right] e^{-i k_1 v t} e^{-i k_1 (50 + L)} + e^{i k_1 v t} e^{-i k_1 (50 + L)} \right] \cos \omega t,
\]

(A5)

and \(\int_0^L \cos \left(\omega \left(t - \frac{x}{v} \right) \right) e^{-i k_1 x} dW(x) \) instead of \(\int_0^{t^*} \cos \left(\omega \left(t - \frac{x}{v} \right) \right) e^{-i k_1 x} dW(x) \)

(A6)

and \(\int_L^{50 + L} e^{-i k_1 x} dW(x) \) instead of \(\int_{t^*}^{50 + v t} e^{-i k_1 x} dW(x) \)

(A7)

Finally, \(\bar{\eta}(x, y, t) \) is evaluated using the double inverse Fourier transform of \(\bar{\eta}(k_1, k_2, t) \)

\[
\bar{\eta}(x, y, t) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} e^{i k_2 y} \left[\int_{-\infty}^{\infty} e^{i k_1 x} \bar{\eta}(k_1, k_2, t) dk_1 \right] dk_2.
\]

(A8)

This inversion is computed by using the Matlab FFT algorithm.
REFERENCES

15. Dutykh D, Mitsotakis D, Chubarov LB, Shokin YI. 2012 On the contribution of

45. Grilli ST, Harris JC, Tajalli Bakhsh TS, Masterlark TL, Kyriakopoulos C, Kirby
Near- and far-field tsunami waves, displaced water volume, potential energy...

58. Trifunac MD, Hayir A, Todorovska MI. 2002 Was Grand Banks event of 1929 a slump spreading in two directions?. Soil Dynamics and Earthquake Engineering
22, 349–360. (doi: 10.1016/S0267-7261(02)00029-5)