Stolarsky-3 Mean Labeling of Some Special Graphs

1S.S.Sandhya, 2E.Ebin Raja Merly and 3S.Kavitha

1Department of Mathematics, SreeAyyappa College for Women, Chunkankadai-629 003, Tamilnadu, India.

2Department of Mathematics, Nesamony Memorial Christian College, Marthandan-629 165, Tamilnadu, India.

3Department of Mathematics, Holy Cross College, Nagercoil -629 004, Tamilnadu, India.

Abstract

Let G = (V, E) be a graph with p vertices and q edges. G is said to be Stolarsky-3 Mean graph if each vertex x ∈ V is assigned distinct labels f(x) from 1,2,...,q+1 and each edge e=uv is assigned the distinct labels f(e=uv) = \[\left\lfloor \frac{f(u)^2 + f(u)f(v) + f(v)^2}{3} \right\rfloor \] (or) \[\left\lceil \frac{f(u)^2 + f(u)f(v) + f(v)^2}{3} \right\rceil \] then the resulting edge labels are distinct. In this case f is called a Stolarsky-3 Mean labeling of G and G is called a Stolarsky-3 Mean graph. In this paper we investigate the Stolarsky-3 Mean labeling of some special graphs.

Keywords: Graph Labeling, Mean Labeling, Stolarsky-3 Mean Labeling, Slanting Ladder, Triangular Ladder, H-graph, Twig graph, Middle graph, Total graph.
1. INTRODUCTION

The graphs $G = (V,E)$ considered in this paper are finite, undirected and without loops or multiple edges. We follow Gallian\[1\] for all detailed survey of graph labeling and we refer Harary\[2\] for all other standard terminologies and notations. The concept of “Mean Labeling of graphs” has been introduced S. Somasundaram, R. Ponraj and S.S. Sandhya in 2004\[3\] and S. Somasundaram and S.S. Sandhya introduced the concept of “Harmonic Mean Labeling of graphs” in\[4\]. “Stolarsky-3 Mean Labeling of graphs” was introduced by S.S. Sandhya, E. Ebin Raja Merely and S. Kavitha \[7\].

The following definitions are necessary for the present study.

Definition 1.1: A graph G with p vertices and q edges is said to be Stolarsky-3 Mean graph if each vertex $x \in V$ is assigned distinct labels $f(x)$ from $1, 2, \ldots, q+1$ and each edge $e=uv$ is assigned the distinct labels $f(e=uv) = \left\lceil \sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}} \right\rceil$ (or) $\left\lfloor \sqrt{\frac{f(u)^2 + f(u)f(v) + f(v)^2}{3}} \right\rfloor$ then the resulting edge labels are distinct. In this case f is called a Stolarsky-3 Mean labeling of G.

Definition 1.2: The Slanting ladder SL_n is a graph obtained from two points u_1, u_2, \ldots, u_n & v_1, v_2, \ldots, v_n by joining each u_i with v_{i+1} $1 \leq i \leq n - 1$.

Definition 1.3: A Triangular ladder is a graph obtained from L_n by adding the edges $u_i v_{i+1}$, $1 \leq i \leq n - 1$, where u_i and v_i $1 \leq i \leq n$ are the vertices of L_n such that u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n are two paths of length n in the graph L_n.

Definition 1.4: The H-graph of a path P_n is the graph obtained from two copies of P_n with vertices $v_1, v_2, v_3, \ldots, v_n$ & u_1, u_2, \ldots, u_n by joining the vertices v_{n+1} & u_{n+1} if n is odd and the vertices $v_{\frac{n+1}{2}}$ & $u_{\frac{n+1}{2}}$ if n is even.

Definition 1.5: The Middle graph $M(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it.
Definition 1.6: The Total graph \(T(G) \) of graph \(G \) is the graph whose vertex set is \(V(G) \cup E(G) \) and two vertices are adjacent whenever they are either adjacent or incident in \(G \).

Definition 1.7: A graph \((V,E) \) obtained from a path by attaching exactly two pendant edges to each interval vertices of the path is called a Twig graph.

2. MAIN RESULTS

Theorem 2.1: Slanting Ladder \(SL_n \) is Stolarsky-3 Mean graph.

Proof: Let \(G \) be the slanting ladder graph with the vertices \(u_1, u_2, ..., u_n \) and \(v_1, v_2, ..., v_n \).

Define a function \(f : V(G) \to \{ 1, 2, ..., q+1 \} \) by

\[
\begin{align*}
f(u_i) &= 3i, \quad 1 \leq i \leq n - 1. \\
f(u_n) &= 3n - 2. \\
f(v_1) &= 1. \\
f(v_i) &= 3i - 4, \quad 2 \leq i \leq n.
\end{align*}
\]

Then the edges are labeled with

\[
\begin{align*}
f(u_i u_{i+1}) &= 3i + 1, \quad 1 \leq i \leq n - 1. \\
f(u_i v_{i+1}) &= 3i - 1, \quad 1 \leq i \leq n - 1. \\
f(v_1 v_2) &= 1. \\
f(v_i v_{i+1}) &= 3(i - 1), \quad 2 \leq i \leq n - 2.
\end{align*}
\]

Then the edge labels are distinct.

Hence \(SL_n \) is Stolarsky-3 Mean graph.

Example 2.2: The Stolarsky-3 Mean labeling of \(SL_6 \) is given below.

![Figure 1](image-url)
Theorem 2.3: Triangular Ladder TL_n is Stolarsky-3 Mean graph.

Proof: Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be two paths of length n. Join u_i and v_i, $1 \leq i \leq n$, and join u_i and v_{i+1}, $1 \leq i \leq n - 1$. The resulting graph is TL_n.

Define a function $f : V(TL_n) \to \{1, 2, \ldots, q+1\}$ by

- $f(u_i) = 4i - 2$, $1 \leq i \leq n$.
- $f(v_1) = 1$.
- $f(v_i) = 4(i-1)$, $2 \leq i \leq n$.

Then the edges are labeled with

- $f(u_iu_{i+1}) = 4i$, $1 \leq i \leq n - 1$.
- $f(u_iv_i) = 4i - 3$, $1 \leq i \leq n$.
- $f(v_iv_{i+1}) = 4i - 2$, $1 \leq i \leq n - 1$.
- $f(u_iv_{i+1}) = 4i - 1$, $1 \leq i \leq n - 1$.

Then the edge labels are distinct. Hence TL_n is Stolarsky-3 Mean graph.

Example 2.4: The Stolarsky-3 Mean labeling of TL_6 is given below.

![Figure 2](image.png)

Theorem 2.5: H graph is Stolarsky-3 Mean graph for all n if n is even and $n \leq 11$ if n is odd.

Proof: Let G be the graph with the vertices v_1, v_2, \ldots, v_n & u_1, u_2, \ldots, u_n.

Define a function $f : V(G) \to \{1, 2, \ldots, q+1\}$ by
\[f(v_i) = i, \quad 1 \leq i \leq n. \]
\[f(u_i) = n + i, \quad 1 \leq i \leq n. \]

Then the edges are labeled as
\[f(v_i v_{i+1}) = i, \quad 1 \leq i \leq n - 1. \]
\[f(u_i u_{i+1}) = n + i, \quad 1 \leq i \leq n - 1. \]
\[f(\frac{v_{n+1} u_{n+1}}{2}) = n \quad \text{if } n \text{ is odd.} \]
\[f(\frac{v_{n/2+1} u_{n/2}}{2}) = n \quad \text{if } n \text{ is even.} \]

Then we get distinct edge labels.

Hence \(f \) is Stolarsky-3 Mean labeling.

Example 2.6: The labeling pattern of H graph is given below.

When \(n=5 \)
Theorem 2.7: Twig graph T_m is Stolarsky-3 Mean graph.

Proof: Let G be the twig graph.

Let $u_1, u_2, ..., u_n$ be the vertices of the path P_n and $v_1, v_2, ..., v_{n-2} \& w_1, w_2, ..., w_{n-2}$ be two pendant vertices attached to u_i.

Define a function $f: V(G) \to \{1,2,..., q+1\}$ by

$f(u_1) = 1.$

$f(u_i) =3i-4$, $2 \leq i \leq n.$

$f(v_i) = 3i$, $1 \leq i \leq n - 2.$

$f(w_i) = 3i+1$, $1 \leq i \leq n - 2.$

Then the edges are labeled with

$f(u_iu_{i+1}) =3i -2$, $1 \leq i \leq n - 1.$

$f(v_{i} u_{i}) =3i -1$, $1 \leq i \leq n - 2.$

$f(w_{i} u_{i}) =3i$, $1 \leq i \leq n - 2.$
Then the edge labels are distinct.

Hence \(f \) is Stolarsky-3 Mean labeling.

Example 2.8: The Stolarsky-3 Mean labeling of Twig graph \(T_3 \) is given below.

![Figure 4](image)

Theorem 2.9: Middle graph \(M(P_n) \) is Stolarsky-3 Mean graph.

Proof: Let \(u_1, u_2, \ldots, u_n \) & \(v_1, v_2, \ldots, v_{n-1} \) be the vertices of the middle graph \(G=M(P_n) \).

By definition of middle graph \(V(M(P_n)) = V(P_n) \cup E(P_n) \) and whose edge set is

\[
E(M(P_n)) = \begin{cases}
 u_i v_i, & 1 \leq i \leq n - 1 \\
 u_i v_{i-1}, & 2 \leq i \leq n \\
 v_i v_{i+1}, & 1 \leq i \leq n - 2
\end{cases}
\]

Here \(|V(G)| = 2n-1 \) and \(|E(G)| = 3n-4 \).

We define \(f: V(G) \to \{1,2,3,\ldots,q+1\} \) by

\[
f(u_i) = 1,
\]

\[
f(v_i) = 3i - 1, \quad 1 \leq i \leq n - 1.
\]

Then the edges are labeled with

\[
f(u_i v_i) = 3i - 2, \quad 1 \leq i \leq n - 1.
\]

\[
f(u_i v_{i-1}) = 3i - 1, \quad 2 \leq i \leq n - 1.
\]

\[
f(v_i v_{i+1}) = 3i, \quad 1 \leq i \leq n - 2.
\]

Then the edge labels are distinct.

Hence Middle graph \(M(P_n) \) is stolarsky-3 Mean graph.
Example 2.10: The Stolarsky-3 Mean labeling of $M(P_6)$ is given below.

![Figure: 5](image)

Theorem 2.11: Total graph $T(P_n)$ is Stolarsky-3 Mean graph.

Proof: Let u_1, u_2, \ldots, u_n & $v_1, v_2, \ldots, v_{n-1}$ be the vertices of the Total graph $T(P_n)$.

By definition of Total graph $V(T(P_n)) = V(P_n) \cup E(P_n)$ and

$$E(T(P_n)) = \begin{cases}
 u_iu_{i+1}, & 1 \leq i \leq n-1. \\
 u_iv_i, & 1 \leq i \leq n-1. \\
 u_iv_{i-1}, & 2 \leq i \leq n. \\
 v_iv_{i+1}, & 1 \leq i \leq n-2.
\end{cases}$$

Here $|V(G)| = 2n-1$ and $|E(G)| = 4n-5$.

Define $f: V(G) \to \{1, 2, \ldots, q+1\}$ as follows.

- $f(u_1) = 2$.
- $f(u_i) = 4i-1, \quad 2 \leq i \leq n.$
- $f(v_i) = 4i-3, \quad 1 \leq i \leq n - 1.$

Then the edges are labeled with

- $f(u_iu_{i+1}) = 4i - 2, \quad 1 \leq i \leq n - 1.$
- $f(u_iv_i) = 4i - 3, \quad 1 \leq i \leq n - 1.$
- $f(u_iv_{i-1}) = 4i - 2, \quad 2 \leq i \leq n.$
- $f(v_iv_{i+1}) = 4i, \quad 1 \leq i \leq n - 2.$

Then the edge labels are distinct.

Hence $T(P_n)$ is Stolarsky-3 Mean graph.
Example 2.12: The Stolarsky-3 Mean labeling of $T(P_6)$ is given below.

![Graph Image]

Figure: 6

REFERENCES
