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Abstract

A one dimensional mass transport equation whose solution is ill-posed is considered
to model flow of solutes in porous medium. The diffusion coefficient and advection
velocity in the governing partial differential equation (PDE) are first taken constant
and secondly linearly time dependent and not proportional to each other. Flow
domain is assumed semi infinitely deep and homogeneous and it is subdivided into
small units called control volumes of uniform dimension. Finite volume and Fi-
nite difference methods are used to discretize space and time respectively in the
governing PDE. Discretized equations are inverted to obtain the concentrations at
various nodes of the control volumes by using mathematical codes developed in
Mat-lab and the results presented using graphs at different soil depths and time
to determine the parameters that can help detect the contamination levels before
disastrous levels are reached and with ease. It is observed that the concentration
levels of ions with depth and time can easily be detected when diffusion coefficient



and advection velocities are linearly depended on time.
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1. Introduction

Movement of pollutants from a ground surface of soil through plant root zone to the
groundwater is a major pollution to the hydrological environment in the subsurface.
This phenomenon has negative impact on human life, livestock who depend heavily on
groundwater in addition to degradation of flora and fauna on the terrestrial and aquatic
environment. The uncontrolled and excess use of chemical fertilizers are known to be
major cause of this pollution. This is because chemicals under investigation in this
study which include high nitrogen synthetic fertilizers, pesticides, salts and minerals
that percolate in soil over time are becoming responsible for soil acidification.

Some of the studies conducted on soil acidification include [4] who started of by
defining soil acidification as the decrease in acid neutralization capacity of the soil. It is
one of the factors limiting crop production in many parts of the world. Crop production
in the high rainfall areas like in Kenya is constrained by soil acidity and soil fertility
depletion as suggested by [16]. Although soil acidification is a natural process, it has
recently been accelerated by human practices on the farm lands which causes gradual
accumulation of hydrogen ions in the soil. These practices include addition of agricultural
synthetic fertilizers and pesticides, inorganic matter and minerals that break down in the
soil over time. Some of the industrial effluent causes great concern because they hardly
break down, are carcinogenic and their extraction is extremely expensive. In addition
and to large extent, it has been documented that chemical fertilizer on excess percolation
into the soil contribute immensely to acidification when they stay and break down over
time.

These practices have caused great concern to environmentalists, hydrologists, civil
engineers as well as mathematicians. In this paper,we intend to develop a mathematical
understanding of the initial root causes and levels of acidification in priori, by solving
mathematical backward problem which translates to inverse problem as opposed to solv-
ing a forward problem, whose solution is ill-posed in such a way that the infinitesimal
error always magnifies un-proportionally in final solution hence requiring regularization
schemes. This is what is being referred to as reconstruction of acidity. Remediation
in this context is the reversibility of intensively acidified arable land to traditional health
and fertile land. This should be a priority for land conservation.

To model this processes mathematically, we invoke a mathematical thinking by de-
veloping mathematical models from Navier-Stokes Equations to simulate advection and
diffusion process of solute transport in homogeneous soil structures. Homogeneous
soils are an exceptionally rare case of soil structure as much as the plant root zone can
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be considered to be almost homogeneous. This is expected in a farmland where the soil
columns are often disturbed during land preparation and planting which lead to mixing
of different soil layers leaving the transport behavior to be uniform all through. Ho-
mogeneous soils are not only ideal for pure studies but also for developing models that
can predict the transport of both organic and inorganic materials when the soil is weakly
heterogeneous.

In this work we have solved an inverse problem modelled from the advection diffusion
equation, numerically by adopting a hybrid of Finite volume method and Finite difference
schemes for spatial and temporal discretization respectively with some fundamental
assumptions utilized.

The process of acidification is complex indeed expressible in terms of non linear
PDEs. Thus determination of analytic solution involves a lot of assumptions thus mak-
ing the results unrealistic. Hence numerical experiment is a cost effective avenue for
obtaining better and reliable results for the PDEs and more so methods based on control
volumes.

Flow of contaminated fluids from the soil surface in to the ground water has been
studied by many researchers in the past all taking different view point. [19] quoted that
water flow in the unsaturated zone is complicated due to the fact that the soil permeability
to water depends on its water saturation. [25] in their paper cited that fertilizers, pesticides
and industrial waste may be small in quantity but highly toxic and can be transported to
ground water to remain there for hundreds of years.

A chemical becomes a pollutant if its concentration exceed some prescribed water
quality standard or soil attains an un-allowable PH after chemicals have been applied.
This impairment of beneficial water and soil use has been known to be induced by natural
processes and human activities. Specifically, when fertilizers are applied on a wet ground
they dissolve easily to form a solute because of their characteristic nature of been highly
miscible with water, volatile and hygroscopic. Thereafter the solute will be transported
through advection also referred to as convection, deep into the soil due to the bulk fluid
motion after an irrigation or even a heavy downfall. However when advection slows
down due to soil saturation, the level of wetness attained will vary from the surface soil
downwards. As this infiltration process occurs, the solute simply disperses away from
the source in a diffusive manner and thus the flow of the chemicals can be described
using the Advection- diffusive equation (ADE).

The classical Advection and Dispersion equation has commonly been used to charac-
terize the transport of non-reactive solutes through homogeneous porous media consist-
ing of impermeable grains, [8] and [2]. Other processes that can control the movement of
the solute are sorption, volatilization, sorption, hydrolis, biotransformation and radioac-
tive decay. For reactive solutes, the Advection Dispersion equation has been modified to
incorporate the effects of adsorption and desorption ([14] and [17]) and hysteresis ([27]).

Various approaches have previously been employed to solve the Advection Disper-
sion equations applied to the transport of chemicals through saturated and unsaturated
porous media. Analytical solutions have been reported by a number of researchers when
assumptions made allow for simplification of the Navier stokes equation to represent a
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linear problem, see [21], [22], [13], [26]. Other researchers who employed numerical
studies included [7], [23], [18], [9], [10], [11] among others.

We need to solve the unsteady advection diffusion equation in which the coefficients
are unknown. Consequently the problem need to be regularized before one can give
it a full numerical analysis using computer algorithm or other computational methods,
representing ill posed problems which are treated as inverse problems. Ill posed problems
are those that do not meet the three Hadamard criteria for being well posed. For the
regularization, one needs to bring in new assumptions to fully define the problem and
narrow it down. Identification of the unknown diffusion coefficient in a linear parabolic
equation via semi group approach was performed by [6]. Identification of coefficients
for a parabolic equation where the unknown coefficient depends on an over specified
datum is presented by [24]. Identification of a Robin Coefficient on a non accessible
part of the boundary from available data on the other part is reported by [3]. Coefficients
problems are used to estimate values of parameters in a governing equation.

Techniques for remediation of polluted soil and groundwater previously applied in-
clude pump- and -treat, using a combination of the optimization methods and simulation
models as proposed by [12], Hot water flushing ([15], [20]), air sparging [1], Cosolvent
flushing [15], the use of surfactants [5], In situ bio-remediation [28]. The effective-
ness of the remediation may be substantially improved if the location and extent of the
contaminants source are known.

In this paper we intend to determine which, between constant and linearly time
dependent diffusion coefficient and advection velocities for various flow conditions can
help detect contamination levels early before percolation of chemicals penetrate to in-
accessible levels into the ground.

2. One Dimensional Advection Diffusion Model

Let the domain of flow � = [0, z] represent the semi infinite flow domain given that
0 ≤ z ≤ ∞ and t varies from 0 to final time T . The general non-linear form of one
dimensional advection diffusion equation describing solute flow in Cartesian system
given by equation (1)

∂C

∂t
= ∂

∂z

[
Dz (z, t)

∂C

∂z
− w (z, t) C

]
+ S0 (1)

where C (z, t) is the function representing concentration the substance to be transported
at depth z of the domain at time t taking z axis as the direction of flow, Dz (z, t) is the
diffusion coefficient which can represent molecular diffusion whilew (z, t) is the average
pore water velocity.

The last term on the right hand side is taken to be the source or sink term for produc-
tion or loss of solutes within the system. Since we are concerned with solutes flow in
agricultural land S0 is the source term taken to represent fertilizer application and other
human related activities that can lead to inequilibrium in soil PH. It is assumed that in
this paper, soil is of semi infinite depth and the soil properties like the permeability and
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porosity are uniform along the z axis. We need to analyze the situation where the source
term is zero and when the source term is present is left out for further research. In the
present case, we need to reconstruct the initial condition C (z, t) = f (z) t = t0 and the
flow parameters Dz (z, t)and w (z, t). We shall determine a suitable function f (t) for
boundary condition C (0, t)on one side of the domain taking C (z, t) = 0, z = z∞on the
other side of the domain.

3. Well-Posedness of the Problem

Problems expressible in terms of PDE given by equation (1) subject to relevant boundary
or initial condition(s) is well posed if a solution exists, the solution is unique and it
continuously depends on the data given. We consider the continuous problem above for
0 ≤ z ≤ 1, Dz ≥ 0. The problem is strongly well-posed if the solution is bounded in
terms of all the data i.e. the terms are known explicitly. However we can demonstrate
the well-posedness by considering the source term and the boundaries on either sides of
the domain to be zero using the Energy method.

Take a one dimensional A-D model in equation (1), initial condition C (z, t0) = f (z)
and boundary conditions

C (0, t) = f (t)

and
C (1, t) = 0

Multiply the differential equation by 2C for constant D (z, t), W (z, t) and S0 = 0 to
get

2C
∂C

∂t
= 2CD

∂2C

∂z2
− 2CW

∂C

∂z
(2)

Integrating equation (2) over the spatial domain 0 ≤ z ≤ 1,

∫ 1

0
2C

∂C

∂t
dz =

∫ 1

0
2CD

∂2C

∂z2
dz −

∫ 1

0
2CW

∂C

∂z
dz (3)

d

dt
‖C‖2 = 2D {−C (0, t) Cz (0, z) + C (1, t) Cz (1, t)}+WC (0, t)2−WC (1, t)2−‖Cz‖2

where

‖C‖2 =
∫ 1

0
C2dz

Given D = 0, the differential equation is hyperbolic and we need only one boundary
condition. If W > 0, C (0, t) = f (t) has to be given; if W < 0, C (1, z) = 0 has to be

given instead. If W > 0 and f (t) = 0 then
d

dt
‖C‖2 = −WC (1, t)2.
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Assuming a parabolic case where D �= 0 and that we have to give data at both
boundaries, inserting the zero boundary data yields,

d

dt
‖C‖2 = −2D ‖Cz‖2 .

Time integration of the above two results gives that the original differential equation is
well posed in the classical sense assuming that the correct number of boundary condition
is used.

4. Time Variation of Advection Velocity W (z, t) and Diffusion
Coefficient D(z, t) in the Absence of Source Term

When the diffusivity Dz (z, t) = D (t) and the flow velocity w (z, t) = w(t), we obtain a
particular case to the problem in the equation (1) given by equation (4)

∂C

∂t
= Dz (t)

∂2C

∂z2
− w (t)

∂C
∂z

, (4)

for � × tε (0, T ].
In the current problem we shall consider varying the parameter values of w (z, t) as:

(i) constant advection velocityw (z, t) =w0

(ii) advection velocity is a linear function of time w (z, t) =w0 (at + b) where a is the
rate at which the flow velocity is varying with time and b is the initial velocity at
time t = 0.

Similarly we shall also consider varying the diffusion coefficient D (z, t) as

(iii) Constant Diffusion coefficient D (z, t) = D0

(iv) Diffusion coefficient is a linear function of time D (z, t) =D0 (at + b) where a is
the rate at which solutes diffusion is varying with time and b is the initial solutes
diffusion at time t = 0 and W0 and D0 are constant values.

5. Discretization of the Given Space and Temporal Domain

Finite volume method developed by Pantanker and Spalding in 1972 involves subdivision
of the flow domain into infinitesimal volumes called control volumes and representation
of the differential equations in integral form. The integral form of each conservation
law is written separately for each control volume. Discretization process of time is
then carried out for each control volume by finite difference scheme. Higher order
terms are reduced into weak form which are then solved numerically by inversion the
components of the discretised equation. Discrete values are estimated at the centre of
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Figure 1: Discretized one dimensional domain into control volumes of width �z

the control volume of the domain after implementing the prescribed initial and boundary
conditions.

Taking the discretized flow domain illustrated in figure 1, in which node 2 serves as
the centre node of the control volumes �x�y�z with unit thickness and nodes 1 and
3 and are the centres of the neighbouring control volumes, w and e are the western and
eastern boundaries of the control volume respectively. Since the control volume is taken
to be one dimension, the thickness �x = �y = 1 thus the control volume reduces to
�z. CA and CB are the conditions at the western and eastern boundaries of the control
volume respectively that can be assumed to be known or unknown and thus need to be
determined. When CA and CB are known, the problem becomes a forward problem and
it can easily be solved using the standard techniques available. However whenever they
aren’t known the problem is ill posed and thus calls for the techniques of solving inverse
problems to be employed. Specifically CA is condition prevailing at the surface of the
soil and CB is representing the condition deep down in the flow domain.This study will
test the validity of chosen functions CA and CB numerically.

With no loss of generality we focus on flow of fertilizer represented by smooth
function C (z, t) in porous medium assumed to have uniform structure in the solution
domain.

6. Discretisation of Governing Equation when Flow Parameters
W (z, t) = W0 and D (z, t) = D0 are Constant

The conservation law applies to each domain and equation (4) integrated over the ith

control volume over the time interval from tj−1 to tj and assuming the dimensions of
the control volume �x and �y are unity, the following procedure is observed

∫
cv

{∫ tj

tj−1

∂C

∂t
dt

}
dz =

∫ tj

tj−1

{∫
cv

[
Dz

∂2C

∂z2
− w

∂C

∂z

]
dz

}
dt (5)
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The velocity field must satisfy the mass conservation law and the continuity equation
becomes

dw
dz

= 0 (6)

Equation (5) becomes

�z
∫ tj

tj−1

dC

dt
dt =

{[
Dz

dC

dz

]
e

−
[
Dz

dC

dz

]
w

− (wC)e + (wC)w

}
dt (7)

From this result we have the first order and zeroth order derivatives for the diffusion
and advection terms respectively in the conservation law. This reduction of the order of
the derivative is important in dealing with situations which change so rapidly in space
that the spatial derivative does not exist. The diffusion coefficient and advection velocity
are taken to be uniform on either sides of the control volume thus equation 5 reduces to

�z
dt

[
C

(
zP , tj

) − C
(
zP , tj−1

)] = Dz

[
dC

dz e
− dC

dz w

]
− w (Ce − Cw) (8)

For control volume 1, Cw is assumed to be known from the boundary conditions and
RHS of equation (8) can now be reduced to

Dz

(
dC

dz e
− dC

dz w

)
− w (Ce − Cw) = Dz

{
CE − CP

δze
− CP − Cw

δzw
2

}

− w
{

CE + CP

2
− Cw

}
(9)

Taking δze = δzw = δz, then the above equation (9) reduces to

Dz

δz
{CE − 3CP + 2Cw} − w

2
{CE + CP − 2Cw}

Simplifying by grouping like terms, we obtain(
2
Dz

δz
+ w

)
Cw +

(
−3

Dz

δz
− w

2

)
CP +

(
Dz

δz
− w

2

)
CE

If we use the notation Ci,j for C
(
zP , tj

)
and Ci,j−1 for C

(
zP , tj−1

)
equation (8) and

(9) can be written as

�z
dt

[
Ci,j − Ci,j−1

] =
(

2
Dz

δz
+ w

)
Cw +

(
−3

Dz

δz
− w

2

)
CP +

(
Dz

δz
− w

2

)
CE

In the control volume 1,we take Cw = Ci− 1
2 ,j , CP = Ci,j CE = Ci+1,j , this equation

now becomes

�z
dt

[
Ci,j − Ci,j−1

] =
(

2
Dz

δz
+ w

)
Ci− 1

2 ,j +
(

−3
Dz

δz
− w

2

)
Ci,j +

(
Dz

δz
− w

2

)
Ci+1,j
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Rearranging this, we have

(
−3

Dz

δz
− w

2
− δz

dt

)
Ci,j +

(
Dz

δz
− w

2

)
Ci+1,j = −

(
2
Dz

δz
+ w

)
Ci− 1

2 ,j − �z
dt

Ci,j−1

(10)

For control volumes 2 to N − 1, we have the following discretised equation

(
Dz

�z
+ w

2

)
Ci−1,j +

(
−2

Dz

�z
− �z

�t

)
Ci,j +

(
Dz

�z
− w

2

)
Ci+1,j = −�z

dt
Ci,j−1 (11)

Lastly the Nth control volume give the discretised equation of the form

(
Dz

�z
+ w

2

)
CN−1,j +

(
−3

Dz

�z
+ w

2
− �z

�t

)
CN ,j = −

(
2Dz

�z
− w

)
CN+ 1

2 ,j − �z
�t

CN ,j−1

(12)

Using equations (10) to (12), we set

A = −3
Dz

�z
− w

2
, B = Dz

�z
− w

2
,

E = Dz

�z
+ w

2

F = −3
Dz

�z
+ w

2
, G = Dz

�z
, H = �z, HH = �z

�t
and the three equations above make

the system of equations (13,14) and (15) respectively for i = 1,

(A − HH) C1,j + BC1+1,j = −2EC1+ 1
2 ,j − HHC1,j−1 (13)

i = 2, ......N − 1,

ECi−1,j + (−2G − HH) Ci,j + BCi+1,j = −HHCi,j−1 (14)

i = N ,

ECN−1,j + (F − HH) CN ,j = −2BCN+ 1
2 ,j − HHCN ,j−1 (15)

In order to guarantee that the numerical scheme is stable, we have to make sure that the
matrix is symmetric, diagonally dominant and real, with non negative diagonal entries
then the matrix is positive definite.
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7. Linear Variation in w (z, t) =w0 (at + b) and
D (z, t) = D0 (at + b) with Time

Here we consider a case where the diffusivity and advection velocity are a linear functions
of time as w (z, t) = w0(at + b) and D (z, t) = D0(at + b), a and b are constants. The
a in the linear function above is used to denote the rate at which the advection velocity
and solutes diffusion are varying with time where as b defines the initial velocity and
diffusion coefficient at time t = 0.

Integrating over the control volume and over the time interval from tj−1to tj , we see
that equation (4) will give

�z [Ci,j − Ci,j−1
] =

[
D0

2
a

(
t2
j − t2

j−1

)
+ D0b

(
tj − tj−1

)] (
dC

dz e
− dC

dww

)

−
[
W0

2
a

(
t2
j − t2

j−1

)
+ W0b

(
tj − tj−1

)]
(Ce − Cw)

This reduces to

�z [Ci,j − Ci,j−1
] =

[
D0

2
a�t

(
tj + tj−1

) + D0b�t

] (
dC

dz e
− dC

dww

)

−
[
W0

2
a�t

(
tj + tj−1

) + W0b�t

]
(Ce − Cw) (16)

which represents the general discretised equation in this case. At the 1st control volume,
the discretised equation becomes{[

3D0�t

�z + W0�t

2

] [a

2

(
tj + tj−1

) + b
]

+ �z
}

Ci,j

−
[
D0�t

�z − W0�t

2

] [a

2

(
tj + tj−1

) + b
]
Ci+1,j

=
[

2
D0�t

�z + W0�t

] [a

2

(
tj + tj−1

) + b
]
Ci− 1

2 ,j + �zCi,j−1 (17)

Taking E = i + 1, j W = i − 1, j P = i, j , e = i + 1

2
, j w = i − 1

2
, j

For the 2nd to (N − 1)th control volumes, the discretised equations become[
D0�t

�z − W0�t

2

] [a

2

(
tj + tj−1

) + b
]
Ci−1,j−

[
2
D0�t

�z
(a

2

(
tj + tj−1

) + b
)

+ �z
]

Ci,j

+
[
D0�t

�z − W0�t

2

] [a

2

(
tj + tj−1

) + b
]
Ci+1,j = −�zCi,j−1 (18)
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Lastly the Nth control volume results to the following discretised equation[
D0�t

�z + W0�t

2

] [a

2

(
tj + tj−1

) + b
]
Ci−1,j

−
[(

3
D0�t

�z − W0�t

2

) (a

2

(
tj + tj−1

) + b
)

+ �z
]

Ci,j

= −2

(
D0�t

�z − W0�t

2

) [a

2

(
tj + tj−1

) + b
]
Ci+ 1

2 ,j − �zCi,j−1 (19)

8. Results and Discussions

Both linear and non linear mass transport equation are used to determine flow char-
acteristics of pollutants in soils. A one dimensional ADE is considered in which the
coefficients were first taken constant. A variation was also made whereby both param-
eters are time dependent. The argument here is that as time increases then the Dz(z, t)
and W (z, t) are also changing at varied depths in the soil until a point of saturation is
reached.

Advection and diffusion processes are playing a key role in determination of the
concentration at different levels in soils at different times. Here we have considered
advection effect higher than diffusion. This is because fluids percolate deep into soil due
to their bulk motion after irrigation or a downfall and slows down due to soil saturation.
The level of wetness varies from surface soil downwards. Now when solutes are applied
in form of fertilizers, upon dissolving, they move away from the point of application
to points of low concentration in a diffusive manner. To the contrary when D(z, t)
dominates the flow, it means that the solutes are being applied to already water logged
soils and advection velocity is negligible. We are referring to nitrogenous fertilizers
highly responsible for soil acidification and are applied to growing plants thus diffusion
here is taking place where advection is present.

The results are presented in form of graphs and discussions are made here under.
In the Figure 2 below flow parameters Dz (z, t) and W (z, t) are taken constant from

time to time. This means even as time or depth changes, the two parameters remain
unchanged. With advection is playing a significant role in the transport of solutes as
opposed to diffusion which takes a less value, we notice Concentration is. The curve for
z = 0.25 in Figure 2 and 3 represents the first level in the flow domain. It is steep at the
beginning then starts leveling near the concentration levels of 0.35. It means that this
level is closer to the surface where application of fertilizers and other human activities
are taking place. This level recieves solutions containing pollutants first and attains
saturation first and faster as opposed to other levels in the domain. It takes longer to
attain saturation level for Figure 3 compared to Figure 2. Here D (z, t) = D0 (at + b) and
W (z, t) = W0 (at + b) are increasing at a constant rate though less than whenD (z, t) =
D0 and W (z, t) = W0.

The zone z = 0.5 midway the depth of the semi infinite flow domain. As advection
continues to take place, less pollutants reach this zone and consequently takes longer
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to reach saturation level. Less pollutants reach the level z = 0.75. There is minimal
pollution at the level z = 1.0 because the flow domain is assumed to be semi-infinite,
thus this is the zone of semi infinite depth it may take longer than the considered time.

Figure 2: Non dimensional concentration C against timet at different depths when D (z, t)
and velocity W (z, t) are Constants

In Figure 4 and 5, concentration is taken to be a function of space/ depth. At time
t = 0, the concentration is taking a maximum value of 1. As time increases by one step,
pollution downwards decreases. It reduced to a non dimensional depth of 0.4 in Figure
5 and 0.5 in figure 4. Diffusion and advection are higher in Figure 4 than in Figure 5.
Figure 4 can be linked to soils with bigger pore spaces than those demonstrated by Figure
5. A similar behavior is noted in the other time levels where higher levels concentration
variation with depth are notiable in Figure 4 than in Figure 5. This shows that early
control of pollution can easily be carried out before it sinks deep in to unreachable levels
in situations where the flow parameters are linearly depended on time.

9. Conclusion and Recommentations

In this paper we considered a mathematical transport model in a homogeneous soil struc-
ture where reaction was negligible. The model helped to predict the flow characteristics
of pollutants in soils. The model was anchored on the classical mass transport equation
with appropriate initial and boundary conditions which were numerically tested for their
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Figure 3: Non dimensional concentration C against timet at varied depths z when both
D (z, t) and W (z, t) are linear functions of time

Figure 4: Non dimensional C against depth z when D (z, t) and W (z, t)are constants

applicability. A one dimensional flow domain was considered where the flow parameters
being investigated were analyzed constants and linear functions of time. A comparison
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Figure 5: Non dimensional concentration C against depth z for varied time when D (z, t)
and W (z, t) linear functions of time.

was also made for concentration with respect to depth and also time for varied diffusion
coefficients and advection velocity in order to provide advice to all with interest on reme-
diation strategies. Diffusion coefficient and advection velocity were varied with respect
to time analysis performed with the help of graphs to determine how they will influence
the transport of acids from the soil surface to unreachable levels in the ground. It was
noted that for soils that allow pollutants to diffuse linearly with time take more time
to reach saturation at the surface of the soil thus mitigation strategies can be employed
to reduce on the rate of flow of more chemicals deep in to the soil. It is important to
note that neutralization or extraction of pollutants can easily be performed in regions
near the surface unlike when the pollutants have penetrated deep down to lower levels
even though in small quantities. As a matter of policy, measures should be taken when
fertilizers are been used in order to determine these two important flow parameters for
the specific soil structures. This will help identify the best position to place the pollutants
detectors as well as neutralizers. This can also help determine how to change the flow
parameters for specific soils.

A lot more can be extended on the present work by considering the following

i) Analysis of the flow parameters which are exponentially depended on time

ii) Experimental determination of the flow parameters for one dimensional domain.

iii) Analysis of the flow parameters when the soil structure is heterogeneous.
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It is our intention to carry our further research in one or more areas cited above though
other researchers are encouraged to carry out investigations on the same.
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