k-Regular and k-Duo Γ-Semirings

R.D. Jagatap

Y.C. College of Science, Karad, India.

Abstract

The concept of a k-duo Γ-semiring is introduced. Several characterizations of a k-duo Γ-semiring in a k-regular Γ-semiring are furnished. Further characterizations of a k-regular and k-duo Γ-semiring are studied by using different kinds of k-ideals in a Γ-semiring.

Keywords: k-ideal, k-bi-ideal, k-quasi-ideal, k-regular Γ-semiring, k-duo Γ-semiring.

AMS Mathematics Subject Classification (2010): 16Y60, 16Y99.

1. INTRODUCTION

The notion of a Γ-semiring was introduced by Rao [9] as a generalization of a semiring and studied it. Dutta and Sardar [1] discussed semiprime ideals in a Γ-semiring. Author studied quasi-ideals and minimal quasi-ideals of a Γ-semiring in [3] and bi-ideals of a Γ-semiring in [6]. In general ring ideal does not coincides with semiring ideal. Hence Henriksen [2] defined more restricted class of ideals in a semiring known as k-ideals. Sen and Adhikari [10, 11] studied k-ideals of semirings. Properties of k-ideals in a Γ-semiring were discussed by Rao [9] and Dutta and Sardar [1]. Also Author studied k-ideals and full k-ideals in Γ-semirings in [5].

Neumann [9] gave the definition of a regular ring. Analogously the concept of a regular semiring was introduced by Zelznikov [13]. This concept of regularity was extended to a Γ-semiring by Rao [9]. Author furnished some characterizations of regular Γ-semirings in [4]. In [7] Author gave definitions of k-quasi-ideal, k-bi-ideal and k-regular Γ-semiring and then some characterizations of k-regular Γ-semirings.
are furnished. The concept of a duo semiring was considered by Shabir, Ali and Batool [12] and proved some characterizations of it. In [4] author introduced the concept of a duo Γ-semiring and gave some characterizations of it.

In this paper the notions of a left k-duo Γ-semiring, right k-duo Γ-semiring and k-duo Γ-semiring are defined. Various characterizations of a k-duo Γ-semiring in a k-regular Γ-semiring are proved. Further some characterizations of a k-regular and k-duo Γ-semiring are discussed by using k-ideals, k-bi-ideals, k-quasi-ideals in a Γ-semiring.

2. PRELIMINARIES:

For the basic concepts of Γ-semirings we follow Dutta and Sardar [1].

Definition 2.1: Let S and Γ be two additive commutative semigroups. S is called a Γ-semiring if there exists a mapping $S \times \Gamma \times S \to S$ whose image is denoted by $a\alpha b$; for all $a, b \in S$ and for all $\alpha \in \Gamma$ satisfying the following conditions:

(i) $a(a+b) = (a\alpha b) + (a\alpha c)$
(ii) $(b+c)a = (b\alpha a) + (c\alpha a)$
(iii) $a(a+b) = (a\alpha c) + (a\beta c)$
(iv) $aa(b+c) = (a\alpha b)\beta c$; for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Definition 2.2: An element $0 \in S$ is said to be an absorbing zero if $0\alpha a = 0 = a\alpha 0, a + 0 = 0 + a = a$; for all $a \in S$ and for all $\alpha \in \Gamma$.

Definition 2.3: A non-empty subset T of a Γ-semiring S is said to be a sub-Γ-semiring of S if $(T, +)$ is a subsemigroup of $(S, +)$ and $a\alpha b \in T$; for all $a, b \in T$ and for all $\alpha \in \Gamma$.

Definition 2.4: A non-empty subset T of a Γ-semiring S is called a left (respectively right) ideal of S if T is a subsemigroup of $(S, +)$ and $x\alpha a \in T$ (respectively $a\alpha x \in T$) for all $a \in T, x \in S$ and for all $\alpha \in \Gamma$.

Definition 2.5: If a non-empty subset T of a Γ-semiring S is both left and right ideal of S, then T is known as an ideal of S.

Definition 2.6: A right ideal I of a Γ-semiring S is said to be a right k-ideal if $a \in I$ and $x \in S$ such that $a + x \in I$, then $x \in I$.

Similarly we define a left k-ideal of a Γ-semiring S.

If an ideal I is both right k-ideal and left k-ideal of a Γ-semiring S, then I is known as a k-ideal of S.

Examples:
(1) Let N_0 denotes the set of all positive integers with zero. $S = N_0$ is a semiring and with $\Gamma = S$, S forms a Γ-semiring. A subset $I = 3N_0 \setminus \{3\}$ of S is an ideal of S but not a k-ideal. Since $6, 9 = 3 + 6 \in I$ but $3 \notin I$.

(2) If $S = N$ is the set of all positive integers, then $(S, \max., \min.)$ is a semiring and with $\Gamma = S$, S forms a Γ-semiring. $I_n = \{1, 2, 3, \ldots, n\}$ is a k-ideal for any $n \in I$.

Definition 2.7: For a subset I of a Γ-semiring S define
\[\overline{I} = \{a \in S \mid a + x \in I, \text{for some } x \in I\} \]
\[\overline{I} \] is called a k-closure of I.

Definition 2.8 [7]: A non-empty subset B of a Γ-semiring S is said to be a k-bi-ideal of S if B is a sub-Γ-semiring of S, $B \Gamma S \Gamma B \subseteq B$ and if $a \in B$ and $x \in S$ such that $a + x \in B$, then $x \in B$.

Definition 2.9 [7]: A subsemigroup Q of $(S, +)$ is a k-quasi-ideal of S if $\overline{(STQ)} \cap (QTS) \subseteq Q$ and if $a \in Q$ and $x \in S$ such that $a + x \in Q$, then $x \in Q$.

Definition 2.10 [7]: An element a of a Γ-semiring S is said to be k-regular if $a \in a\Gamma S \Gamma a$.

If all elements of a Γ-semiring S are k-regular, then S is known as a k-regular Γ-semiring.

Now onwards S denotes a Γ-semiring with absorbing zero unless otherwise stated.

Some basic properties of k-closure are given in the following lemma.

Lemma 2.11: For non-empty subsets A and B of S we have,
1) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
2) \tilde{A} is the smallest (left k-ideal, right k-ideal, k-quasi-ideal, k-bi-ideal) k-ideal containing (left k-ideal, right k-ideal, k-quasi-ideal, k-bi-ideal) k-ideal A of S.

3) $\tilde{A} = A$ if and only if A is (left k-ideal, right k-ideal, k-quasi-ideal, k-bi-ideal) k-ideal of S.

4) $\tilde{\tilde{A}} = \tilde{A}$, where A is (left k-ideal, right k-ideal, k-quasi-ideal, k-bi-ideal) k-ideal of S.

5) $\tilde{A} \Gamma \tilde{B} = \tilde{AB}$, where A and B are (left k-ideals, right k-ideals, k-quasi-ideals, k-bi-ideals) k-ideals of S.

Theorem 2.12 [7]: In S following statements are equivalent.

1) S is k-regular.

2) For every left k-ideal L and right k-ideal R of S, $R \Gamma L = R \cap L$.

3) For every left k-ideal L and right k-ideal R of S,

 (i) $R^2 = R \Gamma R = R$

 (ii) $L^2 = L \Gamma L = L$

 (iii) $R \Gamma L = R \cap L$ is a k-quasi-ideal of S.

4) Every k-quasi-ideal Q of S is of the form $Q \Gamma S \Gamma Q = Q$.

3. **k-DUO Γ-SEMIRING** :

Now we define a k-duo Γ-semiring as follows.

Definition 3.1: A Γ-semiring S is said to be left (right) k-duo Γ-semiring if every left (right) k-ideal of S is a right (left) k-ideal.

A Γ-semiring S is said to be a k-duo Γ-semiring if every one sided k-ideal of S is a two sided k-ideal. That is a Γ-semiring S is said to be a k-duo Γ-semiring if it is both left k-duo and right k-duo.

Theorem 3.2: If S is k-regular, then S is left k-duo if and only if for any two left k-ideals A and B of S, $A \cap B = \tilde{A} \Gamma \tilde{B}$.

Proof: Let S be a k-regular Γ-semiring. Suppose that S is a left k-duo Γ-semiring. Let A and B be any two left k-ideals of S. Hence A is a right k-ideal of S. Therefore by Theorem 2.12, $A \cap B = \tilde{A} \Gamma \tilde{B}$. Conversely, by assumption $L \Gamma S = L \cap$
$S \subseteq L$. This shows that L is a right k-ideal of S. Therefore S is a left k-duo Γ-semiring.

Similar to Theorem 3.2 we have following theorem.

Theorem 3.3: If S is k-regular, then S is right k-duo if and only if for any two right k-ideals A and B of S, $A \cap B = \overline{A \Gamma B}$.

Theorem 3.4: If S is k-regular, then S is left k-duo if and only if every k-quasi-ideal of S is a right k-ideal of S.

Proof: Let S be a k-regular Γ-semiring and Q be any k-quasi-ideal of S. Suppose that S is left k-duo. Then there exists a right k-ideal R and a left k-ideal L of S such that $Q = R \cap L$. Therefore $Q = R \cap L$ is a right k-ideal of S. Conversely, suppose that every k-quasi-ideal of S is a right k-ideal of S. Let L be a left k-ideal of S. Hence L is a k-quasi-ideal of S. Therefore by assumption L is a right k-ideal of S. Hence S is a left k-duo Γ-semiring.

Proofs of the following theorems are similar to above theorem hence omitted.

Theorem 3.5: If S is k-regular, then S is right k-duo if and only if every k-quasi-ideal of S is a left k-ideal of S.

Theorem 3.6: A k-regular Γ-semiring S is k-duo if and only if every k-quasi-ideal of S is a k-ideal of S.

Theorem 3.7: If S is k-regular, then S is left k-duo if and only if every k-bi-ideal of S is a right k-ideal of S.

Theorem 3.8: If S is k-regular, then S is right k-duo if and only if every k-bi-ideal of S is a left k-ideal of S.

Theorem 3.9: If S is k-regular, then S is k-duo if and only if every k-bi-ideal of S is a k-ideal of S.

4. k-REGULAR AND k-DUO Γ-SEMIRING

In this section characterizations of a k-regular and k-duo Γ-semiring are furnished.

Theorem 4.1: Following statements are equivalent in S.

1. S is k-regular and left k-duo.
2. For any k-bi-ideal B and a left k-ideal L of S, $B \cap L = B \Gamma L$.
3. For any k-quasi-ideal Q and a left k-ideal L of S, $Q \cap L = Q \Gamma L$.

Proof:

(1) \Rightarrow (2)

Let B be a k-bi-ideal and L be a left k-ideal of S. Then by Theorem 3.7, B is a right k-ideal of S. Therefore $B \Gamma L \subseteq B$ and $B \Gamma L \subseteq L$. Hence $B \Gamma L \subseteq B \cap L$.

Let $a \in B \cap L$. Hence $a \in a \Gamma S \Gamma a$. Therefore $a \Gamma S \Gamma a \subseteq B \Gamma S \Gamma L \subseteq B \Gamma L$. Thus $B \cap L \subseteq B \Gamma L$. Hence we get $B \cap L = B \Gamma L$.

(2) \Rightarrow (3)

Implication holds as every k-quasi-ideal of S is a k-bi-ideal of S.

(3) \Rightarrow (1)

Let R be a right k-ideal and L be a left k-ideal of S. Then by (3), $R \cap L = R \Gamma L$. This shows that S is k-regular by Theorem 2.12. For $L = S$, we have $L \cap S = L \Gamma S$. Therefore $L = L \Gamma S$. Hence L is a right k-ideal. Thus S is left k-duo.

Theorem 4.2: Following statements are equivalent in S.

1. S is k-regular and right k-duo.
2. For any k-bi-ideal B and a right k-ideal R of S, $B \cap R = R \Gamma B$.
3. For any k-quasi-ideal Q and a right k-ideal R of S, $Q \cap R = R \Gamma Q$.

Proof:

(1) \Rightarrow (2)

Let B be a k-bi-ideal and R be a right k-ideal of S. Then by Theorem 3.8, B is a left k-ideal of S. Therefore $R \Gamma B \subseteq B$ and $R \Gamma B \subseteq R$. Hence $R \Gamma B \subseteq B \cap R$. Let $a \in B \cap R$. Hence $a \in a \Gamma S \Gamma a$. Therefore $a \Gamma S \Gamma a \subseteq R \Gamma S \Gamma B \subseteq R \Gamma B$. Thus $B \cap R \subseteq R \Gamma B$. Hence we get $B \cap R = R \Gamma B$.

(2) \Rightarrow (3)

Implication follows as every k-quasi-ideal of S is a k-bi-ideal of S.

(3) \Rightarrow (1)

Let R be a right k-ideal and L be a left k-ideal of S. Then by (3), $R \cap L = R \Gamma L$. This shows that S is k-regular. For $R = S$, we have $R \cap S = S \Gamma R$. Therefore $R = S \Gamma R$. Hence R is a left k-ideal. Therefore S is right k-duo.
Theorem 4.3: In S following conditions are equivalent.

(1) S is k-regular and k-duo.
(2) For any two k-quasi-ideals Q₁ and Q₂ of S, \(Q₁ \cap Q₂ = \overline{Q₁ \Gamma Q₂} \).
(3) For a left k-ideal L and a right k-ideal R of S, \(L \cap R = \overline{L \Gamma R} \).

Proof: (1) \(\Rightarrow \) (2)

Let \(Q₁ \) and \(Q₂ \) be any two k-quasi-ideals of S. Therefore \(Q₁ = R₁ \cap L₁ \) and \(Q₂ = R₂ \cap L₂ \), where \(R₁ \) and \(R₂ \) are right k-ideals and \(L₁ \), \(L₂ \) are left k-ideals of S. Therefore \(Q₁ = R₁ \cap L₁ \) and \(Q₂ = R₂ \cap L₂ \) are k-ideals of S. Hence by Theorem 2.12, \(Q₁ \cap Q₂ = \overline{Q₁ \Gamma Q₂} \).

(2) \(\Rightarrow \) (3)

Let \(R \) be a right k-ideal and \(L \) be a left k-ideal of S. Therefore \(R \) and \(L \) are k-regular and k-duo of S. Hence by (2), we have \(L \cap R = \overline{L \Gamma R} \).

(3) \(\Rightarrow \) (1)

For \(R = S \), \(\overline{L \Gamma S} = L \cap S = L \). This shows that a left k-ideal \(L \) is a right k-ideal of S. Similarly we can show that a right k-ideal \(R \) is a left k-ideal of S. Thus every one sided k-ideal of S is a k-ideal. Hence S is a k-duo \(\Gamma \)-semiring. Then clearly \(R \cap L = \overline{R \Gamma L} \). Hence S is k-regular (see Theorem 2.12).

Theorem 4.4: In S following conditions are equivalent.

(1) S is k-regular and k-duo.
(2) \(I \cap B = \overline{I \Gamma B \Gamma I} \), for every k-ideal I and every k-bi-ideal B of S.
(3) \(I \cap Q = \overline{I \Gamma Q \Gamma I} \), for every k-ideal I and every k-quasi-ideal Q of S.

Proof: (1) \(\Rightarrow \) (2)

Let I be a k-ideal and B be a k-bi-ideal of S. Hence by Theorem 3.9, B is a k-ideal of S. Therefore \(\overline{I \Gamma B \Gamma I} \subseteq I \) and \(\overline{I \Gamma B \Gamma I} \subseteq B \). Hence \(\overline{I \Gamma B \Gamma I} \subseteq I \cap B \). Take any \(a \in I \cap B \). Hence \(a \in \overline{a \Gamma S \Gamma a} \). Therefore \(\overline{a \Gamma S \Gamma a} \subseteq \overline{a \Gamma S \Gamma (a \Gamma S \Gamma a)} \subseteq \overline{I \Gamma S \Gamma (B \Gamma S \Gamma I)} \subseteq \overline{I \Gamma B \Gamma I} \). Thus \(I \cap B \subseteq \overline{I \Gamma B \Gamma I} \). Therefore \(I \cap B = \overline{I \Gamma B \Gamma I} \).

(2) \(\Rightarrow \) (3)

As every k-quasi-ideal of S is a k-bi-ideal of S, implication holds.

(3) \(\Rightarrow \) (1)

For a left k-ideal \(L \) and a right k-ideal \(R \) of S, by (3) we have \(L = S \cap L = \overline{S \Gamma L \Gamma S} \) and \(R = S \cap R = \overline{S \Gamma R \Gamma S} \). Now \(\overline{L \Gamma S} = \overline{S \Gamma L \Gamma S} \subseteq \overline{S \Gamma L \Gamma S} = L \) and \(\overline{S \Gamma R} = \overline{S \Gamma R \Gamma S} \subseteq \overline{S \Gamma R \Gamma S} = R \).

\[\square \]
\(S = R \cap L \subseteq S \Gamma R \subseteq R \cap L \). Therefore \(R \cap L = R \Gamma L \). Hence by Theorem 2.12, \(S \) is k-regular.

Theorem 4.5: \(S \) is k-regular and k-duo if and only if \(L \cap R = L \Gamma R \subseteq S \Gamma S \), for a left k-ideal \(L \) and a right k-ideal \(R \) of \(S \).

Proof: Assume that \(S \) is a k-regular and k-duo \(\Gamma \)-semiring. Let \(R \) be a right k-ideal and \(L \) be a left k-ideal of \(S \). Hence \(R \) is a left \(k \)-ideal and \(L \) is a right \(k \)-ideal of \(S \). Therefore \(L \Gamma R \subseteq L \) and \(L \Gamma R \subseteq L \Gamma L \subseteq R \). Thus we get \(L \Gamma R \subseteq L \cap R \). Let \(a \in L \cap R \). Hence \(a \in S \). Therefore \(S

Theorem 4.6: \(S \) is k-regular and k-duo if and only if \(L \cap R = L \Gamma R \subseteq S \Gamma R \), for a left k-ideal \(L \) and a right k-ideal \(R \) of \(S \).

Proof: Assume that \(S \) is a k-regular and k-duo \(\Gamma \)-semiring. Let \(R \) be a right k-ideal and \(L \) be a left k-ideal of \(S \). Therefore \(R \) is a left \(k \)-ideal and \(L \) is a right \(k \)-ideal of \(S \). Hence \(L \subseteq L \Gamma L \subseteq L \). Therefore \(L \Gamma L \subseteq L \cap I \). Similarly we can show that \(L \subseteq L \Gamma L \subseteq R \cap I \). Take any \(a \in L \cap I \). Hence \(a \in S \Gamma S \). Therefore \(S \Gamma L \subseteq L \Gamma L \subseteq L \Gamma L \). Hence \(L \cap I \subseteq L \Gamma L \). In the same way we can show that \(R \cap I = R \Gamma R \). Conversely, let \(R \) be a right \(k \)-ideal and \(L \) be a left \(k \)-ideal of \(S \). Hence by assumption, \(L \cap S = L \Gamma S \) and \(S \cap R = S \Gamma R \). Therefore \(L = L \Gamma R \). This shows that \(L \) is a right \(k \)-ideal and \(R \) is a left \(k \)-ideal of \(S \). Therefore \(S \) is a k-regular \(\Gamma \)-semiring.
Then clearly $R \cap L = \overline{RL}$ holds by assumption. Therefore S is a k-regular Γ-semiring (see Theorem 2.12).

Theorem 4.8: Following statements are equivalent in S.

1. S is k-regular and k-duo.
2. For any k-bi-ideals A and B of S, $A \cap B = \overline{AB\Gamma S}$.
3. For any k-bi-ideals A and B of S, $A \cap B = \overline{ST\Gamma B}$.
4. For any k-bi-ideal B and a k-quasi-ideal Q of S, $B \cap Q = \overline{B\Gamma Q\Gamma S}$.
5. For any k-bi-ideal B and a k-quasi-ideal Q of S, $B \cap Q = \overline{S\Gamma B\Gamma Q}$.
6. For any k-bi-ideal B and a k-quasi-ideal Q of S, $B \cap Q = \overline{Q\Gamma B\Gamma S}$.
7. For any k-bi-ideal B and a k-quasi-ideal Q of S, $B \cap Q = \overline{S\Gamma Q\Gamma B}$.
8. For any k-quasi-ideals Q_1 and Q_2 of S, $Q_1 \cap Q_2 = \overline{Q_1\Gamma Q_2\Gamma S}$.
9. For any k-quasi-ideals Q_1 and Q_2 of S, $Q_1 \cap Q_2 = \overline{S\Gamma Q_1\Gamma Q_2}$.

Proof: (1) \Rightarrow (2)

Let A and B be any two k-bi-ideals of S. Hence by Theorem 3.9, both A and B are k-ideals of S. Therefore $\overline{AB\Gamma S} \subseteq A$ and $\overline{AB\Gamma S} \subseteq \overline{AB} \subseteq B$. Hence $\overline{AB\Gamma S} \subseteq A \cap B$. Let $a \in A \cap B$. Therefore $a \in \overline{a\Gamma S\Gamma a}$. Hence $a \Gamma S\Gamma a \subseteq (a\Gamma S\Gamma a) \overline{S\Gamma a} \subseteq (\overline{A\Gamma S\Gamma B})\overline{S} \subseteq \overline{AB\Gamma S}$. Thus, we get $A \cap B = \overline{AB\Gamma S}$.

(2) \Rightarrow (4), (4) \Rightarrow (8), (2) \Rightarrow (6), (6) \Rightarrow (8)

Implications follow as every k-quasi-ideal of S is a k-bi-ideal of S.

(8) \Rightarrow (1)

Let R be a right k-ideal and L be a left k-ideal of S. Then both R and L are k-quasi-ideals of S. Hence by (8), $L \cap R = \overline{L\Gamma R\Gamma S}$. Therefore by Theorem 4.5, S is a k-regular and k-duo Γ-semiring.

(1) \Rightarrow (3)

Let A and B be any two k-bi-ideals of S. Therefore by Theorem 3.9, both A and B are k-ideals of S. Then $\overline{ST\Gamma A} \subseteq B$ and $\overline{ST\Gamma A} \subseteq \overline{ST\Gamma B} \subseteq \overline{AB}$. Thus we get $\overline{ST\Gamma A} \subseteq A \cap B$. Take any $a \in A \cap B$. Therefore $a \in \overline{a\Gamma S\Gamma a}$. Hence $a \Gamma S\Gamma a \subseteq (a\Gamma S\Gamma a) \overline{S\Gamma a} \subseteq (\overline{A\Gamma S\Gamma B})\overline{S} \subseteq \overline{ST\Gamma A\Gamma B}$. Thus, we get $A \cap B \subseteq \overline{ST\Gamma A\Gamma B}$. Therefore $A \cap B = \overline{ST\Gamma A\Gamma B}$.
Clearly implications hold as every k-quasi-ideal of S is a k-bi-ideal of S.

Let R be a right k-ideal and L be a left k-ideal of S. Then both R and L are k-quasi-ideals of S. Therefore by (9), $L \cap R = S \Gamma L \Gamma R$. This shows that S is a k-regular and k-duo Γ-semiring by Theorem 4.6.

Theorem 4.9: In S following statements are equivalent.

1. S is k-regular and k-duo.
2. For any k-bi-ideals A, B and a k-ideal I of S, $A \cap B \cap I = A \Gamma B \Gamma I$.
3. For any k-bi-ideals A, B and a k-ideal I of S, $A \cap B \cap I = I \Gamma A \Gamma B$.
4. For any k-bi-ideal B, a k-quasi-ideal Q and a k-ideal I of S, $B \cap Q \cap I = B \Gamma Q \Gamma I$.
5. For any k-bi-ideal B, a k-quasi-ideal Q and a k-ideal I of S, $B \cap Q \cap I = I \Gamma Q \Gamma B$.
6. For any k-bi-ideal B, a k-quasi-ideal Q and a k-ideal I of S, $B \cap Q \cap I = Q \Gamma B \Gamma I$.
7. For any k-bi-ideal B, a k-quasi-ideal Q and a k-ideal I of S, $B \cap Q \cap I = Q \Gamma I \Gamma B$.
8. For any k-quasi-ideals Q_1, Q_2 and a k-ideal I of S, $Q_1 \cap Q_2 \cap I = Q_1 \Gamma Q_2 \Gamma I$.
9. For any k-quasi-ideals Q_1, Q_2 and a k-ideal I of S, $Q_1 \cap Q_2 \cap I = I \Gamma Q_1 \Gamma Q_2$.

Proof: (1) \Rightarrow (2)

Let A, B be any two k-bi-ideals and I be a k-ideal of S. Therefore by Theorem 3.9, both A and B are k-ideals of S. Hence $A \Gamma B \Gamma I \subseteq A$ and $A \Gamma B \Gamma I \subseteq A \Gamma B \subseteq B$. Also $A \Gamma B \Gamma I \subseteq I$. Hence we get $A \Gamma B \Gamma I \subseteq A \cap B \cap I$. Let $\alpha \in A \cap B \cap I$. Hence $\alpha \in A \Gamma B \Gamma I$. Therefore $a \Gamma S \Gamma a \subseteq (a \Gamma S \Gamma a) \Gamma S \Gamma a \subseteq (A \Gamma S \Gamma B) \Gamma S \Gamma I \subseteq A \Gamma B \Gamma I$. Thus we get $A \cap B \cap I \subseteq A \Gamma B \Gamma I$. Hence $A \cap B \cap I = A \Gamma B \Gamma I$.

(2) \Rightarrow (4), (4) \Rightarrow (8), (2) \Rightarrow (6), (6) \Rightarrow (8)
Implications follow as every k-quasi-ideal of \(S \) is a k-bi-ideal of \(S \).

\((8) \Rightarrow (1)\)

Let \(R \) be a right k-ideal and \(L \) be a left k-ideal of \(S \). Then both \(R \) and \(L \) are k-quasi-ideals of \(S \). Therefore by (8), \(L \cap R = L \Gamma R \Gamma S \). Hence \(S \) is a k-regular and k-duo \(\Gamma \)-semiring by Theorem 4.5.

\((1) \Rightarrow (3)\)

Let \(A, B \) be any two k-bi-ideals and \(I \) be a k-ideal of \(S \). Hence by Theorem 3.9, both \(A \) and \(B \) are k-ideals of \(S \). Therefore \(I \Gamma A \Gamma B \subseteq B \) and \(I \Gamma A \Gamma B \subseteq A \). Also \(I \Gamma A \Gamma B \subseteq I \). Take any \(a \in A \cap B \cap I \). Hence \(a \in a \Gamma ST \Gamma a \). Therefore \(a \Gamma ST \Gamma a \subseteq a \Gamma ST (a \Gamma ST \Gamma a) \subseteq I \Gamma ST (A \Gamma ST \Gamma B) \subseteq I \Gamma A \Gamma B \). Hence \(A \cap B \cap I \subseteq I \Gamma A \Gamma B \). Thus we get \(A \cap B \cap I = I \Gamma A \Gamma B \).

\((3) \Rightarrow (5), (5) \Rightarrow (9), (3) \Rightarrow (7), (7) \Rightarrow (9)\)

As every k-quasi-ideal of \(S \) is a k-bi-ideal of \(S \), implications hold.

\((9) \Rightarrow (1)\)

Let \(R \) be a right k-ideal and \(L \) be a left k-ideal of \(S \). Then both \(R \) and \(L \) are k-quasi-ideals of \(S \). Therefore by (9), \(L \cap R = L \Gamma R \Gamma S \). Hence \(S \) is a k-regular and k-duo \(\Gamma \)-semiring (see Theorem 4.6).

Proof of following theorem is straightforward so omitted.

Theorem 4.10:- In \(S \) following statements are equivalent.

1. \(S \) is k-regular and k-duo.
2. For every k-bi-ideals \(A \) and \(B \) of \(S \), \(A \cap B = A \Gamma B \).
3. For every k-bi-ideal \(B \) and a k-quasi-ideal \(Q \) of \(S \), \(B \cap Q = B \Gamma Q \).
4. For every k-bi-ideal \(B \) and a right k-ideal \(R \) of \(S \), \(B \cap R = B \Gamma R \).
5. For every k-quasi-ideal \(Q \) and a k-bi-ideal \(B \) of \(S \), \(Q \cap B = Q \Gamma B \).
6. For every k-quasi-ideals \(Q_1 \) and \(Q_2 \) of \(S \), \(Q_1 \cap Q_2 = Q_1 \Gamma Q_2 \).
7. For every k-quasi-ideal \(Q \) and a right k-ideal \(R \) of \(S \), \(Q \cap R = Q \Gamma R \).
8. For every left k-ideal \(L \) and a k-bi-ideal \(B \) of \(S \), \(L \cap B = L \Gamma B \).
9. For every left k-ideal \(L \) and a right k-ideal \(R \) of \(S \), \(L \cap R = L \Gamma R \).
REFERENCES

