Products of Composition, Multiplication and Differentiation between Hardy Spaces and Weighted Growth Spaces of the Upper-Half Plane

Zaheer Abbas¹ and Pawan Kumar²

¹ Department of Mathematical Sciences, Baba Ghulam Shah Badshah University Rajouri, Jammu, India.
² Department of Mathematics, Govt. Degree College Kathua, Jammu, India.

Abstract

Let \(\psi \) be a holomorphic function of the upper-half plane \(\Lambda^+ \) and \(\varphi \) a holomorphic self-map of \(\Lambda^+ \). Let \(C_\varphi, M_\psi \) and \(D \) denote, respectively, the composition, multiplication and differentiation operators. In this paper, we characterize boundedness of the operators induced by products of these operators acting between Hardy and growth spaces of the upper-half plane.

Key words and phrases: Composition operator, Differentiation operator, Multiplication operator, Growth space, Hardy space, Upper-half plane.

2000 Mathematics Subject Classification: Primary 47B33, 46E10; Secondary 30D55.

1. INTRODUCTION

Let \(G \) be a non-empty set, \(X \) a topological vector space, \(F(G, X) \) the topological vector space of functions from \(G \) to \(X \) with point-wise vector space operations and \(\varphi : G \rightarrow G \) be a function such that \(f \circ \varphi \in F(G, X) \) for all \(f \in F(G, X) \). Then the
linear transformation $C_\varphi : F(G, X) \rightarrow F(G, X)$, defined as $C_\varphi(f) = f \circ \varphi$ for all $f \in F(G, X)$, is known as the composition transformation induced by φ on the space $F(G, X)$. If C_φ is continuous, then it is called the composition operator or substitution operator induced by φ on the space $F(G, X)$. Let $\Lambda^+ = \{x + iy : x, y \in \mathbb{R}, y > 0 \}$ be the upper half-plane and $1 \leq p < \infty$. Then the Hardy space $\mathcal{H}^p(\Lambda^+)$ is the collection of all analytic functions $f : \Lambda^+ \rightarrow \mathbb{C}$ such that

$$\sup_{y > 0} \int_{-\infty}^{+\infty} |f(x + iy)|^p dx < \infty.$$

It is well known that $\mathcal{H}^p(\Lambda^+)$ is a Banach space under the norm

$$\|f\|_{\mathcal{H}^p(\Lambda^+)} = \left(\sup_{y > 0} \int_{-\infty}^{+\infty} |f(x + iy)|^p dx\right)^{1/p},$$

and $\mathcal{H}^2(\Lambda^+)$ is a Hilbert space under the inner product:

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f_\ast(x) \overline{g_\ast(x)} dx, \quad f, g \in \mathcal{H}^2(\Lambda^+),$$

where

$$f_\ast(x) = \lim_{y \to 0} f(x + iy),$$

which exists almost everywhere on \mathbb{R}. These Hardy spaces fall under the category of the functional Banach spaces which consist of bonafide functions with continuous evaluation functionals. For any positive real number α, the growth space $\mathcal{A}^\alpha(\Lambda^+)$ consists of analytic functions $f : \Lambda^+ \rightarrow \mathbb{C}$ such that

$$\|f\|_{\mathcal{A}^\alpha(\Lambda^+)} = \sup\{(\text{Im}z)^\alpha |f(z)| : z \in \Lambda^+\} < \infty.$$

With the norm $\|\cdot\|_{\mathcal{A}^\alpha(\Lambda^+)}$, $\mathcal{A}^\alpha(\Lambda^+)$ is a Banach space. Note that $\mathcal{A}^1(\Lambda^+)$ is the usual growth space. For $\varphi \in \text{H}(\Lambda^+)$ the multiplication operator M_φ is defined by $M_\varphi f = \varphi f$. The product of composition and multiplication operators, denoted by $W_\varphi \varphi$ and defined as $W_\varphi \varphi = M_\varphi \circ C_\varphi$, is known as weighted composition operator and has been studied intensively in recent times. The differentiation operator denoted by D is defined by $Df = f'$. As a consequence of the Little - wood Subordination principle, it is known that every analytic self-map φ of the open unit disk \mathbb{D} induces a bounded composition operator on Hardy and weighted Bergman spaces of the open unit disk \mathbb{D}.
Products of Composition, Multiplication and Differentiation between Hardy...

(see [3] and [17]). However, if we move to Hardy and weighted Bergman spaces of the upper half-plane Λ^+, the situation is entirely different. In fact, there exist analytic self-maps of the upper half-plane which do not induce composition operators on the Hardy spaces and weighted Bergman spaces of the upper half-plane. Interesting work on composition operators on the spaces of upper half-plane have been done by many authors, to cite a few, Singh [10], Singh and Sharma [11, 12], Sharma [18], Matache [7, 8], Sharma, Sharma and Shabir [19, 20], Stevic and Sharma [22, 23, 24, 26], Sharma, Sharma and Abbas [16]. Recently, some attention have been paid to the study concrete operators and their products between spaces of holomorphic functions, for example, Sharma and Abbas [14], Sharma, Sharma and Abbas [15], Sharma and Abbas [13], Bhat, Abbas and Sharma[2], Kumar and Abbas [6], Abbas and Kumar[1], Kumar and Abbas [5] and [4, 9, 21, 23, 25, 27] and the related references therein.

We can define the products of composition, multiplication and differentiation operators in the following six ways.

\[
(M_\psi C_\varphi Df)(z) = \psi(z)f'(\varphi(z)),
\]
\[
(M_\psi DC_\varphi f)(z) = \psi(z)\varphi'(z)f'(\varphi(z)),
\]
\[
(C_\varphi M_\psi Df)(z) = \psi(\varphi(z))f'(\varphi(z)),
\]
\[
(DM_\psi C_\varphi f)(z) = \psi'(z)f(\varphi(z)) + \psi(z)\varphi'(z)f'(\varphi(z)),
\]
\[
(C_\varphi DM_\psi f)(z) = \psi'(\varphi(z))f(\varphi(z)) + \psi(\varphi(z))f'(\varphi(z)),
\]
\[
(DC_\varphi M_\psi f)(z) = \psi'(\varphi(z))\varphi'(z)f(\varphi(z)) + \psi(\varphi(z))\varphi'(z)f'(\varphi(z)),
\]
for $z \in \Lambda^+$ and $f \in H(\Lambda^+)$.

Note that the operator $M_\psi C_\varphi D$ induces many known operators. If $\psi = 1$, then $M_\psi C_\varphi D = C_\varphi D$, while when $\psi(z) = \varphi'(z)$, then we get the operator DC_φ. If we put $\varphi(z) = z$, then $M_\psi C_\varphi D = M_\psi D$, that is, the product of differentiation operator and multiplication operator. Also note that $M_\psi DC_\varphi = M_{\psi\varphi'} C_\varphi D$ and $C_\varphi M_\psi D = M_{\psi\varphi} C_\varphi D$. Thus the corresponding characterizations of boundedness and compactness of $M_\psi DC_\varphi$ and $C_\varphi M_\psi D$ can be obtained by replacing ψ, respectively by $\psi\varphi'$ and $\psi \circ \varphi$ in the results stated for $M_\psi C_\varphi D$.

In order to treat these operators in a unified manner, we introduce the following operator

\[T_{g,h,\varphi}(z) = g(z) f(\varphi(z)) + h(z) f'(\varphi(z)) \]

where \(g, h \in \mathcal{H}(\Lambda^+) \) and \(\varphi \) a holomorphic self-map of \(\Lambda^+ \). It is clear that composition, multiplication, differentiation operators and all the products of the composition, multiplication and differentiation operators defined above can be obtained from the operator \(T_{g,h,\varphi} \) by fixing \(g \) and \(h \). More specifically, we have

\[C_{\varphi} T_{1,0,\varphi} = T_{\varphi,0,\varphi}, \quad M_{\varphi} T_{\varphi,0,\varphi} = T_{\varphi,0,\varphi}, \quad C_{\varphi} D T_{\varphi,0,\varphi} = T_{\varphi,0,\varphi}, \quad M_{\varphi} D T_{\varphi,0,\varphi} = T_{\varphi,0,\varphi}. \]

In this paper we characterize the boundedness of the operator \(T_{g,h,\varphi} \) acting between Hardy spaces and growth spaces of the upper-half plane. Throughout this paper, constants are denoted by \(C \), they are positive and not necessarily the same at each occurrence.

2. BOUNDEDNESS OF \(T_{g,h,\varphi} : \mathcal{H}^p(\Lambda^+) \to \mathcal{A}^\alpha(\Lambda^+) \)

In this section, we characterize boundedness of \(T_{g,h,\varphi} : \mathcal{H}^p(\Lambda^+) \to \mathcal{A}^\alpha(\Lambda^+) \).

Theorem 2.1. Let \(1 \leq p < \infty \) and \(\varphi \) be a holomorphic self-map of \(\Lambda^+ \). Then \(T_{g,h,\varphi} : \mathcal{H}^p(\Lambda^+) \to \mathcal{A}^\alpha(\Lambda^+) \) is bounded if and only if

\[(i) \quad M = \sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{\frac{1}{p}}} |g(z)| < \infty, \]

\[(ii) \quad N = \sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{1+\frac{1}{p}}} |h(z)| < \infty. \]

Moreover if \(T_{g,h,\varphi} : \mathcal{H}^p(\Lambda^+) \to \mathcal{A}^\alpha(\Lambda^+) \) is bounded, then

\[||T_{g,h,\varphi}\|_{\mathcal{H}^p(\Lambda^+) \to \mathcal{A}^\alpha(\Lambda^+)} \sim M + N. \]

Proof: Firstly, suppose that (i) and (ii) hold, then

\[||T_{g,h,\varphi}f||_{\mathcal{A}^\alpha(\Lambda^+)} = \sup \{ \text{Im}(z) |(T_{g,h,\varphi}f)(z)| : z \in \Lambda^+ \}. \]
Now

\[\text{Im}(z) | (T_{g,h,f}(z)) | = (\text{Im} z)\alpha | f(\varphi(z))g(z) + h(z) f'(\varphi(z)) | \]
\[\leq (\text{Im} z)\alpha (| f(\varphi(z))|| g(z)| + | h(z)|| f'(\varphi(z))|) \]
\[\leq C \| f \|_{H^p(\Lambda^+)} \left(\frac{(\text{Im} z)^{\alpha}}{(\text{Im} \varphi(z))^{\frac{1}{p}}} | g(z)| + \frac{(\text{Im} z)^{\alpha}}{(\text{Im} \varphi(z))^{\frac{1}{p}+\frac{1}{p}}} | h(z)| \right) \]
\[\leq C (M + N) \| f \|_{H^p(\Lambda^+)} \]

Thus,

\[\| (T_{g,h,f})f \|_{A^\alpha(\Lambda^+)} \leq C (M + N) \| f \|_{H^p(\Lambda^+)} \]

and so \(T_{g,h,f} : H^p(\Lambda^+) \to A^\alpha(\Lambda^+) \) is bounded and

\[\| T_{g,h,f} \|_{H^p(\Lambda^+) \to A^\alpha(\Lambda^+)} \leq C (M + N). \] \((2.1) \)

Conversely, suppose that \(T_{g,h,f} : H^p(\Lambda^+) \to A^\alpha(\Lambda^+) \) is bounded. Let \(z_0 \in \Lambda^+ \) be fixed and let \(\omega = \varphi(z_0) \). Consider the function

\[f_{\omega}(z) = (\text{Im} \omega)^{\frac{2}{p} - \frac{1}{2}} \frac{1}{\pi^p(z - \bar{\omega})^2} - 2i (\text{Im} \omega)^{\frac{3}{p} - \frac{1}{4}} \frac{1}{\pi^p(z - \bar{\omega})^3}. \]

Writing \(z = x + iy \) and \(\omega = u + iv \) and using the elementary inequality \((x + iy)^a \leq 2^a (x^a + y^a) \) which holds for all \(x, y \geq 0 \) and \(a > 0 \), we have

\[\| f \|_{H^p(\Lambda^+)} \leq 2^p \left[\sup_{y > 0} \int_{-\infty}^{\infty} \frac{v^{2p-1}}{\pi (x + iy - (u - iv))^{2p}} dx \right] \]
\[+ \sup_{y > 0} \int_{-\infty}^{\infty} \frac{2v^{3p-1}}{\pi (x + iy - (u - iv))^{3p}} dx \]

Again using the inequalities

\[|(x + iy) - (u + iv)|^{2p} \geq (v + y)^{2p-2}((x - u)^2 + (y + v)^2) \]
\[|(x + iy) - (u + iv)|^3p \geq (v + y)^{3p-2}((x - u)^2 + (y + v)^2), \]

we get

\[
\|f\|_{\mathcal{H}^p(\Lambda^+)} \leq 2^p \left[v^{2p-1} \sup_{y > 0} \frac{1}{(y + v)^2} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y + v}{(x - u)^2 + (y + v)^2} \, dx \right. \\
\left. + v^{3p-1} \sup_{y > 0} \frac{2}{(y + v)^{3p-1}} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y + v}{(x - u)^2 + (y + v)^2} \, dx \right]
\]

\[= 2^p \left[v^{2p-1} \sup_{y > 0} \frac{1}{(y + v)^2} + v^{3p-1} \sup_{y > 0} \frac{2}{(y + v)^{3p-1}} \right] \leq 2^{p+2}. \]

Also,

\[f'_\omega(z) = \frac{-2(\text{Im}(\omega))^{2-\frac{1}{p}}}{\pi^{\frac{1}{p}}(z - \bar{\omega})^3} + 6i \frac{(\text{Im}(\omega))^{-\frac{1}{p}}}{\pi^{\frac{1}{p}}(z - \bar{\omega})^4} \]

Moreover,

\[f'_\omega(\varphi(z_0)) = \left(\frac{1}{4i} + \frac{3i}{8} \right) \frac{1}{\pi^{\frac{1}{p}} (\text{Im}(\omega))^{1+\frac{1}{p}}} \]

and \(f'_\omega(\varphi(z_0)) = 0. \)

Since \(T_{g,h,\varphi} : \mathcal{H}^p(\Lambda^+) \to \mathcal{A}^\alpha(\Lambda^+) \) is bounded, we have

\[
\|T_{g,h,\varphi}f\|_{\mathcal{A}^\alpha(\Lambda^+)} \leq \|T_{g,h,\varphi}\|_{\mathcal{H}^p(\Lambda^+) \to \mathcal{A}^\alpha(\Lambda^+)} \|f\|_{\mathcal{H}^p(\Lambda^+)} \\
\leq 2^{p+2} \|T_{g,h,\varphi}\|_{\mathcal{H}^p(\Lambda^+) \to \mathcal{A}^\alpha(\Lambda^+)}.
\]

This implies for each \(z \in \Lambda^+ \), we have

\[
2^{p+2} \|T_{g,h,\varphi}\|_{\mathcal{H}^p(\Lambda^+) \to \mathcal{A}^\alpha(\Lambda^+)} \geq (\text{Im}(z))^{\alpha} \left| (T_{g,h,\varphi}f)'(z) \right| \\
= (\text{Im}z)^\alpha |f(\varphi(z))g(z) + h(z)f'(\varphi(z))|.
\]
In particular, take \(z = z_0 \), we get
\[
2^{p+2} \| T_{g,h,\varphi} \| \mathcal{H}^p(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+) \geq \frac{(\operatorname{Im}(z_0))^\alpha |h(z)| \left| \frac{1}{4} + \frac{3i}{8} \right| \frac{1}{\pi^p}}{(\operatorname{Im}(\varphi(z_0)))^{1 + \frac{1}{p}}}.
\]

Since \(z_0 \in \Lambda^+ \) is arbitrary, we have
\[
N = \sup_{z \in \Lambda^+} \frac{(\operatorname{Im}(z))^\alpha}{(\operatorname{Im}(\varphi(z)))^{1 + \frac{1}{p}}} \left| \varphi''(z) \right| \leq 2^{p+2} \| T_{g,h,\varphi} \| \mathcal{H}^p(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+). \tag{2.2}
\]

Again consider the function
\[
f_\omega(z) = \frac{3i(\operatorname{Im}(\omega))^{2-\frac{1}{p}}}{\pi^\frac{1}{p}(z - \overline{\omega})^2} + \frac{4(\operatorname{Im}(\omega))^{3-\frac{1}{p}}}{\pi^\frac{1}{p}(z - \overline{\omega})^3}, \quad \omega = \varphi(z_0).
\]

Once again it is easy to prove that \(\| f \| \mathcal{H}^p(\Lambda^+) \leq 2p \times 7 \). Also,
\[
f_\omega'(z) = -\frac{6i(\operatorname{Im}(\omega))^{2-\frac{1}{p}}}{\pi^\frac{1}{p}(z - \overline{\omega})^3} - \frac{12(\operatorname{Im}(\omega))^{3-\frac{1}{p}}}{\pi^\frac{1}{p}(z - \overline{\omega})^4}
\]

Thus \(f_\omega'\varphi(z_0)) = 0 \) and
\[
f_\omega(\varphi(z_0)) = \frac{1}{\pi^\frac{1}{p}} \left(\frac{i}{4} \right) \frac{1}{(\operatorname{Im}(\omega))^\frac{1}{p}}.
\]

Since \(T_{g,h,\varphi} : \mathcal{H}^p(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+) \) is bounded, there exists a positive constant \(C \) such that
\[
7 \times 2^p \| T_{g,h,\varphi} \| \mathcal{H}^p(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+) \geq \| T_{g,h,\varphi} f_\omega \| \mathcal{A}^\alpha(\Lambda^+)
\]
\[
\geq (\operatorname{Im}(z_0))^{\alpha} |f'(\varphi(z_0))g(z_0) + h(z_0)f'(\varphi(z_0))| \geq \frac{3}{8} \frac{(\operatorname{Im}(z_0))^{\alpha}}{(\operatorname{Im}(\varphi(z_0)))^{\frac{1}{p}}} |g(z_0)|.
\]
Since $z_0 \in \Lambda^+$ is arbitrary, we have

$$M = \sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{\left((\text{Im}(\varphi(z)))^{\frac{1}{p}}\right)^{\frac{1}{\alpha}}} |g(z)| \leq C \|T_{g,h,\varphi}\|_{\mathcal{H}^P(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)}.$$ \hspace{1cm} (2.3)

From (2.2) and (2.3), we have

$$M + N \leq C \|T_{g,h,\varphi}\|_{\mathcal{H}^P(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)}.$$ \hspace{1cm} (2.4)

From (2.1) and (2.4), we have

$$\|T_{g,h,\varphi}\|_{\mathcal{H}^P(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)} \sim M + N.$$

Corollary 2.2. Let $1 \leq p < \infty$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $C_\varphi : \mathcal{H}^P(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)$ is bounded if and only if

$$\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{\left((\text{Im}(\varphi(z)))^{\frac{1}{p}}\right)^{\frac{1}{\alpha}}} < \infty.$$}

Corollary 2.3. Let $1 \leq p < \infty$ and $\psi \in H(\Lambda^+)$ and $\alpha \geq \frac{1}{p}$. Then $M_\psi : \mathcal{H}^P(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)$ is bounded if and only if $\psi \in \mathcal{A}^{\alpha-\frac{1}{p}}(\Lambda^+)$ if $\alpha > \frac{1}{p}, \psi \in X$, where

$$X = \begin{cases} \mathcal{A}^{\alpha-\frac{1}{p}} & \text{if } \alpha > \frac{1}{p} \\ H^\infty & \text{if } \alpha = \frac{1}{p} \end{cases}.$$

Corollary 2.4. Let $1 \leq p < \infty$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $C_{\varphi}D : \mathcal{H}^P(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)$ is bounded if and only if

$$\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{\left((\text{Im}(\varphi(z)))^{\frac{1}{p}}\right)^{\frac{1}{\alpha}}} < \infty.$$}

Corollary 2.5. Let $1 \leq p < \infty$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $DC_\varphi : \mathcal{H}^P(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)$ is bounded if and only if
Corollary 2.6. Let $1 \leq p < \infty$, $\psi \in H(\Lambda^+)$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $M_\psi C_\varphi : H^p(\Lambda^+) \to A^a(\Lambda^+)$ is bounded if and only if

$$\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{\frac{1}{1+p}}} |\varphi'(z)| < \infty.$$

Corollary 2.7. Let $1 \leq p < \infty$, $\psi \in H(\Lambda^+)$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $C_\varphi M_\psi : H^p(\Lambda^+) \to A^a(\Lambda^+)$ is bounded if and only if

$$\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{\frac{1}{1+p}}} |\psi(z)| < \infty.$$

Corollary 2.8. Let $1 \leq p < \infty$, $\psi \in H(\Lambda^+)$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $M_\psi C_\varphi D : H^p(\Lambda^+) \to A^a(\Lambda^+)$ is bounded if and only if

$$\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{\frac{1}{1+p}}} |\varphi(z)| < \infty.$$

Corollary 2.9. Let $1 \leq p < \infty$, $\psi \in H(\Lambda^+)$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $M_\psi D C_\varphi : H^p(\Lambda^+) \to A^a(\Lambda^+)$ is bounded if and only if

$$\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{\frac{1}{1+p}}} |\psi(z)\varphi'(z)| < \infty.$$

Corollary 2.10. Let $1 \leq p < \infty$, $\psi \in H(\Lambda^+)$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $C_\varphi M_\psi D : H^p(\Lambda^+) \to A^a(\Lambda^+)$ is bounded if and only if

$$\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{\frac{1}{1+p}}} |\psi(\varphi(z))| < \infty.$$
Corollary 2.11. Let $1 \leq p < \infty$, $\psi \in H(\Lambda^+)$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $DM_{\psi}C_{\varphi} : H^p(\Lambda^+) \rightarrow A^\alpha(\Lambda^+)$ is bounded if and only if

$$
\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{1+\frac{1}{p}}} |\psi'(\varphi(z))| < \infty
$$

and

$$
\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{1+\frac{1}{p}}} |\psi(z)\varphi'(z)| < \infty.
$$

Corollary 2.12. Let $1 \leq p < \infty$, $\psi \in H(\Lambda^+)$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $C_{\varphi}DM_{\psi} : H^p(\Lambda^+) \rightarrow A^\alpha(\Lambda^+)$ is bounded if and only if

$$
\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{1+\frac{1}{p}}} |\psi'(\varphi(z))| < \infty
$$

and

$$
\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{1+\frac{1}{p}}} |\psi(\varphi(z))| < \infty.
$$

Corollary 2.13. Let $1 \leq p < \infty$, $\psi \in H(\Lambda^+)$ and φ be a holomorphic self-map of the upper half-plane Λ^+. Then $DC_{\varphi}M_{\psi} : H^p(\Lambda^+) \rightarrow A^\alpha(\Lambda^+)$ is bounded if and only if

$$
\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{1+\frac{1}{p}}} |\psi'(\varphi(z))\varphi'(z)| < \infty
$$

and

$$
\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{(\text{Im}(\varphi(z)))^{1+\frac{1}{p}}} |\psi(\varphi(z))\varphi'(z)| < \infty.
$$

Example 2.14. Let

$$
\varphi(z) = \frac{az + b}{cz + d}, \quad a, b, c, d \in \mathbb{R}, \quad ad - bc > 0.
$$

Then $DC_{\varphi} : H^p(\Lambda^+) \rightarrow A^\alpha(\Lambda^+)$ is bounded if and only if $c = 0$ and $\alpha = 1 + 1/p$.
Proof: First suppose that $c = 0$ and $\alpha = 1 + 1/p$. then
\[\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{\left(\text{Im}(\varphi(z))\right)^{1+1/p}} |\varphi'(z)| = \sup_{z \in \Lambda^+} \frac{y^{2+1/p} a}{\left(\frac{a}{y}\right)^{1+1/p} d}, \quad z = x + iy\]

\[= \left(\frac{a}{d}\right)^{1+1/p} < \infty.\]

Thus $C_\varphi D : \mathcal{H}^p(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)$ is bounded. Again suppose that $c \neq 0$ or $\alpha \neq 1 + 1/p$. Then
\[\text{Im}(\varphi(z)) = \frac{(ad - bc)y}{(cx + d)^2 + c^2 y^2} \quad \text{and} \quad |\varphi'(z)| = \frac{|ad - bc|}{(cx + d)^2 + c^2 y^2}.\]

Therefore,
\[\sup_{z \in \Lambda^+} \frac{(\text{Im}(z))^\alpha}{\left(\text{Im}(\varphi(z))\right)^{1+1/p}} |\varphi'(z)| = \sup_{z \in \Lambda^+} \frac{y^\alpha ((cx + d)^2 + c^2 y^2)^{1+1/p}}{(ad - bc)y^{1+1/p} ((cx + d)^2 + c^2 y^2)}\]
\[= \sup_{z \in \Lambda^+} \frac{y^{\alpha - (1+1/p)} ((cx + d)^2 + c^2 y^2)^{1/p}}{(ad - bc)^{1+1/p}}\]
\[= \infty,\]

and so $DC_\varphi : \mathcal{H}^p(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)$ is unbounded. Hence we are done.\blacksquare

Example 2.15. Let
\[\varphi(z) = \frac{az + b}{cz + d}, \quad a, b, c, d \in \mathbb{R}, \quad ad - bc > 0.\]

Then $C_\varphi D : \mathcal{H}^p(\Lambda^+) \rightarrow \mathcal{A}^\alpha(\Lambda^+)$ is bounded if and only if $c = 0$ and $\alpha = 1 + 1/p$.

Proof: First suppose that $c = 0$ and $\alpha = 1 + 1/p$. then for $z = x + iy$, we have
Thus $C_φD : H^p(Λ^+) \to A^α(Λ^+)$ is bounded. Again suppose that $c \neq 0$ or $α \neq 1 + \frac{1}{p}$. Then

$$\text{Im}(φ(z)) = \frac{(ad - bc)y}{(cx + d)^2 + c^2y^2}.$$

Therefore,

$$\sup_{z \in Λ^+} \left(\frac{(lm(z))^α}{\left(\text{Im}(φ(z)) \right)^{1 + \frac{1}{p}}} \right) = \sup_{z \in Λ^+} \frac{y^{α - (1 + \frac{1}{p})}}{(ad - bc)^{1 + \frac{1}{p}}} \left((cx + d)^2 + c^2y^2\right)^{1 + \frac{1}{p}} \leq \frac{y^{α - (1 + \frac{1}{p})}}{\left(\frac{ad}{c} \right)^{1 + \frac{1}{p}}} < \infty,$$

and so $C_φD : H^p(Λ^+) \to A^α(Λ^+)$ is unbounded. Hence the proof.

REFERENCES

