On Some Strong and Δ–Convergence Theorems for Total Asymptotically Quasi-Nonexpansive Mappings in CAT(0) Spaces

Preety Malik1, Madhu Aggarwal2 and Renu Chugh3

1Department of Mathematics, Government College for Women, Rohtak-124001, India.
2Department of Mathematics, Vaish College, Rohtak-124001, India.
3Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, India.

Corresponding author

Abstract

The aim of this article is to prove some strong and Δ-convergence results for total asymptotically quasi-nonexpansive mappings using modified Khan et. al. iterative procedures in CAT(0) spaces. Our results are the extension and generalization of some results of Sahin and Basarir [1], Basarir and Sahin[13], Chang et. al.[24], Agarwal et. al. [15], Aggarwal and Chugh[14], Khan et. al.[19], Khan, Cho and Abbas[21] and Khan and Abbas[20].

Keywords: CAT(0) spaces; Δ – convergence; strong convergence; total asymptotically quasi nonexpansive mappings; common fixed point; Iterative procedures.

Mathematics Subject Classifications: 47H09, 47H10, 54H25.

1. INTRODUCTION AND PRELIMINARIES

Kirk [27, 28] initiated the study of fixed point theory in CAT(0) spaces. He showed that every nonexpansive (single valued) mapping defined on a bounded closed convex subset of a complete CAT(0) space always has a fixed point. In 2008, Kirk and Panyanak[29] generalized Lim’s[25] concept of Δ-convergence in CAT(0) spaces to prove the CAT(0) space analogs of some Banach space results which involve weak convergence. Dhompongsa and Panyanak[17] obtained Δ-convergence theorems for the Picard, Mann and Ishikawa iterative procedures in the CAT(0) space setting. Since
then many authors have studied the existence and convergence theorems of fixed points (see [2], [7], [13], [26], [31]). In 2011, Khan and Abbas [20] obtained strong and Δ-convergence theorems for S-iterative procedure which is both faster than and independent of the Ishikawa iterative procedure. They also obtained some convergence results for two mappings using the Ishikawa-type iterative procedure. In 2013, Sahin and Basarir [1] studied modified S-iterative procedure and proved strong convergence theorems in CAT(0) spaces which generalize some results of Khan and Abbas [20]. Recently, Basarir and Sahin [13] gave strong and Δ-convergence theorems for modified S-iterative procedure and modified two step iterative procedure for total asymptotically nonexpansive mappings on a CAT(0) space. In this paper, we establish some strong and Δ-convergence results for total asymptotically quasi-nonexpansive mappings using modified Khan et al. iterative procedure of total asymptotically quasi nonexpansive mappings in CAT(0) spaces. The results obtained extend and generalize some results of Sahin and Basarir [1], Basarir and Sahin [13], Chang et al.[24], Agarwal et al. [15], Aggarwal and Chugh [14], Khan et al.[19], Khan, Cho and Abbas [21] and Khan and Abbas [20].

Now, we recall some well known concepts and results.

Throughout this paper, \mathbb{N} denotes the set of all positive integers and \mathbb{R} denotes the set of all real numbers.

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map c from a closed interval $[0, l] \subseteq \mathbb{R}$ to X such that $c(0) = x, c(l) = y,$ and $d(c(t), c(t')) = |t - t'|$ for all $t, t' \in [0, l]$.

In particular, c is an isometry and $d(x, y) = l$. Usually, the image $c([0, l])$ of c is called a geodesic (or metric) segment joining x and y. A geodesic segment joining x and y is not necessarily unique in general. In particular, in the case when the geodesic segment joining x and y is unique, we use $[x, y]$ to denote the unique geodesic segment joining x and y.

The space (X, d) is said to be a geodesic space, if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic space, if there is exactly one geodesic joining x and y, for each $x, y \in X$. A subset $Y \subseteq X$ is said to be convex, if Y includes every geodesic segment joining any two of its points.

A geodesic triangle $\Delta(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of three points $x_1, x_2, x_3 \in X$ (the vertices of Δ) and a geodesic segment between each pair of vertices (the edges of Δ). A comparison triangle for the geodesic triangle $\Delta(x_1, x_2, x_3)$ in (X, d) is a triangle $\overline{\Delta}(x_1, x_2, x_3) := \Delta(x_1, x_2, x_3)$ in the Euclidean plane \mathbb{E}^2 such that $d_{\mathbb{E}^2}(\overline{x}_i, \overline{x}_j) = d_{(X, d)}(x_i, x_j)$ for $i, j \in \{1, 2, 3\}$.

The point $\overline{p} \in [\overline{x}, y]$ is called a comparison point in $\overline{\Delta}$ for $p \in [x, y]$, if $d(x, p) = d_{\mathbb{E}^2}(\overline{x}, \overline{p})$.

A geodesic space is said to be a CAT(0) space, if all geodesic triangles satisfy the following comparison axiom.

CAT(0): Let Δ be a geodesic triangle in X and let $\overline{\Delta}$ be comparison triangle for Δ. Then Δ is said to satisfy CAT(0) inequality if for all $x, y \in \Delta$ and all comparison points $\overline{x}, \overline{y} \in \overline{\Delta}$,

$$d(x, y) \leq d_{\text{cat}}(\overline{x}, \overline{y}).$$

If x, y_1, y_2 are points of a CAT(0) space and if y_0 is the midpoint of the segment $[y_1, y_2]$, then the CAT(0) inequality implies

$$(\text{CN}) \quad d(x, y_0)^2 \leq \frac{1}{2} d(x, y_1)^2 + \frac{1}{2} d(x, y_2)^2 - \frac{1}{4} d(y_1, y_2)^2.$$

This is the (CN) inequality of Bruhat and Tits[3]. In fact, (c.f. [12], p. 163), a geodesic space is a CAT(0) space if and only if it satisfies (CN) inequality.

Remark 1.1. For $\kappa < 0$, a CAT(κ) space is defined in terms of comparison triangles in the hyperbolic plane (see [12] for details). Here, for sake of simplicity, we omit definition, since it is known (see [12, page 165]) that any CAT(κ_1) space is also CAT(κ_2) space for any pair (κ_1, κ_2) with $\kappa_2 \geq \kappa_1$. This means that the results in CAT(0) spaces can be applied to CAT(κ) spaces with $\kappa \leq 0$.

We now give some definitions and results which will be required in the sequel.

Lemma 1.2[17] Let (X, d) be a CAT(0) space. Then

(i) (X, d) is uniquely geodesic.

(ii) Let p, x, y be points of X, let $\alpha \in [0,1]$, and let m_1 and m_2 denote, respectively, the points of $[p, x]$ and $[p, y]$ satisfying $d(p, m_1) = \alpha d(p, x)$ and $d(p, m_2) = \alpha d(p, y)$. Then

$$d(m_1, m_2) \leq \alpha d(x, y). \quad (1.1.1)$$

(iii) Let $x, y \in X$, $x \neq y$ and $z, w \in [x, y]$ such that $d(x, z) = d(x, w)$. Then $z = w$.

(iv) Let $x, y \in X$. For each $t \in [0,1]$, there exists unique point $z \in [x, y]$ such that

$$d(x, z) = td(x, y) \quad \text{and} \quad d(y, z) = (1-t)d(x, y). \quad (1.1.2)$$

For convenience, from now onwards we will use the notation $(1-t)x \oplus ty$ for the unique point z satisfying (1.1.2).

Lemma 1.3.[17] Let (X, d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z) \leq (1-t)d(x, z) + td(y, z) \quad \text{for all } x, y, z \in X \text{ and } t \in [0,1].$$

Lemma 1.4. [28] Let p, x, y be points of a CAT(0) space X, let $\alpha \in [0,1]$. Then

$$d((1-\alpha)p \oplus \alpha x, (1-\alpha)p \oplus \alpha y) \leq \alpha d(x, y).$$
The following Lemma is a generalization of (CN) inequality.

Lemma 1.5. Let \((X, d)\) be a CAT(0) space. Then
\[
d((1-t)x \oplus ty, z)^2 \leq (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2
\]
for all \(x, y, z \in X\) and \(t \in [0, 1]\).

Let \(\{x_n\}\) be a bounded sequence in a CAT(0) space \(X\). For each \(x \in X\), we set
\[
r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n).
\]
The **asymptotic radius** \(r(\{x_n\})\) of \(\{x_n\}\) is given by
\[
r(\{x_n\}) = \inf\{r(x, \{x_n\}) : x \in X\},
\]
And the **asymptotic center** \(A(\{x_n\})\) of \(\{x_n\}\) is the set
\[
A(\{x_n\}) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\}.
\]
Therefore, the following equivalence holds for any point \(u \in X\):
\[
u \in A(\{x_n\}) \iff \limsup_{n \to \infty} d(u, x_n) \leq \limsup_{n \to \infty} d(x, x_n), \quad \text{for all } x \in X. \quad (1.1.3)
\]
It is known (see, e.g., [18], Proposition 7) that in a CAT(0) space, \(A(\{x_n\})\) consists of exactly one point.

We now give the definition of \(\Delta\)-convergence in a CAT(0) space.

Definition 1.6. A sequence \(\{x_n\}\) in \(X\) is said to be **\(\Delta\)-convergent** to \(x \in X\) if \(x\) is the unique asymptotic center of \(\{u_n\}\) for every subsequence \(\{u_n\}\) of \(\{x_n\}\). In this case we write
\[
\Delta \lim_{n \to \infty} x_n = x \quad \text{and call } x \text{ the } \Delta\text{-limit of } \{x_n\}.
\]
We denote \(\omega_{\Delta}(x_n) = \bigcup\{ A(\{u_n\}) \}, \) where the union is taken over all subsequence \(\{u_n\}\) of \(\{x_n\}\).

Definition 1.7. Let \(C\) be a nonempty subset of a CAT(0) space \(X\). A mapping \(I - T : C \to C\) is said to be **demiclosed** at zero, if for each sequence \(\{x_n\}\) in \(C\) that \(\Delta\)-converges to a point \(x \in C\) and \(\lim_{n \to \infty} d(x_n, Tx_n) = 0\), imply \(Tx = x\).

Lemma 1.8. Let \((X, d)\) be a CAT(0) space. Then
(i) Every bounded sequence in \(X\) has a \(\Delta\)-convergent subsequence.
(ii) If \(C\) is a closed convex subset of \(X\) and if \(\{x_n\}\) is a bounded sequence in \(C\), then the asymptotic center of \(\{x_n\}\) is in \(C\).

Definition 1.9. Let \(C\) be a nonempty subset of a CAT(0) space \(X\). Then \(T : C \to C\) is called
a) **Uniformly L-Lipschitzian** if there exists a constant \(L > 0\) such that
\[
d(T^n x, T^n y) \leq L d(x, y)
\]
for all \(x, y \in C, n \in \mathbb{N}\).
b) **nonexpansive** if \(d(Tx, Ty) \leq d(x, y) \) for all \(x, y \in C \).

c) **quasi-nonexpansive**\(^{[16]}\) if \(d(Tx, p) \leq d(x, p) \) for all \(x \in C, p \in F(T) \).

d) **asymptotically nonexpansive**\(^{[10]}\) if for a sequence \(\{k_n\} \subset [1, \infty) \) with
\[
\lim_{n \to \infty} k_n = 1, \quad \text{we have} \quad d(T^n x, T^n y) \leq k_n d(x, y) \quad \text{for all} \quad x, y \in C, n \in N.
\]
e) **asymptotically quasi-nonexpansive**\(^{[11]}\) if for a sequence \(\{k_n\} \subset [1, \infty) \) with
\[
\lim_{n \to \infty} k_n = 1, \quad \text{we have} \quad d(T^n x, p) \leq k_n d(x, p) \quad \text{for all} \quad x \in C, p \in F(T), n \in N.
\]
f) **nearly asymptotically nonexpansive** if there exists constants \(a_n \in [0, 1), k_n \geq 0 \) with
\[
\lim_{n \to \infty} a_n = 0, \quad \eta(T^n) \geq 1, \quad \lim_{n \to \infty} \eta(T^n) = 0 \quad (\text{where} \ \eta(T^n) \ \text{denotes the infimum of constants} \ k_n) \quad \text{such that}
\]
\[
d(T^n x, T^n y) \leq k_n \left(d(x, y) + a_n\right) \quad \text{for all} \quad x, y \in C, n \in N.
\]
g) **total asymptotically nonexpansive**\(^{[24]}\) if there exist non-negative real sequences
\(\{\mu_n\}, \{\nu_n\} \) with \(\mu_n \to 0, \nu_n \to 0 \), and a strictly increasing continuous function
\(\zeta : [0, \infty) \to [0, \infty) \) with \(\zeta(0) = 0 \) such that
\[
d(T^n x, T^n y) \leq d(x, y) + \nu_n \zeta(d(x, y)) + \mu_n \quad \text{for all} \quad x, y \in C, n \in N.
\]
h) **total asymptotically quasi-nonexpansive mapping** if there exist non-negative real sequences
\(\{\mu_n\}, \{\nu_n\} \) with \(\mu_n \to 0, \nu_n \to 0 \), and a strictly increasing continuous function
\(\zeta : [0, \infty) \to [0, \infty) \) with \(\zeta(0) = 0 \) such that
\[
d(T^n x, p) \leq d(x, p) + \nu_n \zeta(d(x, p)) + \mu_n \quad \text{for all} \quad x \in C, p \in F(T), n \in N.
\]
i) **semi-compact** if for a sequence \(\{x_n\} \) in \(C \) with \(\lim_{n \to \infty} d(x_n, Tx_n) = 0 \), exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(\{x_{n_k}\} \) converges strongly to a point \(p \in C \).

Remark 1.10 It is clear from the above definition that the class of total asymptotically quasi-nonexpansive mappings includes the classes of total asymptotically nonexpansive, nearly asymptotically nonexpansive, asymptotically quasi-nonexpansive mappings. But the converse of each may not be true (see\([11],[24]\) and \([32]\)).

Lemma 1.11.\(^{[11]}\) Let \(\{a_n\}, \{b_n\} \) and \(\{\delta_n\} \) be sequences of nonnegative real numbers such that
\[
a_{n+1} \leq (1 + \delta_n)a_n + b_n, \quad \text{for all} \quad n \in N.
\]

If \(\sum_{n=1}^{\infty} \delta_n < \infty \) and \(\sum_{n=1}^{\infty} b_n < \infty \) then \(\lim a_n \) exists.

Lemma 1.12.\(^{[24]}\): Let \(X \) be a CAT(0) space, \(x \in X \) be a given point and let \(\{t_n\} \) be a sequence in \([b, c]\) with \(b, c \in (0, 1) \) and \(0 < b(1-c) \leq \frac{1}{2} \). Let \(\{x_n\} \) and \(\{y_n\} \) be two sequences in \(X \) such that \(\limsup_{n \to \infty} d(x_n, x) \leq r, \limsup_{n \to \infty} d(y_n, x) \leq r \) and
\[
\lim_{n \to \infty} d\big((1-t_n)x_n \oplus t_n y_n, x\big) = r \quad \text{for some} \quad r \geq 0, \quad \text{then} \lim_{n \to \infty} d(x_n, y_n) = 0.
\]
Let C be a nonempty subset of a Banach space X and $T, S : C \to C$ be two mappings. In the sequel F denotes the set of common fixed points of the mappings T and S.

Schu [8] defined the modified Mann iterative procedure which is a generalization of Mann iterative procedure,

\[
\begin{align*}
 x_1 &= x \in C, \\
 x_{n+1} &= (1-a_n)x_n + a_nT^n x_n, n \in N,
\end{align*}
\]

where $\{a_n\}$ is in $(0,1)$. If $a_n=1$ for all $n \in N$, then it reduces to modified Picard iteration defined as

\[
\begin{align*}
 x_1 &= x \in C, \\
 x_{n+1} &= T^n x_n, n \in N.
\end{align*}
\]

Tan and Xu [9] generalized Ishikawa iteration procedure and studied modified Ishikawa iteration procedure,

\[
\begin{align*}
 x_1 &= x \in C, \\
 x_{n+1} &= (1-a_n)x_n + a_nT^n y_n, \\
 y_n &= (1-b_n)x_n + b_nT^n y_n, n \in N,
\end{align*}
\]

where $\{a_n\}$ and $\{b_n\}$ are in $(0,1)$. By taking $b_n=0$ for all $n \in N$ in (1.1.6), we obtain modified Mann iterative procedure (1.1.4).

Khan and Takahashi [22] constructed and studied the following Ishikawa type iterative procedure which modify the iterative procedure defined by Das and Debata [4]:

\[
\begin{align*}
 x_1 &= x \in C, \\
 x_{n+1} &= (1-a_n)x_n + a_nT^n y_n, \\
 y_n &= (1-b_n)x_n + b_nS^n x_n, n \in N,
\end{align*}
\]

where $\{a_n\}$ and $\{b_n\}$ are in $(0,1)$. If we take $S=T$, then we get modified Ishikawa iteration procedure (1.1.6).

In 2007, Agarwal et. al. [15] defined the modified S-iterative procedure as follows:
Recently, Khan, Cho and Abbas [21] introduced modified Khan et.al. iterative procedure as follows:

\[
\begin{align*}
 x_1 &= x \in C, \\
 x_{n+1} &= (1-a_n)T^s x_n + a_n T^s y_n, \\
 y_n &= (1-b_n)x_n + b_n T^s x_n, n \in \mathbb{N},
\end{align*}
\]

where \(\{a_n\} \) and \(\{b_n\} \) are in \([0,1]\). We note that (1.1.8) is independent of (1.1.6) (and hence of (1.1.4)).

In 2013, Sahin et al. [1] modified S-iteration (1.1.8) in CAT(0) spaces as follows:

\[
\begin{align*}
 x_1 &= x \in C, \\
 x_{n+1} &= (1-a_n)T^s x_n + a_n S^s y_n, \\
 y_n &= (1-b_n)x_n + b_n T^s x_n, n \in \mathbb{N},
\end{align*}
\]

where \(\{a_n\} \) and \(\{b_n\} \) are in \((0, 1)\).

We now modify (1.1.9) in CAT(0) spaces as follows:

Let \(C \) be a nonempty subset of a CAT(0) space \(X \) and \(T, S : C \to C \) be two mappings with \(F \neq \emptyset \). Then the sequence \(\{x_n\} \) generated by

\[
\begin{align*}
 x_1 &= x \in C, \\
 x_{n+1} &= (1-a_n)T x_n + a_n T y_n, \\
 y_n &= (1-b_n)x_n + b_n T x_n, n \in \mathbb{N},
\end{align*}
\]
Preety Malik, Madhu Aggarwal and Renu Chugh

where \(\{a_n\} \) and \(\{b_n\} \) are in \((0, 1)\) called modified Khan et. al. iterative procedure. It reduces to the modified S-iteration (1.1.10) for \(S=I \).

If we take \(n=1 \) in (1.1.12) then the following Khan et. al. iterative procedure defined by Khan et. al.[19] will be obtained as a special case of iterative procedure (1.1.12):

\[
\begin{align*}
 x_1 &= x \in C, \\
 x_{n+1} &= (1-a_n)Tx_n \oplus a_nSy_n, \\
 y_n &= (1-b_n)x_n \oplus b_nTx_n, \quad n \in \mathbb{N},
\end{align*}
\]

(1.1.13)

where \(\{a_n\} \) and \(\{b_n\} \) are in \((0, 1)\).

2. MAIN RESULTS

In this section, we prove strong and \(\Delta \)-convergence of the modified khan et. al. iterative procedure (1.1.12) to a common fixed point of two total asymptotically quasi-nonexpansive mappings \(T \) and \(S \) in CAT(0) spaces.

Let \(T, S : C \to C \) be two total asymptotically quasi-nonexpansive mappings satisfying

\[
d(T^n x, p) \leq d(x, p) + \nu_n \mathcal{C}(d(x, p)) + \mu_n \quad \text{and} \quad d(S^n x, p) \leq d(x, p) + \nu_n \mathcal{C}(d(x, p)) + \mu_n
\]

for all \(x \in C, p \in F(T), n \in \mathbb{N}, \) with non-negative real sequences \(\{\mu_n\}, \{\nu_n\} \) with \(\mu_n \to 0, \nu_n \to 0, \) and a strictly increasing continuous function \(\mathcal{C} : [0, \infty) \to [0, \infty) \) with \(\mathcal{C}(0) = 0 \).

From now onwards, we will denote the set of common fixed points of \(T \) and \(S \) by \(F = \{ p \in C : Tp = p = Sp \} \).

Lemma 2.1 Let \(C \) be a nonempty closed convex subset of a CAT(0) space \(X \) and \(T, S : C \to C \) be two uniformly \(L_1 \) and \(L_2 \)-Lipschitzian and total asymptotically quasi-nonexpansive mappings and \(L = \max \{L_1, L_2\} \). Let \(\{x_n\} \) be defined by iterative procedure (1.1.12) with \(F \neq \emptyset \). If the following conditions are satisfied:

a) \(\sum_{n=1}^{\infty} \nu_n < \infty, \sum_{n=1}^{\infty} \mu_n < \infty, \sum_{n=1}^{\infty} a_n < \infty; \)

b) there exists a constant \(M^* > 0 \) such that \(\mathcal{C}(r) \leq M^*r, \ r \geq 0; \)

c) \(\{b_n\} \) is the sequence in \([0,1]\):

d) \(\sum_{n=1}^{\infty} \sup \{d(z, T^n z) : z \in B \} < \infty \) for each bounded subset \(B \) of \(C \).
e) there exists constants $b, c \in (0, 1)$ with $0 < b(1 - c) \leq \frac{1}{2}$ such that $\{a_n\} \subset [b, c]$.

then

(i) $\lim_{n \to \infty} d(x_n, q)$ exists for all $q \in F$.

(ii) $\lim_{n \to \infty} d(x_n, T^n x_n) = 0 = \lim_{n \to \infty} d(x_n, S^n x_n)$.

Proof. Let $q \in F$. Then by Lemma 1.3,

$$d(y_n, q) = d((1 - b_n)x_n \oplus b_n T^n x_n), q)$$

$$\leq (1 - b_n)d(x_n, q) + b_n d(T^n x_n, q)$$

$$\leq (1 - b_n)d(x_n, q) + b_n \left\{d(x_n, q) + \nu_n \zeta \left(d(x_n, q)\right) + \mu_n\right\}$$

$$\leq (1 + b_n \nu_n M^*)d(x_n, q) + b_n \mu_n$$

$$\leq (1 + \nu_n M^*)d(x_n, q) + \mu_n$$

Now, using (2.1.1), we get

$$d(x_{n+1}, q) = d((1 - a_n)T^n x_n \oplus a_n S^n y_n), q)$$

$$\leq (1 - a_n)d(T^n x_n, q) + a_n d(S^n y_n, q)$$

$$\leq (1 - a_n) \left\{d(x_n, q) + \nu_n \zeta \left(d(x_n, q)\right) + \mu_n\right\} + a_n Ld(y_n, q)$$

$$\leq (1 - a_n) \left\{d(x_n, q) + \nu_n \zeta \left(d(x_n, q)\right) + \mu_n\right\} + a_n L \left\{(1 + \nu_n M^*)d(x_n, q) + \mu_n\right\}$$

$$\leq (1 - a_n) \left\{(1 + \nu_n M^*)d(x_n, q) + \mu_n\right\} + a_n L \left\{(1 + \nu_n M^*)d(x_n, q) + \mu_n\right\}$$

$$\leq \left\{(1 - a_n)(1 + \nu_n M^*) + a_n L(1 + \nu_n M^*)\right\}d(x_n, q) +\left(1 + a_n(L-1)\right) \mu_n$$

$$\leq \left\{(1 - a_n)(L-1) + \nu_n M^*(1 + a_n(L-1))\right\}d(x_n, q) +\left(1 + a_n(L-1)\right) \mu_n.$$

Thus, by Lemma 1.12 and condition(a), $\lim_{n \to \infty} d(x_n, q)$ exists for all $q \in F$.

Let $\lim_{n \to \infty} d(x_n, q) = c$. (2.1.1)

Since,

$$d\left(S^n y_n, q\right) \leq d(y_n, q) + \nu_n \zeta \left(d(y_n, q)\right) + \mu_n$$

$$\leq (1 + \nu_n M^*)d(y_n, q) + \mu_n$$

$$\leq (1 + \nu_n M^*) \left\{(1 + \nu_n M^*)d(x_n, q) + \mu_n\right\} + \mu_n$$

$$\leq (1 + \nu_n M^*)(1 + \nu_n M^*)d(x_n, q) + (2 + \nu_n M^*) \mu_n.$$

Using, (2.1.1), we have
\[\limsup_{n \to \infty} d(S^n y_n, q) \leq c. \]
(2.1.2)

Similarly, we obtain
\[\limsup_{n \to \infty} d(T^n x_n, q) \leq c. \]
(2.1.3)

In addition,
\[c = \lim_{n \to \infty} d(x_{n+1}, q) = \lim_{n \to \infty} d((1 - a_n)T^n x_n \oplus a_n S^n y_n), q). \]

With the help of (2.1.2), (2.1.3) and Lemma 1.13, we get
\[\lim_{n \to \infty} d(T^n x_n, S^n y_n) = 0. \]
(2.1.4)

On the other hand, since
\[d(x_{n+1}, T^n x_n) = d((1 - a_n)T^n x_n \oplus a_n S^n y_n), T^n x_n) \leq a_n d(S^n y_n, T^n x_n). \]

From (2.1.4),
\[\lim_{n \to \infty} d(x_{n+1}, T^n x_n) = 0. \]
(2.1.5)

Thus, using condition (d), we have
\[\lim_{n \to \infty} d(x_n, T^n x_n) = 0. \]
(2.1.6)

Hence, from (2.1.5) and (2.1.6), we get
\[\lim_{n \to \infty} d(x_{n+1}, x_n) = 0. \]
(2.1.7)

Now, using Lemma 1.3,
\[d(y_n, x_n) = d((1 - b_n)x_n \oplus b_n T^n x_n, x_n) \leq (1 - b_n)d(x_n, x_n) + b_n d(T^n x_n, x_n). \]

Using (2.1.6), we have
\[\lim_{n \to \infty} d(y_n, x_n) = 0. \]
(2.1.8)

Also,
\[d(x_{n+1}, y_n) \leq d(x_{n+1}, x_n) + d(y_n, x_n) \]

which using (2.1.7) and (2.1.8) gives
\[\lim_{n \to \infty} d(x_{n+1}, y_n) = 0. \]
(2.1.9)

Now,
\[d(x_{n+1}, S^n y_n) \leq d(x_{n+1}, x_n) + d(x_n, T^n x_n) + d(T^n x_n, S^n y_n). \]
By (2.1.4), (2.1.6) and (2.1.7), we obtain
\[\lim_{n \to \infty} d(x_n, S^n x_n) = 0. \] (2.1.10)
Thus,
\[d(x_n, S^n x_n) \leq d(x_n, x_{n+1}) + d(x_{n+1}, S^n x_{n+1}) + d(S^n y_n, S^n x_n) \]
\[\leq d(x_n, x_{n+1}) + d(x_{n+1}, S^n y_n) + Ld(y_n, x_n) \]
gives by (2.1.7), (2.1.8) and (2.1.10) that
\[\lim_{n \to \infty} d(x_n, S^n x_n) = 0. \] (2.1.11)
Then,
\[d(x_{n+1}, T x_{n+1}) \leq d(x_{n+1}, T^a x_{n+1}) + d(T^a x_{n+1}, x_{n+1}) + d(T^a x_{n+1}, Tx_{n+1}) \]
\[\leq d(x_{n+1}, T^a x_{n+1}) + d(x_{n+1}, x_{n+1}) + Ld(T^n x_n, x_{n+1}) \]
\[= d(x_{n+1}, T^a x_{n+1}) + Ld(x_{n+1}, x_{n+1}) + La d(T^n x_n, S^n y_n). \]
It follows from (2.1.4), (2.1.6) and (2.1.7) that
\[\lim_{n \to \infty} d(x_n, T x_n) = 0. \]
Finally,
\[d(x_{n+1}, S x_{n+1}) \leq d(x_{n+1}, S^{a+1} x_{n+1}) + d(S^{a+1} x_{n+1}, x_{n+1}) \]
\[\leq d(x_{n+1}, S^{a+1} x_{n+1}) + Ld(S^{a+1} x_{n+1}, x_{n+1}) \]
\[\leq d(x_{n+1}, S^{a+1} x_{n+1}) + L \left[d(S^{a+1} x_{n+1}, S^n y_n) + d(S^n y_n, x_{n+1}) \right] \]
\[\leq d(x_{n+1}, S^{a+1} x_{n+1}) + L \left[d(x_{n+1}, y_n) + d(S^n y_n, y_{n+1}) \right] \]
implies by using (2.1.9), (2.1.10) and (2.1.11) that
\[\lim_{n \to \infty} d(x_n, S x_n) = 0. \]

Theorem 2.2. Let \(X, C, T, S, F, \{a_n\}, \{b_n\} \) and \(\{x_n\} \) be as in Lemma 2.1. If \(I - T \) and \(I - S \) are demiclosed with respect to zero, then \(\{x_n\} \) \(\Delta \)-converges to a point of \(F \).

Proof. Let \(q \in F \). Then by Lemma 2.1, \(\lim d(x_n, q) \) exists for all \(q \in F \). Thus \(\{x_n\} \) is bounded. From Lemma 2.1, we have
\[\lim_{n \to \infty} d(x_n, T x_n) = 0 = \lim_{n \to \infty} d(x_n, S x_n). \]
Firstly, we show that \(\omega_\Delta(x_n) \subseteq F \). Let \(u \in \omega_\Delta(x_n) \), then there exists a subsequence \(\{u_n\} \) of \(\{x_n\} \) such that \(A(\{u_n\}) = \{u\} \). By Lemma 1.8, there exists a subsequence \(\{v_n\} \) of \(\{u_n\} \) such that \(\Delta-\lim_{n \to \infty} v_n = v \) for some \(v \in C \). Also \(I - T \) and \(I - S \) are demiclosed with respect to zero, therefore we obtain \(T v = v = S v \), which means that \(v \in F \). By Lemma 2.1, \(\lim d(x_n, v) \) exists. Now, we claim that \(u = v \). Assume on the contrary that \(u \neq v \). Then by the uniqueness of asymptotic centers, we have
\[
\limsup_{n \to \infty} d(v_n, v) < \limsup_{n \to \infty} d(v_n, u) \leq \limsup_{n \to \infty} d(u_n, u) < \limsup_{n \to \infty} d(u_n, v) = \limsup_{n \to \infty} d(x_n, v) = \limsup_{n \to \infty} d(v_n, v),
\]
a contradiction. Thus \(u = v \in F \) and hence \(\omega_\Delta(x_n) \subset F \).

Now, we show that the sequence \(\{x_n\} \) \(\Delta \)-converges to a point of \(F \), we show that \(\omega_\Delta(x_n) \) consists of exactly one point. Let \(\{u_n\} \) be a subsequence of \(\{x_n\} \). By Lemma 1.8, there exists a subsequence \(\{v_n\} \) of \(\{u_n\} \) such that \(\Delta \)-lim \(x_n = v \) for some \(v \in C \).

Let \(A(\{u_n\}) = \{u\} \) and \(A(\{x_n\}) = \{x\} \). We have already proved that \(u = v \in F \). Finally, we claim that \(x = v \). If is not true, then existence of \(\lim d(x_n, v) \) and uniqueness of asymptotic center imply that
\[
\limsup_{n \to \infty} d(v_n, v) < \limsup_{n \to \infty} d(v_n, x) \leq \limsup_{n \to \infty} d(x_n, x) < \limsup_{n \to \infty} d(x_n, v) = \limsup_{n \to \infty} d(v_n, v),
\]
a contradiction. Thus \(x = v \in F \) and hence \(\omega_\Delta(x_n) = \{x\} \). Thus, \(\{x_n\} \) \(\Delta \)-converges to a point of \(F \).

Now, we obtain our strong convergence results for iterative procedure (1.1.19).

Theorem 2.3. Let \(X \) be a complete CAT(0) space and \(C, T, S, F, \{a_n\}, \{b_n\}, \{x_n\} \) be as in Lemma 2.1. If \(F \neq \emptyset \), then \(\{x_n\} \) converges strongly to a point of \(F \) if and only if
\[
\liminf_{n \to \infty} d(x_n, F) = 0,
\]
where \(d(x, F) = \inf \{d(x, p) : p \in F\} \).

Proof. Necessity is obvious. Conversely, suppose that \(\liminf_{n \to \infty} d(x_n, F) = 0 \). As proved in Lemma 2.1, we have
\[
d(x_{n+1}, p) \leq d(x_n, p)
\]
for all \(p \in F \).

This implies that \(d(x_{n+1}, F) \leq d(x_n, F) \), so that \(\lim d(x_n, F) \) exists. But by hypothesis \(\liminf_{n \to \infty} d(x_n, F) = 0 \). Therefore \(\lim d(x_n, F) = 0 \).

Next, we show that \(\{x_n\} \) is a cauchy sequence in \(C \). Let \(\varepsilon > 0 \) be arbitrarily chosen. Since
\[
\lim_{n \to \infty} d(x_n, F) = 0,
\]
there exists a positive integer \(n_0 \) such that \(d(x_n, F) < \frac{\varepsilon}{4} \) for all \(n \geq n_0 \).

In particular, \(\inf \{d(x_n, p) : p \in F\} < \frac{\varepsilon}{4} \). Thus there must exist \(p^* \in F \) such that
\[
d(x_n, p^*) < \frac{\varepsilon}{2}.
\]

Now for all \(m, n \geq n_0 \), we have
\[
d(x_{n+m}, x_n) \leq d(x_{n+m}, p^*) + d(p^*, x_n)
\]
On Some Strong and Δ-Convergence Theorems for Total Asymptotically... 2815

$$\leq 2d(x_n, p^*) < 2\left(\frac{\varepsilon}{2}\right) = \varepsilon.$$

Hence $\{x_n\}$ is a cauchy sequence in a closed subset C of a complete CAT(0) space and so it must converge to a point q in C. Now, $\lim_{n \to \infty} d(x_n, F) = 0$, gives that $d(q, F) = 0$. Since F is closed, so we have $q \in F$.

Fukhar-ud-din and Khan [6] introduced the concept of condition (A') as follows:

Two mappings $T, S : C \to C$ are said to satisfy the condition (A') if there exists a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with $f(0) = 0, f(r) > 0$ for all $r \in (0, \infty)$ such that either

$$f(d(x, F)) \leq d(x, Tx), \text{ or } f(d(x, F)) \leq d(x, Sx) \quad \text{for all } x \in C,$$

where $d(x, F) = \inf \{d(x, p) : p \in F\}$.

If we take $S = T$ in this condition, then it reduces to condition(A) of Senter and Doston[5].

Theorem 2.4. Let X be a complete CAT(0) space and $C, T, S, F, \{a_n\}, \{b_n\}, \{x_n\}$ be as in Lemma 2.1. Let S, T satisfy the condition (A') and $F \neq \phi$. Then $\{x_n\}$ converges strongly to a point of F.

Proof. We have proved in Lemma 2.1 that $\lim_{n \to \infty} d(x_n, p)$ exists for all $p \in F$. Let this limit be c. As proved in Lemma 2.1, we have $d(x_{n+1}, p) \leq d(x_n, p)$ for all $p \in F$.

This gives that $\inf_{p \in F} d(x_{n+1}, p) \leq \inf_{p \in F} d(x_n, p)$, which means that $d(x_{n+1}, F) \leq d(x_n, F)$, so that $\lim_{n \to \infty} d(x_n, F)$ exists. Again using Lemma 2.1, we have $\lim_{n \to \infty} d(x_n, Tx_n) = 0 = \lim_{n \to \infty} d(x_n, Sx_n)$.

From the condition (A'), either

$$\lim_{n \to \infty} f(d(x_n, F)) \leq \lim_{n \to \infty} d(x_n, Tx_n) = 0, \text{ or } \lim_{n \to \infty} f(d(x_n, F)) \leq \lim_{n \to \infty} d(x_n, Sx_n) = 0.$$

Hence $\lim_{n \to \infty} f(d(x_n, F)) = 0$. Since $f : [0, \infty) \to [0, \infty)$ is a nondecreasing function satisfying $f(0) = 0, f(r) > 0$ for all $r \in (0, \infty)$, therefore we have $\lim_{n \to \infty} d(x_n, F) = 0$. Now, all the conditions of Theorem 2.3 are satisfied, therefore $\{x_n\}$ converges strongly to a point of F.

Theorem 2.5. Let X be a complete CAT(0) space and $C, T, S, F, \{a_n\}, \{b_n\}, \{x_n\}$ be as in Lemma 2.1. Suppose that one of S and T is semi-compact. If $F \neq \phi$, $\{x_n\}$ converges strongly to a point of F.
Proof. From Lemma 2.1, we have \(\lim_{n \to \infty} d(x_n, T x_{n_k}) = 0 = \lim_{n \to \infty} d(x_n, S x_{n_k}) \). Let one of \(S \) and \(T \) is semi-compact, then there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(\{x_{n_k}\} \) converges strongly to some point \(p \in C \). Moreover, using continuity of \(S \) and \(T \), we have

\[
d(p, Tp) = \lim d(x_{n_k}, T x_{n_k}) = 0, \quad d(p, Sp) = \lim d(x_{n_k}, S x_{n_k}) = 0.
\]

Thus, \(p \in F \). Again, from Lemma 2.1, \(\lim d(x_n, p) \) exists for all \(p \in F \). Since \(\lim_{k \to \infty} d(x_{n_k}, p) = 0 \).

Therefore, \(\lim d(x_n, p) = 0 \) and therefore \(\{x_n\} \) converges strongly to a point of \(F \).

Remark. 2.6 In the light of Remark 1.1 it is also noted that our results in CAT(0) spaces can be applied to CAT(\(\kappa \)) spaces with \(\kappa \leq 0 \).

REFERENCES

