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Abstract 

 

In the present investigation a two variable generalization of the Jacobi 

Polynomials is introduced and some generating functions are also derived. 

Further Bateman’s generating function, Brafman’s generating function, 

Rodrigues formula, Relation between Legendre and Jacobi polynomials are 

obtained and some applications of Jacobi polynomials are also studied.  
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1. INTRODUCTION 

The classical Jacobi polynomials have been used extensively in mathematical analysis 

and practical applications (cf. [1, 15-17]). In particular, the Legendre and Chebyshev 

polynomials have played an important role in spectral methods for partial differential 

equations (cf. [5-9]). Recently, there have been renewed interests in using the Jacobi 

polynomials in spectral approximations, especially for problems with degenerated or 

singular coefficient. For instance, Bernardi and Maday [4] considered spectral 

approximations using the ultra-spherical polynomials in weighted Sobolev spaces. 

Guo [10-12] developed Jacobi approximations in certain Hilbert spaces with their 

applications to singular differential equations and some problems on infinite intervals. 
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The Jacobi approximations were also used to obtain optimal error estimates for p-

version of finite element methods (cf. [2, 3]). Another application of Jacobi type 

polynomials is in irrationality measures for certain values of binomial functions and 

definite integrals of some rational functions [13].  

The Jacobi polynomials  xP
n

),( 

 
are defined as ([15]; p. 254 (1)) 
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When ==0, the polynomials in eq.(1.1) reduce to the Legendre Polynomials.  

 

An elementary generating function of Jacobi polynomial is given by 
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Khan and Abukhammash [14] define the two variable Legendre Polynomials  yxPn ,  

by series as 
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and the generating function for  yxPn ,  is given by 
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Motivated by their work we introduce two variable generalization of Jacobi 

polynomial 
  ,

nP (x) and many interesting results have been obtained. 
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2. JACOBI POLYNOMIALS OF TWO VARIABLES: 

Jacobi Polynomials of two variables 
  yxPn ,

,
 may be defined as: 
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Derivation: Jacobi Polynomials are defined as ([15]; P. 270(2)) 
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Further, we recall the result: 

If neither a nor b is zero or negative integer, 
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where     a =1+β,    b = 1+α    

                
  

 
  

 
.

2

1

11
,

2

1

11











 xt

vu

vxt

vu

u
                             (2.4) 

For two variables extension of Jacobi polynomials, let us consider 
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Now from eq. (2.5) 
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Further  
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Thus from eq.(2.2) and eq.(2.3) we obtain 
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Which completes the proof. 

 

Further from eq.(2.2), eq.(2.6) and eq.(2.7), we obtain 
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Eq.(2.8) can be put in the form  
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which can be simplified to obtain the generating functions for  yxPn ,
),( 

as: 
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and 
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For  =  = 0, (2.10) reduce to Legendre polynomials of two variable Pn(x,y) 
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Further eq. (2.11) yields a finite series form for  yxPn ,
,

 as  
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To derive a generating function for the Jacobi polynomials from eq. (2.13), we 

consider the series  
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It is well known that: 
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which is another generating relation for the Jacobi polynomials. 

 

3. Bateman’s generating function for  yxPn ,
),( 

 

From eq. (2.9), we obtained  
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(3.1) which is Bateman’s generating function. 
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4. THE RODRIGUES FORMULA 

Eq. (2.9) can be written as  
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We recall that 
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Thus from eq.(4.1) we can have  
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Applying Leibnitz rule for derivative of a product we obtain the Rodrigues formula.  
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Eq. (4.3) is desirable when we work in the interval –1 < x < 1. 
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5. BRAFMAN’S GENERATING FUNCTIONS.  

To obtain the Brafman’s generating function consider the sum  
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We recall the Theorem ([15], P. 269)  
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The F4 in eq.(5.1) will fit into this theorem if we choose  
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221 ytxt   and  is arbitrary, which is Brafman’s generating 

function. 

 

6. RELATION BETWEEN LEGENDRE AND JACOBI POLYNOMIALS.  

Consider the two variables Jacobi polynomial  yxPn ,),(   
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Taking,  y = 1 
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Eqs. (6.1) and (6.2) gives a relation between Jacobi polynomials and Legendre 

polynomials. 
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7.  APPLICATIONS  

The formalism developed in the 2nd section can be used to obtain some interesting 

results involving  yxPn ,),( 

 

1. u , v and ρ are chosen as  
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Using (i) & (ii) in eq.(2.2) we obtained,  
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3. If 
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4. If   2
1

221 ytx   , then from eq.(2.2) we get, 
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In this article, generalized Jacobi polynomials and some new generating relations are 

introduced by using the technique which is flexible to be used for other polynomials 

also.   
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