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Abstract

In the present investigation a two variable generalization of the Jacobi
Polynomials is introduced and some generating functions are also derived.
Further Bateman’s generating function, Brafman’s generating function,
Rodrigues formula, Relation between Legendre and Jacobi polynomials are
obtained and some applications of Jacobi polynomials are also studied.
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1. INTRODUCTION

The classical Jacobi polynomials have been used extensively in mathematical analysis
and practical applications (cf. [1, 15-17]). In particular, the Legendre and Chebyshev
polynomials have played an important role in spectral methods for partial differential
equations (cf. [5-9]). Recently, there have been renewed interests in using the Jacobi
polynomials in spectral approximations, especially for problems with degenerated or
singular coefficient. For instance, Bernardi and Maday [4] considered spectral
approximations using the ultra-spherical polynomials in weighted Sobolev spaces.
Guo [10-12] developed Jacobi approximations in certain Hilbert spaces with their
applications to singular differential equations and some problems on infinite intervals.
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The Jacobi approximations were also used to obtain optimal error estimates for p-
version of finite element methods (cf. [2, 3]). Another application of Jacobi type
polynomials is in irrationality measures for certain values of binomial functions and
definite integrals of some rational functions [13].

The Jacobi polynomials Pn(a'ﬁ)(x) are defined as ([15]; p. 254 (1))

1-x
Pn(a,ﬂ)(x):(1+_('x)n2|:l —nl+a+B+n > |
nl
1+a;
+a (1.1)
When a=B=0, the polynomials in eq.(1.1) reduce to the Legendre Polynomials.
An elementary generating function of Jacobi polynomial is given by
g a

1 (@ B 2 2

= I+t+p ) \1-t+p 2)
or

> PPk =277 p (Lt p) MLt p) (L3)

n=0

1

where p= (1— 2xt +t2)5.

Khan and Abukhammash [14] define the two variable Legendre Polynomials Pn(x, y)
by series as

W3] @

2
P(xy)= 1.4
(Y)= X 20 (L4)
and the generating function for P, (x, y) is given by
iPn(x, yr" :(1—2xt+yt2)_%. (1.5)

n=0
Motivated by their work we introduce two variable generalization of Jacobi
polynomial Pn(“’ﬂ) (x) and many interesting results have been obtained.
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2. JACOBI POLYNOMIALS OF TWO VARIABLES:
Jacobi Polynomials of two variables P,““”)(x, y) may be defined as:

SRy =277 p eyt + p) =yt +p) 7,

n=0
where
1
p=(1-2xt+yt?)
Derivation: Jacobi Polynomials are defined as ([15]; P. 270(2))

n=0

Further, we recall the result:
If neither a nor b is zero or negative integer,

F{a,b;b,a; —u i j=(1—uv)‘l(1—u)a(l—V)b,

L-u)l-v) @-u)i-v)
where a=1+p, b=1+a
—u t(x=1)  —-v  t(x+D)
@-ufi-v) 2 ‘@-uli-v) 2

For two variables extension of Jacobi polynomials, let us consider

,o=(1—2xt+yt2ﬁ, and

u=

-2 -2
1+\/§t+p’ 1—\/§t+p

Now from eq. (2.5)

—u 1 1
L-u)i-v) 1—v(l_1—u)
1—\/§t+p(1_1+\/§t+pj
2 2

(1—\/§t +pX1—\/§t —p)
4

i P A (x)" = |:4(1+ Bl+a;l+a,l+ B %t(x -1), %t(x +1)j.
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2.2)

(2.3)

(2.4)

(2.5)
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_ @—Jﬁf—pz
4
_ tkeVy) . (2.6)
2
Similarly
-V 3 t(x+\/§)
L-uft-v) 2 27)
Further
ﬁz%(l+\/§t+p) and ﬁZ%(l—\/yt+p),
from which we can have
1 1
TR
_ 1-uwv
~(L-u)t-v)
and hence

L-w) @-u)f @-v) =p*@-u)f " @-v)"
Thus from eq.(2.2) and eq.(2.3) we obtain

o0

g a
P(aﬁ) , n_ 1 2 2
Zo K= (1+\/§t+pj {1—\/§t+p

SR,y k" =277 p Lyt p) -yt p)

n=0

or

where

1
p=(l-2xt+yt* )
Which completes the proof.

Further from eq.(2.2), eg.(2.6) and eq.(2.7), we obtain
(@.8)

S (k- F4(1+ plrail+als ﬂ;%(x—m%(mﬁ)} 28)

n=0
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Eq.(2.8) can be put in the form

) i (1+a)n+k1+ﬂn+k ( \/_Y (X+\/—)
>Ry =Y kI n! (1+a)k(l+,8)n

n=0 n,k=0

which can be simplified to obtain the generating functions for Pn(“’ﬁ) (x, y) as:

Pn<“"’)(x,y)=2": 1+a) 1+ B), ) (X_‘Njk{“zﬁ]nk,

Sk (n—K)I(1+a) @1+ B),, 2

(@) _(+a
Pn (X' y)_ n!

) (H‘N]nzﬁ “n—p-n; i_ﬁ

> +4Y |
1+¢;

and

Jy-x

Pn(“‘ﬁ)(x, y) (1+a)n 2F n,1+a+ﬂ+n; 2

n!
1+ ¢a;

For o = B =0, (2.10) reduce to Legendre polynomials of two variable Pn(X,y)

Pn(x,y)z(XJrz\/y]nZFl Bk >t+\/\/:

L

Further eq. (2.11) yields a finite series form for P a’ﬂ(x, y) as

n

Pn(“'m(x,y)—zn: (+a)@+a+p),., (X_WT.

CEkn-k)1+a)l+a+p),| 2

To derive a generating function for the Jacobi polynomials from eq. (2.13), we

consider the series

_ala+p+1),P (xy)"
h (1+ a)n

20

n

) (1+a+,8)n+{;—\/2§] t"
3

n=0 k=0 k!(n - k)!(1+ a)k

1391

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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i 1+a+ﬂn+2k( \/V)kt””(

b k! nl(1+ ), 2
_ii 1+a+ﬂ+2k) (1+0:+ﬂ)2k(x—\/§)ktk
84 kI (1+ ), 2¢

=i (1+a+,82k( )ktk

= K2+ a) @-t)er

It is well known that:

(a)ax = 22@ ajk(g %)

Thus we obtain,

. P,y : 2
Za+ﬁ+11+a) (X _g_gprergf AN Jerass) (1—t)2 - (219

1+a),

which is another generating relation for the Jacobi polynomials.

3. Bateman’s generating function for P /) (X, y)

n

From eq. (2.9), we obtained

0 (aﬂ)(x y

Ex klx+ T
5 ox ii[z( W[5l )]

n=0 k=0 kl n k)'(1+a) (1+ﬂ)n k

Pn(a,ﬂ)(x,y)tn ~ I ;(X—ﬁyt” " ;<X+\/§Ttn
“(1+a)0+p8), Z; nl+a), |&=  ni@d+p),

i Pn(“’ﬂ)(x,y)t; OF{; %(x\/y)] OF{; %(X—i-\/y)]

= 1+ a), @+ B), @+ a);

(3.1) which is Bateman’s generating function.
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4. THE RODRIGUES FORMULA
Eq. (2.9) can be written as

(@) & (+a) 1+ ) (X \/V)k(“\/?)n_k
)= 2 kh s ), ) “n
We recall that

(1+ ), X"
(l + a)m—s

From which we obtained

oy - G by

DSXITH—U( —

L+ B).
and
ek n+a 1+a \/_ "
o o) =t

Thus from eq.(4.1) we can have

pn(a,m(xyy):(x_\/wa(X+\/§)ﬂzn: nt .

2"n! S Ki(n—k)

=y oy

Applying Leibnitz rule for derivative of a product we obtain the Rodrigues formula.

e )= by oy by @2

2"n!

or

e ()~ ETWT A Ly o) o (fy ] “Wy x| @3

2"n!

Eq. (4.3) is desirable when we work in the interval -1 <x < 1.
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5.  BRAFMAN’S GENERATING FUNCTIONS.
To obtain the Brafman’s generating function consider the sum

2 (1), (), PP (x y 1"
2 ) @ B

ol ]

n=0 k=0 k'(n k)'(1+0t k(1+ﬂ)n K

s ] 3t~ 9)] [ 216051
= k! nll+a), (1+ ),
- FA[y,5,1+a,1+ﬂ;%t(x—ﬁ),%t(wr\/y)} (5.1)

We recall the Theorem ([15], P. 269)

F4(a,b,c,1—c+a+b; U -V j

(L-u)l-v) @-u)1-v)

—u -V
a,b; — a,b;, —
=2F 1-u | 2K 1-v |

C; l-c+a+b;

The F4 in eq.(5.1) will fit into this theorem if we choose
1+ f=1-(1+a)+y+5,
or o=1+a+ -y  and
—u tlx=4y) v tlx+y)

@-u)i-v) 2 @-u@a-v) 2

where u and v are of the section 2 and

-u —1— 1 _1_5(1+\/_t+p) ( \/—t_ )

1-u 1-u

- v—l——( \/_t+p) (1+\/§t—p)

Hence eq. (5.1) becomes

e () @+ SR xy
D TN (R}
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. 1-Jyt-p
= 2F, vl+oa+ -y, 5 |e
1+e;
. 1+ yt-p
oF, rl+a+ -y, T

1+ p;

1
where p = (1—2xt+yt2)2 and y is arbitrary, which is Brafman’s generating

function.

6. RELATION BETWEEN LEGENDRE AND JACOBI POLYNOMIALS.
Consider the two variables Jacobi polynomial P« (x,y)

i PP (x y)" =277 p* (1+ Jyt+ p)ﬁﬂ (1— Jyt+ p)’“
n=0

where p = (1— 2Xt + ytz);

or
i PO (x, yk" =2 (1 2xt + ytz)’% L+ fyt+p) - fyt+ o)
© aﬁ 1+\/_t+p —\/yt+,0 -
;;Pn (x, y)x" ZPXY)I( J[ > ]
Pk, y)=P ){“f”pj { ‘@”pJ . 61)
Taking, y=1

P(a:ﬂ)(x): P (X{l_'_t +pJ_ﬂ(1_t+p)—a
n n 2 2
6.2)

Egs. (6.1) and (6.2) gives a relation between Jacobi polynomials and Legendre
polynomials.
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7. APPLICATIONS

The formalism developed in the 2" section can be used to obtain some interesting
results involving P (x, y)

1. u,vand p are chosen as

:(5—2xt+yt2)%

u:l—% ¢ and v=1- 2\/_“
yt
1/§+—E+p JE ——_+p

proceeding in the same way as in section 2 , from eq.(2.2), we obtain
ZP<“/”)xy§)t [1+,Bl+a1+al+ﬁ Lx—yEy) L (x+\/_\/_)}

or

>Ry el = Ve o (E eyt o) (o) @

2.1t p=(1-2(x, + )t + ytz);’

2 2
Then,

-u 1 1-Jyt+p _1+\/§t+p
(1—u)(1—v)_1—v(1 1- u) ( J[ 2 J
:Ll—ﬁt+p}[l—\/§t—pj

2 2
%((X1+X2)_\/?) (1)
similarly

(1+)(1V) ((x +X )+f) (ii)
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Using (i) & (ii) in eq.(2.2) we obtained,

SRk, + %y, Y =

n=0

/ﬁ\

1+,6’1+0{l+0¢1+ﬁ—(x1+x2 JY), _(xl+x2+\/_)j
3Bk + %, y)X" =27 p‘l(1+ Jyt+ p)_ﬂ(l— Jyt+ p)_a (7.2)

1
3 If ,0=(1—2Xt+(y1+y2)t2)2,

2 2
1+(\/Y1+y2)+p Y 1—(\,y1+y2)+p

then

(1—u_)€1—v):1fv(1_1—1uj

_ [1—(\/W)+p)(l_l+(M)+pJ

2 2

[ \/W)w (1 \/W)[ ]

e N

:%@_“m+h) (i)
similarly

iy 2t )

Now using (iii) & (iv) in eq.(2.2), we get
P (x,y, +y, k" = F4[1+,B,1+a;1+a,1+ﬂ;%(x—,/yl+ yz)%(x+,/yl+ Y, )}
R,y + v, =24 p e (v o ko) 2=y v o)

(7.3)
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1
2
4.1f p= (1— 27X + 1yt F then from eq.(2.2) we get,

P4 (i, " = F{u Bl+al+al+ ,B;%(}tx—y\/;)%(}twryﬁ)}

Pn(a,ﬂ)(/lx’w)[n _ 2a+ﬁp—1<1+lu\/§t +p)_ﬂ(l—,u\/§t +p)—a. (7.4)

In this article, generalized Jacobi polynomials and some new generating relations are
introduced by using the technique which is flexible to be used for other polynomials

also.
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