Some identities on modified degenerate q-Bernoulli polynomials and numbers

Joohee Jeong
Department of Mathematics Education,
Kyungpook National University,
Daegu 41566, S. Korea.

Dong-Jin Kang
Department of Computer Engineering,
Information Technology Services,
Kyungpook National University,
Daegu 41566, S. Korea.

Hong Kyung Pak
Department of Medical Information Technology,
Daegu Haany University,
Kyungsan, 38610, S. Korea.

Seog-Hoon Rim
Department of Mathematics Education,
Kyungpook National University,
Daegu 41566, S. Korea.

Abstract
Kim introduced some identities on degenerate q-Bernoulli polynomials, which care defined by the p-adic q-integral on \mathbb{Z}_p (see [17]).

And Kim et al. [10] gave symmetric identities for such polynomials under the symmetric group of degree n, which is the degeneration of the result of Kim and

1Corresponding Author.
Kim in [4]. We mention that such symmetric identities could be obtained nicely by using p-adic q-integration on \mathbb{Z}_p, which is defined by Kim [14].

In this paper, we consider a new type of modified degenerate q-Bernoulli polynomials and numbers, and give some interesting identities on such polynomials. And we derive some identities of symmetry for those polynomials, by using p-adic q-integral on \mathbb{Z}_p, under the symmetry group of degree n.

AMS subject classification: 11B68, 11S80, 05A19, 05A30.

Keywords: Identities of symmetry, modified degenerate q-Bernoulli polynomials, symmetry group of degree n, p-adic q-integral.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_p. The p-adic norm $|\cdot|_p$ is normalized as $|p|_p = \frac{1}{p}$. Let $q \in \mathbb{C}_p$ be an indeterminate such that $|1 - q|_p < p^{-\frac{1}{p-1}}$. The q-analogue of the number x is defined by $[x]_q = \frac{1 - qx}{1 - q}$.

Let $f(x)$ be a uniformly differentiable function on \mathbb{Z}_p. Then the p-adic q-integral on \mathbb{Z}_p is defined by Kim to be

$$I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x) \mu_q(x + p^N \mathbb{Z}_p),$$

(1.1)

In [1], L. Carlitz considered the q-analogue of Bernoulli numbers which are given by the recurrence relation

$$\beta_{0,q} = 1, \quad q(q\beta_q + 1)^n - \beta_{n,q} = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1, \end{cases}$$

(1.2)

with the usual convention of replacing β^n_q by $\beta_{n,q}$. He defined the q-Bernoulli polynomials as

$$\beta_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} q^{x} \beta_{l,q}[x]^{n-l},$$

(1.3)
Some identities on modified degenerate q-Bernoulli polynomials

In [14], Kim proved that the Carlitz’s q-Bernoulli polynomials are represented as the p-adic q-integral on \mathbb{Z}_p which are given by

$$\int_{\mathbb{Z}_p} [x + y]_q^n d\mu_q(y) = \beta_{n,q}(x), \quad (n \geq 0). \quad (1.4)$$

When $x = 0$, $\beta_{n,q} = \beta_{n,q}(0)$ are the Carlitz q-Bernoulli numbers.

In [2], L. Carlitz also introduced the degenerate Bernoulli polynomials which are given by the generating function

$$\int_{\mathbb{Z}_p} (1 + \lambda t)^{\frac{1}{\lambda}} (x + y)q_y d\mu_q(y) = \sum_{n=0}^{\infty} B_{n,\lambda}(x) \frac{t^n}{n!}. \quad (1.5)$$

Note that $\lim_{\lambda \to 0} B_{n,\lambda}(x) = B_{n}(x)$, where $B_{n}(x)$ are ordinary Bernoulli polynomials (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). When $x = 0$, $B_{n,\lambda} = B_{n,\lambda}(0)$ are called the degenerate Bernoulli numbers.

In [17], Kim considered degenerate q-Bernoulli polynomials which are given by the generating function

$$\int_{\mathbb{Z}_p} (1 + \lambda t)^{\frac{1}{\lambda}} (x + y)q_y d\mu_q(y) = \sum_{n=0}^{\infty} \beta_{n,\lambda,q}(x) \frac{t^n}{n!}. \quad (1.6)$$

When $x = 0$, $\beta_{n,\lambda,q} = \beta_{n,\lambda,q}(0)$ are called (fully) degenerate q-Bernoulli numbers.

We note that $\beta_{n,\lambda,q} = \beta_{n,\lambda,q}(0)$ are called (fully) degenerate q-Bernoulli numbers.

The following diagram shows how q-Bernoulli polynomials become Kim’s degenerate q-Bernoulli polynomials and our modified degenerate q-Bernoulli polynomials.
We note that Lee and Jang recently defined and studied the modified degenerate q-Bernoulli polynomials by the generating function:

$$
\int_{\mathbb{Z}_p} q^{-y} (1 + \lambda) \frac{[x+y]_q}{x} d\mu_q(y) = \sum_{n=0}^{\infty} \tilde{B}_{n,q,\lambda}(x) \frac{t^n}{n!}, \quad \text{(see [20])},
$$

(1.7)

The generating functions of Stirling numbers are given by

$$(\log(1 + t))^n = n! \sum_{l=n}^{\infty} S_1(l, n) \frac{t^l}{l!}, \quad (n \geq 0)$$

(1.8)

and

$$(e^t - 1)^n = n! \sum_{l=n}^{\infty} S_2(l, n) \frac{t^l}{l!}, \quad (n \geq 0),$$

(1.9)

where $S_1(n, l)$ are the Stirling numbers of the first kind, and $S_2(l, n)$ are the Stirling numbers of the second kind.

We define the modified degenerate q-Bernoulli polynomials by the generating function

$$
\int_{\mathbb{Z}_p} (1 + \lambda) \frac{[x+y]_q}{x} d\mu_q(y) = \sum_{n=0}^{\infty} \tilde{\beta}_{n,\lambda,q} (x) \frac{t^n}{n!}.
$$

(2.1)

When $x = 0$, $\tilde{\beta}_{n,\lambda,q}(0) = \tilde{\beta}_{n,\lambda,q}$ are called the modified degenerate q-Bernoulli numbers.

Kim introduced some identities on degenerate q-Bernoulli polynomials, which care defined by the p-adic q-integral on \mathbb{Z}_p (see [17]).

And Kim et al. [10] gave symmetric identities for such polynomials under the symmetric group of degree n, which is the degeneration of the result of Kim and Kim in [4]. We mention that such symmetric identities could be obtained nicely by using p-adic q-integration on \mathbb{Z}_p, which is defined by Kim [14].

Recently many authors tried studying on the modified degenerate q-Bernoulli polynomials and numbers in [19, 20].

In this paper, we consider a new type of modified degenerate q-Bernoulli polynomials and numbers, and give some interesting identities on such polynomials. And we derive some identities of symmetry for those polynomials, by using p-adic q-integral on \mathbb{Z}_p, under the symmetric group of degree n.

2. Modified degenerate q-Bernoulli polynomials

We define the modified degenerate q-Bernoulli polynomials by the generating function

$$
\int_{\mathbb{Z}_p} (1 + \lambda) \frac{[x+y]_q}{x} d\mu_q(y) = \sum_{n=0}^{\infty} \tilde{\beta}_{n,\lambda,q} (x) \frac{t^n}{n!}.
$$

(2.1)
When \(x = 0 \), \(\tilde{\beta}_{n,\lambda,q}(0) = \tilde{\beta}_{n,\lambda,q} \) are called the modified degenerate \(q \)-Bernoulli numbers. We can verify that

\[
\lim_{\lambda \to 0} \tilde{\beta}_{n,\lambda,q}(x) = \beta_{n,q}(x)
\]

where \(\beta_{n,q}(x) \) are the Carlitz \(q \)-Bernoulli polynomials (see [1, 14]).

We consider

\[
\int_{\mathbb{Z}_p} (1 + \lambda)^{\frac{x+y}{\lambda}} d\mu_q(y) = \int_{\mathbb{Z}_p} e^{\frac{x+y}{\lambda} \log(1+\lambda)} d\mu_q(y) \\
= \sum_{n=0}^\infty \left(\frac{\log(1+\lambda)}{\lambda} \right)^n \int_{\mathbb{Z}_p} [x+y]^n d\mu_q(y) \frac{t^n}{n!} \\
= \sum_{n=0}^\infty \left(\frac{\log(1+\lambda)}{\lambda} \right)^n \beta_{n,q}(x) \frac{t^n}{n!}.
\]

From (2.3), we have the following theorem

Theorem 1. For \(n \geq 0 \), we have

\[
\tilde{\beta}_{n,\lambda,q}(x) = \left(\frac{\log(1+\lambda)}{\lambda} \right)^n \beta_{n,q}(x).
\]

Thus we get a few terms on \(\tilde{\beta}_{n,\lambda,q} \) as follows:

\[
\tilde{\beta}_{0,\lambda,q} = 1, \\
\tilde{\beta}_{1,\lambda,q} = -\frac{\log(1+\lambda)}{\lambda} \frac{1}{[2]_q}, \\
\tilde{\beta}_{2,\lambda,q} = \left(\frac{\log(1+\lambda)}{\lambda} \right)^2 \frac{q}{[2]_q[3]_q}, \ldots
\]

Note that

\[
(x)_n = \sum_{l=0}^n S_1(n, l)x^l, \quad (n \geq 0)
\]

where \(S_1(n, l) \) are the Stirling numbers of the first kind.

From the \(p \)-adic \(q \)-integral representation of the modified degenerate \(q \)-Bernoulli polynomials...
polynomials, we consider the following:

\[
\int_{\mathbb{Z}_p} (1 + \lambda \frac{[x+y]_q}{\lambda}) \, d\mu_q(y)
\]

\[
= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \left(\frac{[x+y]_q}{n} \lambda^n \right) d\mu_q(y)
\]

\[
= \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \sum_{l=0}^{n} S_1(n, l) \left(\frac{[x+y]_q}{\lambda} \right)^l \lambda^n \, d\mu_q(y)
\]

\[
= \sum_{l=0}^{\infty} \sum_{n=l}^{\infty} \lambda^{n-l} \frac{l!}{n!} \int_{\mathbb{Z}_p} [x+y]_q^l \, d\mu_q(y)
\]

\[
= \sum_{l=0}^{\infty} \left(\sum_{n=l}^{\infty} \lambda^{n-l} \frac{l!}{n!} \beta_{l,q}(x) \right) \frac{l!}{l!}.
\]

Thus we have the following identities.

Theorem 2. For \(n \geq 0 \), \(\tilde{\beta}_{n,\lambda,q}(x) \) can be written as

\[
\tilde{\beta}_{n,\lambda,q}(x) = \sum_{n=l}^{\infty} S_1(n, l) \lambda^{n-l} \frac{l!}{n!} \beta_{l,q}(x),
\]

where \(\beta_{l,q}(x) \) are Carlitz’s \(q \)-Bernoulli polynomials.

Now we observe that

\[
[x + y]_q = [x]_q + q^x[y]_q.
\]

We can represent (2.1) as follows:

\[
\int_{\mathbb{Z}_p} (1 + \lambda \frac{[x+y]_q}{\lambda}) d\mu_q(y)
\]

\[
= \int_{\mathbb{Z}_p} (1 + \lambda \frac{[x+y]_q}{\lambda}) (1 + \lambda \frac{[y]_q}{\lambda} q^x) \, d\mu_q(y)
\]

\[
= (1 + \lambda \frac{[y]_q}{\lambda} q^x) \left(\int_{\mathbb{Z}_p} (1 + \lambda \frac{[y]_q}{\lambda} q^x) \, d\mu_q(y) \right)
\]

\[
= e^{\frac{[y]_q}{\lambda} \log(1+\lambda)} \left(\sum_{m=0}^{\infty} \beta_{m,\lambda,q} \frac{q^{mx} x^m}{m!} \right)
\]

\[
= \left(\sum_{l=0}^{\infty} \frac{\log(1+\lambda)}{\lambda} \right) [x]_q^l \frac{l!}{l!} \left(\sum_{m=0}^{\infty} \beta_{m,\lambda,q} \frac{q^{mx} x^m}{m!} \right)
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \frac{n}{m} \beta_{m,\lambda,q} [x]_q^{n-m} q^{mx} \left(\frac{\log(1+\lambda)}{\lambda} \right)^{n-m} \right) \frac{t^n}{n!}
\]

(2.4)
Thus we have the following identities.

Theorem 2.1. For \(n \geq 0 \), we have

\[
\tilde{\beta}_{n, \lambda, q}(x) = \sum_{m=0}^{n} \binom{n}{m} \tilde{\beta}_{m, \lambda, q}[x]q^{n-m}q^{mx}\left(\frac{\log(1 + \lambda)}{\lambda}\right)^{n-m}.
\]

We consider the following distribution relation on modified degenerate \(q \)-Bernoulli polynomials.

\[
\int_{\mathbb{Z}_p} (1 + \lambda) \frac{x+y}{\lambda} \, dt \mu_q(y)
\]

\[
= \lim_{N \to 1} \frac{1}{[dp^N]_q} \sum_{y=0}^{d-1} (1 + \lambda) \frac{x+y}{\lambda} \, q^y
\]

\[
= \lim_{N \to 1} \frac{1}{[dp^N]_q} \sum_{a=0}^{d-1} \sum_{y=0}^{p^N-1} (1 + \lambda) \frac{x+y+a}{\lambda} \, q^a q^y.
\]

\[
\lim_{N \to \infty} \frac{1}{[d]_q[p^N]_q] \sum_{a=0}^{d-1} \sum_{y=0}^{p^N-1} (1 + \lambda) \frac{x+y+a}{a} \, q^a q^y
\]

\[
= \frac{1}{[d]_q} \sum_{a=0}^{d-1} q^a \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{y=0}^{p^N-1} (1 + \lambda) \frac{x+y+a}{a} \, q^a q^y
\]

\[
= \frac{1}{[d]_q} \sum_{a=0}^{d-1} q^a \int_{\mathbb{Z}_p} (1 + \lambda) \frac{x+y+a}{a} \, q^a q^y \, d\mu_{p^a}(y)
\]

\[
= \frac{1}{[d]_q} \sum_{a=0}^{d-1} q^a \sum_{n=0}^{\infty} \tilde{\beta}_{n, \lambda, q}[x+a] \left(\frac{x+a}{a}\right) \frac{t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} [d]_q^{n-1} \sum_{a=0}^{d-1} q^a \tilde{\beta}_{n, \lambda, q}[x+a] \left(\frac{x+a}{a}\right) \frac{t^n}{n!}.
\]

where \(d \in \mathbb{N} \). Thus we obtain the following:

Theorem 2.2. For \(n \geq 0 \) and \(d \in \mathbb{N} \), we have

\[
\tilde{\beta}_{n, \lambda, q}(x) = [d]_q^{n-1} \sum_{a=0}^{d-1} q^a \tilde{\beta}_{n, \lambda, q}[x+a] \left(\frac{x+a}{d}\right).
\]
For \(r \in \mathbb{N} \), we define the modified degenerate \(q \)-Bernoulli polynomials of order \(r \) as follows:

\[
\int_{Z_p} \cdots \int_{Z_p} (1 + \lambda)^f d\mu_q(x_1) \cdots d\mu_q(x_r) = \sum_{n=0}^{\infty} \tilde{\beta}^{(r)}_{n, \lambda, q}(x) \frac{t^n}{n!}. \tag{2.5}
\]

When \(x = 0 \), \(\tilde{\beta}^{(r)}_{n, \lambda, q}(0) = \tilde{\beta}_{n, \lambda, q} \) are called the modified degenerate \(q \)-Bernoulli numbers of order \(r \).

Now we observe that, for \(d \in \mathbb{N} \),

\[
\int_{Z_p} \cdots \int_{Z_p} (1 + \lambda)^f d\mu_q(x_1) \cdots d\mu_q(x_r)
\]

\[
= \lim_{N \to \infty} \frac{1}{d!} \sum_{x_1=0}^{dN-1} \cdots \sum_{x_r=0}^{dN-1} (1 + \lambda)^f \sum_{a_1=0}^{d} \cdots \sum_{a_r=0}^{d} q^{a_1 + \cdots + a_r} \frac{t^n}{n!}
\]

\[
= \frac{1}{d!} \sum_{a_1=0}^{d} \cdots \sum_{a_r=0}^{d} q^{a_1 + \cdots + a_r} \lim_{N \to \infty} \frac{1}{d!} \sum_{x_1=0}^{dN-1} \cdots \sum_{x_r=0}^{dN-1} (1 + \lambda)^f \sum_{a_1=0}^{d} \cdots \sum_{a_r=0}^{d} q^{a_1 + \cdots + a_r} \frac{t^n}{n!}
\]

\[
= \frac{1}{d!} \sum_{a_1=0}^{d} \cdots \sum_{a_r=0}^{d} q^{a_1 + \cdots + a_r} \int_{Z_p} \cdots \int_{Z_p} (1 + \lambda)^f d\mu_q(x_1) \cdots d\mu_q(x_r)
\]

\[
= \sum_{n=0}^{\infty} [d]^{-r} \sum_{a_1=0}^{d-1} \cdots \sum_{a_r=0}^{d-1} q^{a_1 + \cdots + a_r} \tilde{\beta}^{(r)}_{n, \lambda, q}(x) \frac{(a_1 + \cdots + a_r + x)}{d} \frac{t^n}{n!}.
\]

Thus, comparing the coefficients of both sides of (2.6), we have the following theorem.

Theorem 2.3. For \(n \geq 0 \) and \(d \in \mathbb{N} \), we have

\[
\tilde{\beta}^{(r)}_{n, \lambda, q}(x) = [d]^{-r} \sum_{a_1=0}^{d-1} \cdots \sum_{a_r=0}^{d-1} q^{a_1 + \cdots + a_r} \tilde{\beta}^{(r)}_{n, \lambda, q}(x) \frac{(a_1 + \cdots + a_r + x)}{d} \frac{t^n}{n!}.
\]
3. Identities of symmetry for the modified degenerate \(q \)-Bernoulli polynomials

We assume that \(\lambda, t \in \mathbb{C}_p \) with \(|\lambda|_p \leq 1, |t|_p < p^{-\frac{1}{p-1}} \). In this section, let \(w_1, w_2, \ldots, w_n \) be positive integers. For \(N \in \mathbb{N} \), we have

\[
\int_{\mathbb{Z}_p} (1 + \lambda) \frac{(w_1 \cdots w_{n-1} y + w_1 \cdots w_n x + w_n \sum_{j=1}^{n-1} (\prod_{i=1}^{n-1} w_i) k_j)_q}{w_n p^{N-1}} d\mu_{q^{w_1 \cdots w_{n-1}}} (y) = \lim_{N \to \infty} \frac{1}{w_n p^{N-1}} \sum_{k_n=0}^{w_n-1} \sum_{y=0}^{w_n-1} (1 + \lambda) \frac{(w_1 \cdots w_{n-1} (k_n + w_n y) + w_1 \cdots w_n x + w_n \sum_{j=1}^{n-1} (\prod_{i=1}^{n-1} w_i) k_j)_q}{w_n p^{N-1}} \times (1 + \lambda)
\]

(3.1)

Henceforth, we will use the abbreviations

\[
W = w_1 w_2 \cdots w_{n-1},
\]

\[
W_\sigma = w_\sigma(1) w_\sigma(2) \cdots w_\sigma(n-1),
\]

\[
YW = y + w_n x + w_n \sum_{j=1}^{n-1} \frac{k_j}{w_j}.
\]

From (3.1), we note that

\[
\frac{1}{[W]_q} \prod_{u=1}^{n-1} \sum_{k_u=0}^{w_u-1} q w_n \sum_{j=1}^{n-1} (\prod_{i=1}^{n-1} x w_i) k_j
\]

\[
\times (1 + \lambda) \frac{(w_1 y + W w_n x + w_n \sum_{j=1}^{n-1} (\prod_{i=1}^{n-1} x w_i) k_j)_q}{d\mu_{q^W} (y)} = \lim_{N \to \infty} \frac{1}{[W w_n p^N]_q} \prod_{u=1}^{n-1} \prod_{k_u=0}^{w_u-1} \sum_{y=0}^{w_n-1} q w_n \sum_{j=1}^{n-1} (\prod_{i=1}^{n-1} x w_i) k_j
\]

(3.3)

It is easy to show that (3.3) is invariant under any permutation in the symmetry group of degree \(n \). Therefore, by (3.3), we obtain the following theorem.
Theorem 3.1. Let \(w_1, w_2, \ldots, w_n \) be positive integers. Then the following expressions

\[
\frac{1}{[W_\sigma]_q} \prod_{u=1}^{n-1} \sum_{k_u=0}^{w_{\sigma(u)}-1} q^{w_{\sigma(u)} \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i} k_j
\]

\[
\times (1 + \lambda)
\]

\[
\left[W \sigma y + (w_1 + \ldots + w_n) x + w_{\sigma(n)} \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i \right]_q
\]

\[
\times \left[y + (w_1 + \ldots + w_n) x + w_{\sigma(n)} \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i \right]_q d\mu_q w_{\sigma}(y)
\]

are the same for any permutation \(\sigma \) in the symmetry group of order \(n \).

For the meaning of \(W_\sigma \) in the theorem above and \(W, YW \) in the equations below, recall the abbreviations given in (3.2).

We can have the following:

\[
\left[Wy + Ww_n x + w_n \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i \right]_q = [W]_q \cdot [YW]_q w.
\]

(3.4)

From (3.4), we note that

\[
\int_{Z_p} (1 + \lambda) \frac{[W y + Ww_n x + w_n \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i]_q}{[YW]_q w} d\mu_q w(y)
\]

\[
= \sum_{m=0}^{\infty} \sum_{n=m} S_1(n, m) \lambda^{n-m} \frac{m!}{n!} [W]_q^m \beta_{m, \lambda, q} w \left(w_n x + w_n \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i \right) \frac{m^n}{m!}.
\]

(3.5)

Therefore, by Theorem 3.1 and (3.5), we obtain the following theorem.

Theorem 3.2. For \(m \geq 0, w_1, w_2, \ldots, w_n \in \mathbb{N} \), the following expressions

\[
[W_\sigma]_q^m \prod_{u=1}^{n-1} \prod_{k_u=0}^{w_{\sigma(u)}-1} q^{w_{\sigma(u)} \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i} \frac{\sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i}{k_j} \sum_{n=m}^{\infty} S_1(n, m) \lambda^{n-m} \frac{m!}{n!} \beta_{m, \lambda, q} w_{\sigma(n)} w_{\sigma(n)} \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i \frac{k_j}{w_{\sigma(j)}(j)}
\]

are the same for any permutation \(\sigma \) in the symmetry group of order \(n \).

Now we observe that

\[
[YW]_q^w = \frac{[W]_q [\sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i]_q}{[W]_q} w_n \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i k_j + q^{w_n \sum_{j=1}^{n-1} \prod_{i \neq j}^{n-1} w_i} [y + w_n x]_q w.
\]

(3.6)
Some identities on modified degenerate q-Bernoulli polynomials

By (2.1), we get

$$
\tilde{\beta}_{m, \lambda, q W}(w_n x + w_n \sum_{j=1}^{n-1} k_j w_j)
= \sum_{m=l}^{\infty} S_1(m, l) \lambda^{m-l} \frac{l!}{m!} \int_{\mathbb{Z}_p} [Y^l W]_q^l d\mu_q(y).
$$

(3.7)

From (3.6), we can derive the following equation:

$$
\int_{\mathbb{Z}_p} [Y^l W]_q^l d\mu_q(y)
= \sum_{s=0}^{l} \binom{l}{s} \left[\frac{[w_n]q}{[W]q}\right] \sum_{j=1}^{n-1} \sum_{i=1, i \neq j}^{n-1} (\prod_{i=1}^{n-1} w_i) k_j
\times \int_{\mathbb{Z}_p} [y + w_n x]_q^s d\mu_q(y)
= \sum_{s=0}^{l} \binom{l}{s} \left[\frac{[w_n]q}{[W]q}\right] \sum_{j=1}^{n-1} \sum_{i=1, i \neq j}^{n-1} (\prod_{i=1}^{n-1} w_i) k_j
\times \beta_{s, q W}(w_n x).
$$

(3.8)

By (3.7) and (3.8), we get

$$
\tilde{\beta}_{m, \lambda, q W}(w_n x + w_n \sum_{j=1}^{n-1} k_j w_j)
= \sum_{m=l}^{\infty} \sum_{p=0}^{m} \sum_{s=0}^{p} \binom{p}{s} S_1(m, l) \lambda^{m-l} \frac{l!}{m!} S_1(m, p) \lambda^{m-p} [W]_q^{m-p} [w_n]_q^{p-s}
\times \left[\sum_{j=1}^{n-1} \sum_{i=1, i \neq j}^{n-1} (\prod_{i=1}^{n-1} w_i) k_j\right]_{q^{w_n}}^{p-s} \times q^{w_n} \sum_{j=1}^{n-1} \sum_{i=1, i \neq j}^{n-1} (\prod_{i=1}^{n-1} w_i) k_j
\times \beta_{s, q W}(w_n x).
$$

(3.9)
From (3.9), we note that

\[[W]^m_q^{-1} \prod_{u=1}^{m-1} \sum_{k_u=0}^{n-1} q^{j-1} (\prod_{i \neq j}^{n-1} w_i) k_j = \prod_{u=1}^{m-1} \sum_{k_u=0}^{n-1} q^{j-1} (\prod_{i \neq j}^{n-1} w_i) k_j \]

\[= \prod_{u=1}^{m-1} \sum_{k_u=0}^{n-1} q^{j-1} (\prod_{i \neq j}^{n-1} w_i) k_j \]

\[\times \sum_{m=1}^{n-1} \sum_{p=0}^{m} \left(\sum_{j=1}^{n-1} (\prod_{i \neq j}^{n-1} w_i) k_j \right)^{p-s} \]

\[\times K_{n,q^{w_n}}(w_1, \ldots, w_{n-1} | p-s, s), \]

where

\[K_{n,q^{w_n}}(w_1, \ldots, w_{n-1} | p-s, s) = \prod_{u=1}^{n-1} \sum_{k_u=0}^{n-1} q^{j-1} (\prod_{i \neq j}^{n-1} w_i) k_j \]

\[\times \sum_{m=1}^{n-1} \sum_{p=0}^{m} \left(\sum_{j=1}^{n-1} (\prod_{i \neq j}^{n-1} w_i) k_j \right)^{p-s} \]

(3.11)

Therefore, by (3.10) and (3.11), we obtain the following theorem.

Theorem 3.3. Let \(m \geq 0 \) and \(w_1, w_2, \ldots, w_n \in \mathbb{N} \). Then the following expressions

\[\sum_{m=1}^{\infty} \sum_{p=0}^{m} \sum_{s=0}^{p} \left(\sum_{j=1}^{n-1} (\prod_{i \neq j}^{n-1} w_i) k_j \right)^{p-s} \beta_{s,q^w}(w_{\sigma(n)} x) \]

\[\times K_{n,q^{w_n}}(w_{\sigma(1)}, \ldots, w_{\sigma(n-1)} | p-s, s) \]

are the same for any permutation \(\sigma \) in the symmetry group of order \(n \).

Note that some identities of Bernoulli and Euler polynomials are studied by several authors (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]).
Some identities on modified degenerate q-Bernoulli polynomials

References

