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Abstract 

 

The theory of rook polynomials provides a way of counting permutations with 

restricted positions. In this paper, we classify all possible quadratic 

polynomials that are the rook polynomial for some generalized three 

dimensional board B. On a three dimensional board, each rook placement 

prohibits any further rook placements in the union of three intersecting planes 

formed by the three intersections of the dimensions (i.e.) the plane formed by 

the rook’s row and column, rook’s row and tower and the plane formed using 

the rook’s column and tower. Here we prove theorems regarding rook 

equivalency on the considered three dimensional board which allow us to 

minimize the number and type of boars that we need to work with for 

enumerating all possible quadratic rook polynomials. 

 

Keywords: Rook numbers, Three Dimensional Board, Rook polynomial, 

Generalized Board. 

 

 

1. INTRODUCTION 

Rook theory is the study of permutations described using terminology from the 

game of chess. In chess, the rook is a piece that can capture any opponent’s 

piece in the same row and column provided there are no other pieces positioned 

between them. Here, a generalized three dimensional board B is any subset of 

the sequences of an n x n x n chess board for some positive integer n. Rook 

theory focuses on the placement of non-attacking rooks in a more general 

situation. Here we generalize the rook theory to three dimensions. In higher 

mailto:raghusangeetha59@gmail.com


1092  R. Sangeetha and  G. Jayalalitha 

dimensions, rooks attack along hyper planes, which correspond to layers of cells 

with one fixed coordinate. In two dimensions, when we place a rook on a tile, 

we are no longer able to place a rook on any tile in the same row or column. In 

three dimensions, when we place a rook in a cell; we can no longer place 

another rook in the same wall, slab or layer. Here, in this paper, we assume that 

the rooks attack along lines instead of a rook attacking hyper planes just as the 

two dimensional case.      We prove theorems regarding rook equivalency that 

helps us to minimize the number of boards and its types we need to work with 

to complete the required task. Finally we conclude by enumerating all the 

possible quadratic rook polynomials of the generalized three dimensional board 

for the 𝑟1 values ranging from 𝑟1 = 3 to 𝑟1 = 10. 

 

 

2. BASIC DEFINITIONS:  

Definition: 2.1 We define a board to be a square nxn chessboard for any nϵN . 

A generalized board is any subset of squares of the board .Thus, a generalized 

board can be any argument of squares that is completely contained inside a 

board (or) it can be the board itself. 

 

    

    

    

    

 

Figure 1(a). Board 

 

    

    

   

  

 

Figure 1(b). Generalized board 

 

Fig 1 (a) is an example of 4x4board. 

Fig 1 (b) is the generalized board with 12 squares that is σ contained inside the 4x4 

board (Fig (a)) 

 

Definition:2.2   A rook polynomial is an arrangement of some numbers of non-

attacking rooks on some board .Since rooks attack square in their row and column, a 

rook placement cannot have more than one rook in a given row (or)column. 
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A placement of n rooks on an nxn square board can be associated to a permutation  

σ = σ1,σ2,……σ𝑛, of 1,2,3,……..n by saying the placement Pσ has a rook on the square 

(i,j) of the board if and only if σ𝑖=j. 

 

  

  

      

      

  

  

 

Figure 2: Example of permutation 

 

In the above generalized board the maximum number of non- attacking rooks that can 

be placed is four. 

 

Definition: 2.3 The rook polynomial 𝑅𝐵(𝑥) of a board B is generating for the number 

of arrangements of non attacking rooks. 

 

               𝑅𝐵(𝑥) = ∑ 𝑅𝑘(𝐵)∞
𝑘=𝑜 𝑥𝑘 

 

where 𝑟𝑘 is the number of ways to place k non attacking rooks on the board. This sum 

is finite since the board is finite and so there is a maximum number of non-attacking 

rooks it can hold. Indeed, there cannot be more rooks than the smaller of the number 

of rows and columns in the board. 

 

Example: 

  

   

  

 

 

In the above example there are five ways to place one non-attacking rook, seven ways 

to place two non attacking rooks and three ways to place three non attacking rooks 

and no way to place four or more non attacking rooks. 

 

Definition: 2.4 The 𝑘𝑡ℎ rook number 𝑟𝑘(𝐵) counts the number of ways to place k 

non- attacking rooks on a generalized board B.   𝑟𝑘(𝐵)  is as 𝑟𝑘 when B is clear. 
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Definition: 2.5 A three dimensional chessboard is simply a pile of two dimensional 

chessboards stacked one upon another. Considering every two dimensional level of a 

three dimensional chessboard, we have rows and columns in the traditional sense, 

each of which is a one dimensional array used to describe position within the board. 

Define a tower as a one- dimensional array describing position along the added third 

dimension. 

 

Example:                                                               

 

 
Figure -3 

 

Remark on rook numbers: 

1. 𝑟0 is always 1 because there is only one way to place 0 rooks on a generalized 

three dimensional board. 

2.  𝑟1 is always the number of squares of B because a single rook can be placed in 

any square of B with no other rook to attack it. 

3. Since a rook attacks all squares in its row, column and tower, each rook in a 

rook placement must be in a different row or column or tower. 

4. Once we attain  𝑟𝑘=0, we will always have 𝑟𝑘+1,𝑟𝑘+2,………. = 0.  For example, if 

we are unable to place 3 non-attacking rooks on a generalized three dimensional 

board, we cannot place 4 or more non-attacking rooks on the generalized board. 

5. If B is contained in an n x n x n board and k>n, then we have 𝑟𝑘=0. For 

example, in a 3x3x3 board 𝑟4=0 (k=4) as we could not place 4 non-attacking 

rooks in 3x3x3 board. 

 

Note:   𝑟𝑘 could be equal to 0 for smaller values of k as well. For example, the 

generalized three dimensional board in fig (3) which is completely contained in 6x6x6 

board has 𝑟5 = 𝑟6 =0 as we could not place 4 or more non-attacking rooks in the 

board. 
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3. ROOK EQUIVALENCY OF THREE DIMENSIONAL BOARDS 

CONTAINED IN TWO ROWS OR COLUMNS: 

Lemma: 3.1 Let B be a three dimensional board of darkened squares that decomposes 

into disjoint sub boards 𝐵1  and 𝐵2. Then  

𝑟𝑘(𝐵) = 𝑟𝑘(𝐵1) 𝑟𝑘(𝐵2) + 𝑟𝑘−1(𝐵1) 𝑟1(𝐵2)+. . . . . . +  𝑟0(𝐵1)𝑟𝑘(𝐵2) 

Now we define the rook polynomial R(X,B) of the board B as follows: 

 R(x, B) = 𝑟0(𝐵) + 𝑟1(𝐵)𝑥 + 𝑟2(𝐵)𝑥2+. . . . . . . . +  𝑟𝑛(𝐵)𝑥𝑛+. . . .. 

Theorem 3.1: Let B be a three dimensional board of darkened squares that 

decomposes into disjoint sub boards 𝐵1 and   𝐵2. Then  

R(X,B) =  R(𝑥, 𝐵1) + 𝑅(𝑥, 𝐵2). 

Proof:   

              R(X, B) = 𝑟0(𝐵) + 𝑟1(𝐵)𝑥 + 𝑟2(𝐵)𝑥2+. ..   

                           =  1+[𝑟1(𝐵1) 𝑟0(𝐵2) + 𝑟0(𝐵1) 𝑟1(𝐵2)]𝑥 +  

                                [𝑟2(𝐵1) 𝑟0(𝐵2) + 𝑟1(𝐵1) 𝑟1(𝐵2) + 𝑟0(𝐵1) 𝑟2(𝐵2)]𝑥2+. . . . . ..  

                           = [𝑟0(𝐵1) + 𝑟1(𝐵1)𝑥 + 𝑟2(𝐵1)𝑥2+. . . . . . . ]𝑥 × [𝑟0(𝐵2) + 𝑟1(𝐵2)𝑥 +

                                                                                                                          𝑟2(𝐵2)𝑥2+. . . . . . . ]           

                           = R(𝑥, 𝐵1) + 𝑅(𝑥, 𝐵2). 

 

Theorem 3.2:   Let B be a non empty three dimensional board such that 𝑟3(𝐵) = 0. 

Then B satisfies at least one of the following criteria: 

1. B is contained in two or fewer rows; 

2. B is contained in two or fewer columns; 

3. B is the union of one part of the board contained in one row and another part 

contained in one column. An example of such a board is shown in figure.  

 

Proof     We will prove by contra positive.  Hence, we aim to show that if a board 

does not satisfy any of the properties above, then 𝑟3 ≠ 0. Assume B does not satisfy 

any of the listed criteria. So B has at least three rows, at least two columns, and does 

not have one part of the board contained in one row and one part contained in one 

column. These conditions force B to have four squares each in a different row and 

column from the other squares. Non-attacking rooks can be placed on these squares, 

so 𝑟3(𝐵) ≠ 0,  as desired. 

  For the purpose of our classification of cubic rook polynomials, we only need to 

consider boards contained in two rows. 
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Theorem 3.3:    A generalized three dimensional board contained in two columns is 

rook equivalent to one contained in two rows. 

 

Proof    If B is a three dimensional generalized board contained in five rows of an nxn 

board, Let B' be the three dimensional board obtained by rotating B 900 clock wise, 

as shown in the given figure.  

 

 
 

It is clear that a B' contained in three rows, B and B' have the same rook numbers. 

Hence, a board contained in three columns is rook equivalent to a board contained in 

three rows. 

 

Theorem 3.4:   Any generalized three dimensional board with one part contained in 

one row and another part contained in one column has the same rook polynomial as a 

board contained within two rows. 

Proof     

Case 1:  Consider the three dimensional board B in which the squares in the column 

cannot attack any square in the row of any of the towers of B where each tower is a 

two dimensional board. 

 
 

Let k be the number of towers (two dimensional boards) of our three dimensional 

board B. 
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𝑟0(𝐵) =  1  𝑟1(𝐵) = 𝑘𝑎 + 𝑘𝑏 = 𝑘(𝑎 + 𝑏) where a is the number of squares in the 

bottom and b is the number of squares in the column.  

𝑟2(𝐵) = (𝑘 − 1)𝑏 + (𝑘 − 1)𝑏 + ⋯ 𝑎 𝑡𝑖𝑚𝑒𝑠 + (𝑘 − 1)𝑏 + (𝑘 − 1)𝑏 + ⋯ 𝑎 𝑡𝑖𝑚𝑒𝑠 +

 (𝑘 − 1)𝑏 + (𝑘 − 1)𝑏 + ⋯ 𝑎 𝑡𝑖𝑚𝑒𝑠 + ⋯ 𝑘 𝑡𝑖𝑚𝑒𝑠 =  (𝑘 − 1)𝑏 + (𝑘 − 1)𝑏 +

⋯ 𝑎 𝑡𝑖𝑚𝑒𝑠  

           =  (𝑘 − 1)𝑎𝑏 + (𝑘 − 1)𝑎𝑏 + ⋯ 𝑘 𝑡𝑖𝑚𝑒𝑠 + (𝑘 − 1)𝑎𝑏 

           =  𝑘(𝑘 − 1)𝑎𝑏 

𝑟2(𝐵) = 𝑘(𝑘 − 1)𝑎𝑏 

 

Board 𝐵′ is contained in two rows with k towers (two dimensional board). 

𝑟0(𝐵′) =  1   𝑟1(𝐵′) =  𝑘𝑎 + 𝑘𝑏 = 𝑘(𝑎 + 𝑏) 

𝑟2(𝐵′) = (𝑘 − 1)𝑏 + (𝑘 − 1)𝑏 + ⋯ 𝑎 𝑡𝑖𝑚𝑒𝑠 +  (𝑘 − 1)𝑏 + (𝑘 − 1)𝑏 

+ ⋯ 𝑎 𝑡𝑖𝑚𝑒𝑠    +  (𝑘 − 1)𝑏 + (𝑘 − 1)𝑏 + ⋯ 𝑎 𝑡𝑖𝑚𝑒𝑠 + ⋯ 𝑘 𝑡𝑖𝑚              

=  (𝑘 − 1)𝑏 + (𝑘 − 1)𝑏 + ⋯ 𝑎 𝑡𝑖𝑚𝑒𝑠 

=  (𝑘 − 1)𝑎𝑏 + (𝑘 − 1)𝑎𝑏 + ⋯ 𝑘 𝑡𝑖𝑚𝑒𝑠 + (𝑘 − 1)𝑎𝑏 

                  =  𝑘(𝑘 − 1)𝑎𝑏 

𝑟2(𝐵′) = 𝑘(𝑘 − 1)𝑎𝑏 

              Thus 𝑟2(𝐵) =  𝑟2(𝐵′) = 𝑘(𝑘 − 1)𝑎𝑏 

 

Theorem 3.5:   

Let B be a generalized three dimensional board whose two dimensional boards 

contained in two rows and its rook polynomial is quadratic. Given 𝑟1(𝐵), every 

possible 𝑟2(𝐵) will have the form 𝑟2(𝐵) =  𝑘(𝑘 − 1) {[𝑎 ⌊
𝑟1

𝑘
⌋ − 𝑎] − 𝑖} where 0 ≤

𝑖 ≤ 𝑎   1 ≤ 𝑎 ≤ ⌊
𝑟1

2𝑘
⌋   

Proof: 

Given any generalized three dimensional board B satisfying the given conditions and 

given the value of 𝑟1, 𝑘, we want to find all possible corresponding values of  𝑟2(𝐵) 

by considering each pair of positive integers 𝑎 and 𝑏 of 𝑟1(𝐵) such that 𝑘(𝑎 + 𝑏) =

𝑟1(𝐵) 

Without loss of generality, let’s assume that 𝑎 ≤ 𝑏. 

This will imply          𝑘𝑎 ≤ 𝑘𝑏 

                          𝑘𝑎 + 𝑘𝑎 ≤ 𝑘𝑏 + 𝑘𝑎 

                                 2𝑘𝑎 ≤ 𝑟1(𝐵) 

                                     𝑎 ≤ ⌊
𝑟1

2𝑘
⌋ 

                           𝑘(𝑎 + 𝑏) =  𝑟1(𝐵) 

                           𝑘𝑎 + 𝑘𝑏 =  𝑟1(𝐵) 

                                    𝑘𝑏 =  𝑟1(𝐵) −  𝑘𝑎 

                                       𝑏 =  ⌊
𝑟1(𝐵)

𝑘
⌋ −  𝑎 
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Here 𝑎 and 𝑏 represent the number of squares in the two rows that two dimensional 

layers of our board 𝐵 occupy respectively. Then 𝑎 and 𝑏 squares can be arranged such 

that 𝑎 squares lie consecutively in one row and 𝑏 squares lie consecutively in the next 

row. We can rearrange the columns of a generalized board 𝐵 so that 𝑖 columns 

containing squares in both rows lies in the center, columns with empty squares in row 

1 lie adjacent on the right, and columns with empty squares in row 2 lie adjacent on 

the left. Such a rearrangement will not change the rook numbers. 

By placing one rook in each row, the possible values of 𝑟2(𝐵)  can be found for each 

value of  0 ≤ 𝑖 ≤ 𝑎. 

The maximum value of 𝑟2 will be when 𝑖 = 0 (𝑎 and 𝑏 are completely disjoint) 

𝑟2(𝐵) = 𝑘(𝑘 − 1)𝑎𝑏 (From Theorem 3.4 Case 1) 

The minimum value of  𝑟2 will be when 𝑖 = 𝑎 (𝑎 and 𝑏 are completely overlapped) 

𝑟2(𝐵) = 𝑘(𝑘 − 1)𝑎(𝑏 − 1)  (From Theorem 3.4 Case 2) 

Every value between 𝑟2(𝐵) = 𝑘(𝑘 − 1)𝑎𝑏 and 𝑟2(𝐵) = 𝑘(𝑘 − 1)𝑎(𝑏 − 1) can be 

obtained as well. 

Beginning with a disjoint pair, shift the row containing 𝑎 squares one square to the 

left, which decreases the value of 𝑟2  by one.  Continuing the process until 𝑎 and 𝑏 are 

overlapping exhausts all possible values of 𝑟2. Hence, for a given 𝑎 and 𝑏, each choice 

of 𝑖 will yield a different possible 𝑟2(𝐵) value. 

For any particular arrangement, the value of 𝑟2(𝐵) is equal to, 

𝑟2(𝐵) =  [𝑘(𝑏 − 𝑖)𝑎 (𝑘 − 1) +  𝑖(𝑎 − 1)(𝑘 − 1)] 

           =   𝑘(𝑘 − 1)[ (𝑏 − 𝑖)𝑎 + 𝑖(𝑎 − 1)] 

           =   𝑘(𝑘 − 1)[ 𝑎𝑏 − 𝑖𝑎 + 𝑖𝑎 − 𝑖] 

           =  𝑘(𝑘 − 1)[𝑎𝑏 − 𝑖] 

We know     𝑏 =  ⌊
𝑟1(𝐵)

𝑘
⌋ −  𝑎 

Thus 𝑟2(𝐵) = 𝑘(𝑘 − 1) {𝑎 [⌊
𝑟1

𝑘
⌋ −  𝑎] − 𝑖}  where   0 ≤ 𝑖 ≤ 𝑎  

                                                                                   1 ≤ 𝑎 ≤ ⌊
𝑟1

2𝑘
⌋  

 

Example of finding   𝒓𝟐(𝑩) value when we know   𝒓𝟏(𝑩) = 𝟏𝟐  

Suppose we wanted to classify all quadratic rook polynomials with   𝑟1(𝐵) = 12. 

Then  𝑘  can take the values 2, 3, 4 or 6. For other values of  𝑘 we get non integral 

values for 𝑎 and 𝑏 which cannot be possible. 
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When 𝑘 = 2 

𝑎 + 𝑏 = 6 

The possible integer pair for 𝑎, 𝑏 are (1,5) (2,4) (3,3) whose corresponding  𝑟2(𝐵) 

values are given as follows 

  𝑟2(𝐵)  = 10, 8 for the pair (1,5)   

             = 16, 18, 20 for the pair (2, 4) 

             = 12, 14, 16, 18 for the pair (3, 3) by using the formula  𝑟2(𝐵) =

𝑘(𝑘 − 1) {𝑎 [⌊
𝑟1

𝑘
⌋ −  𝑎] − 𝑖}  where   0 ≤ 𝑖 ≤ 𝑎    1 ≤ 𝑎 ≤ ⌊

𝑟1

2𝑘
⌋ 

Thus the rook polynomials when 𝑘 = 2 are 1 + 12𝑥 + 8𝑥2  , 1 + 12𝑥 + 10𝑥2, 1 +

12𝑥 + 12𝑥2,  1 + 12𝑥 + 14𝑥2, 1 + 12𝑥 + 16𝑥2, 1 + 12𝑥 + 18𝑥2, 1 + 12𝑥 + 20𝑥2. 

When 𝑘 = 3 

𝑎 + 𝑏 = 4 

The possible integer pair for 𝑎, 𝑏 are (1, 3) (2, 2) whose corresponding  𝑟2(𝐵) values 

are given as follows 

  𝑟2(𝐵)  = 12, 18 for the pair (1,3)   

             = 12, 18, 24 for the pair (2, 2) by using the formula  𝑟2(𝐵) = 𝑘(𝑘 −

1) {𝑎 [⌊
𝑟1

𝑘
⌋ −  𝑎] − 𝑖}  where   0 ≤ 𝑖 ≤ 𝑎    1 ≤ 𝑎 ≤ ⌊

𝑟1

2𝑘
⌋ 

Thus the rook polynomials when 𝑘 = 3 are 1 + 12𝑥 + 12𝑥2, 1 + 12𝑥 + 18𝑥2, 1 +

12𝑥 + 24𝑥2.  

When 𝑘 = 4 

𝑎 + 𝑏 = 3 

The possible integer pair for 𝑎, 𝑏 are (1, 2) whose corresponding  𝑟2(𝐵) values are 

given as follows 

  𝑟2(𝐵)  = 12, 24 for the pair (1,2) by using the formula  𝑟2(𝐵) = 𝑘(𝑘 −

1) {𝑎 [⌊
𝑟1

𝑘
⌋ −  𝑎] − 𝑖}  where   0 ≤ 𝑖 ≤ 𝑎    1 ≤ 𝑎 ≤ ⌊

𝑟1

2𝑘
⌋ 

Thus the rook polynomials when 𝑘 = 4 are 1 + 12𝑥 + 12𝑥2, 1 + 12𝑥 + 24𝑥2.  

 When 𝑘 = 6 

𝑎 + 𝑏 = 2 

The possible integer pair for 𝑎, 𝑏 are (1, 1) whose corresponding  𝑟2(𝐵) values are 

given as follows 
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  𝑟2(𝐵)  = 12 for the pair (1,1) by using the formula  𝑟2(𝐵) = 𝑘(𝑘 − 1) {𝑎 [⌊
𝑟1

𝑘
⌋ −

 𝑎] − 𝑖}  where   0 ≤ 𝑖 ≤ 𝑎    1 ≤ 𝑎 ≤ ⌊
𝑟1

2𝑘
⌋ 

Thus the rook polynomials when 𝑘 = 6 are 1 + 12𝑥 + 12𝑥2.  

Hence the possible quadratic rook polynomials of a generalized three dimensional 

board for 𝑟1(𝐵) = 12  are   

1 + 12𝑥 + 8𝑥2  , 1 + 12𝑥 + 10𝑥2, 1 + 12𝑥 + 12𝑥2,  1 + 12𝑥 + 14𝑥2, 1 + 12𝑥 +

16𝑥2, 1 + 12𝑥 + 18𝑥2, 1 + 12𝑥 + 20𝑥2, 1 + 12𝑥 + 24𝑥2. 

 

4. CLASSIFICATION OF CUBIC ROOK POLYNOMIALS: 

The possible quadratic rook polynomials for the generalized three dimensional board 

under consideration when   𝑟1(𝐵) = 4 5,6,7,8,9,10,11.  
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CONCLUSION 

In this paper, the possible cubic rook polynomials under certain conditions have been 

enumerated. Basic definitions of rook theory are presented in section 2. In section 3 

the idea of rook equivalency is proved by theorems which allow us to simplify the 

number of bounds that we need to consider to address our given problem. Finally in 

section 4, we have found bounds for the rook numbers of the cubic rook polynomials 

for specific boards under certain conditions. 
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