The relation between Wiener index and Nandu sequence of SM family of Graphs

Manilal K.
Department of Mathematics,
University College, Thiruvananthapuram, Kerala, India.

Sreekumar K.G.
Department of Information Technology,
Nizwa College of Technology, Nizwa, Sultanate of Oman.

Latha Devi Santhoshkumar
Department of Mathematics,
K V M College of Engineering, Cherthala, Kerala, India.

Abstract

SM family of Graphs consists of SM sum graphs, SM balancing graphs, its complement graphs and its subgraphs. SM sum graph is associated with the relationship between the powers of 2 and positive integers. SM balancing graphs are formed by using the fact that all positive integers can be written as a linear combination of powers of 3. Nandu sequence is obtained from the number of edges of SM graphs. The relationships between Wiener indices and the Nandu sequence of these graphs are obtained in this work. Also the summation of Nandu series, generating function of Nandu sequence and girth of these family of graphs are discussed and some results are formed.

AMS subject classification: 05C99.

Keywords: n^{th}SM Balancing graphs, n^{th}SM Sum graphs, Nandu sequence, Wiener index of SM graphs, Girth of SM graphs.
1. Introduction

For a fixed positive integer \(n \), consider the set \(P = \{2^m, 0 \leq m \leq n - 1\} \). Any positive integer less than \(2^n \) and not in \(P \) can be expressed as the sum of two or more distinct elements of \(P \). If \(p \not\in P \) and \(p = \sum x_i \), with distinct \(x_i \in P \), then each \(x_i \) is called an additive component of \(p \). The simple graph, \(SM(\sum_n) \) is a graph with vertex set \(\{v_1, v_2, \ldots, v_{2^n-1}\} \) and adjacency of vertices defined by two distinct vertices \(v_i \) and \(v_j \) are adjacent if either \(i \) is an additive component of \(j \) or \(j \) is an additive component of \(i \). Also consider the set \(T = \{3^m, 0 \leq m \leq n - 1\} \) for a fixed positive integer \(n \geq 2 \). Any positive integer \(x \leq \frac{1}{2}(3^n - 1) \), which is not a power of 3 can be expressed as a linear combination of two or more distinct elements of the set \(T \) with coefficients \(-1, 0 \) or \(1 \). The relation between \(x \) and the elements of \(T \) are used to form a new class of graphs called \(n^{th} \) SM Balancing graphs, \(SM(B_n) \) and \(SMD(B_n) \). Some preliminaries are given below.

2. \(n^{th} \) SM Balancing Graphs and \(n^{th} \) SM Sum Graphs

Definition 2.1. [8] Consider the set \(T = \{3^m, 0 \leq m \leq n - 1\} \) for a fixed positive integer \(n \geq 2 \). Let \(I = \{-1, 0, 1\} \). Any positive integer \(x \leq \frac{1}{2}(3^n - 1) \) which is not a power of 3 can be expressed as

\[
x = \sum_{j=1}^{n} \alpha_j y_j
\]

for some \(\alpha_i \in I \) and \(y_j \in T \). If \(\alpha_i \neq 0 \), then each \(y_j \) is called a balancing component of \(x \).

Definition 2.2. [8] Let \(T \) be the set \(T = \{3^m, 0 \leq m \leq n - 1\} \) for a fixed positive integer \(n \geq 2 \). Consider the simple directed graph \(G = (V, E) \), where the vertex set \(V = \{v_1, v_2, \ldots, v_{2^n(3^n-1)}\} \) and adjacency of vertices defined by, two distinct vertices \(v_x \) is adjacent to \(v_y \) if (1) holds and \(\alpha = -1 \) and two distinct vertices \(v_y \) is adjacent to \(v_x \) if (1) holds and \(\alpha = 1 \). This directed graph \(G \) is called the \(n^{th} SMD \) Balancing Graph, \(SMD(B_n) \). The underlying undirected graph is called \(n^{th} \) SM Balancing Graphs, \(SM(B_n) \).

Definition 2.3. If \(p < 2^n \), is a positive integer which is not a power of 2, then \(p = \sum_{i=1}^{n} x_i \), with \(x_i = 0 \) or \(2^m \), for some \(0 \leq m \leq n - 1 \) and \(x_i \)s are distinct. Here we call each \(x_i \neq 0 \) as an additive component of \(p \).

Definition 2.4. For a fixed integer \(n \geq 2 \), define a simple graph \(SM(\sum_n) \), called \(n^{th} \) SM sum graph, with vertex set \(\{v_1, v_2, \ldots, v_{2^n-1}\} \) and adjacency of vertices defined by, \(v_i \)
and \(v_j \) are adjacent if either \(i \) is an additive component of \(j \) or \(j \) is an additive component of \(i \).

Definition 2.5. [3] If \(G(V, E) \) is a graph, then Wiener index, \(w(G) \) is defined as the sum of distances between all unordered pairs of vertices of \(G \). i.e., \(w(G) = \sum_{[u,v] \subseteq V} d(u,v) \), where \(d(u,v) \) is the distance between \(u \) and \(v \).

Definition 2.6. [3] If \(G(V, E) \) is a graph, then the Hyper Wiener index, \(\text{ww}(G) \) is defined as \(\text{ww}(G) = \frac{1}{2} \sum_{[u,v] \subseteq V} [d(u,v)^2 + d(u,v)] \).

Definition 2.7. [8] Let \(G = SM(\sum_n) \) or \(SM(B_n) \) with vertex set \(V \) be an \(n^{th} \) SM graph. The Adi-R-set of degrees, denoted by \(A^R_n \) is defined as \(A^R_n = \{\deg v_i(x), v_i \in V\} \), where \(x \) is the number of times each \(\deg v_i \) repeats.

Definition 2.8. Consider the graph \(SM(\sum_{n+1}) \) with vertex set \(V = \{v_i, 1 \leq i \leq 2^{n+1} - 1\} \). Define the sequence \(\{Nt_n\} \) as \(Nt_n = \frac{1}{2} \sum v \in V \deg v \) as Nandu sequence and the sequence \(\{DNt_n\} \) as \(DNt_n = \sum v \in V \deg v \) as Double Nandu sequence. So we get \(\{Nt_n\} = 2, 9, 28, 75, 186, \ldots \) and \(\{DNt_n\} = 4, 18, 56, 150, 372, \ldots \)

Definition 2.9. Consider the graph \(SM(B_{n+1}) \) with vertex set \(V = \{v_i, 1 \leq i \leq \frac{1}{2}(3^{n+1} - 1)\} \). Define the sequence \(\{Nt_n\} \) as \(Nt_n = \frac{1}{2} \sum v \in V \deg v \) as Nandu sequence and the sequence \(\{DNt_n\} \) as \(DNt_n = \sum v \in V \deg v \) as Double Nandu sequence. So we get \(\{Nt_n\} = 4, 24, 104, 400, 1452, \ldots \) and \(\{DNt_n\} = 8, 48, 208, 800, 2904, \ldots \).

Note: For a fixed integer \(n \geq 2 \), let \(T = \{3^m : 0 \leq m \leq n - 1\} \), \(N = \{1, 2, 3, \ldots, t\} \), where \(t = \frac{1}{2}(3^n - 1) \). Also let \(P = \{2^m : 0 \leq m \leq n - 1\} \), \(M = \{1, 2, 3, \ldots, 2^n - 1\} \). Then consider \(P^c = M - P \), \(T^c = N - T \) throughout this paper unless otherwise specified.

3. Relationship between Wiener index and Nandu sequence of \(SM(\sum_n) \) and \(SM(B_n) \)

Graph parameters are useful to study the structure of graphs and then to apply in real life problems. Nandu sequence is a sequence of number of edges of the SM family of graphs. We are finding out some graph parameters like Wiener index, Hyper Wiener index etc in connection with the terms of the Nandu sequence. The Wiener index, a topological
index of a graph, is used to explain the variation in boiling points, molar volumes, heat isomerization etc. Wiener index also used in networks.

Lemma 3.1. If \(G = SM \left(\sum_n \right) \), \(P = \{2^m : 0 \leq m \leq n - 1\} \), then

\[
d(v_i, v_j) = \begin{cases}
1 & \text{if } i \text{ is an additive component of } j \text{ or } j \text{ is an additive component of } i \\
2 & \text{if } i, j \in P \text{ or } i, j \notin P, i \text{ and } j \text{ have at least one common additive component} \\
3 & \text{neither } i \text{ nor } j \text{ is an additive component but exactly one of them belongs to } P \\
4 & \text{i}, j \notin P, i \text{ and } j \text{ have no common additive component.}
\end{cases}
\]

Proposition 3.2. Let \(G = SM \left(\sum_n \right) \) be an \(n^{th} \) SM sum graph. Let \(d_r(v_i, v_j) \) denote the number of unordered pairs of vertices for which \(d(v_i, v_j) = r \). Let the \((n - 1)^{th}\) term of the Nandu sequence of \(G = SM \left(\sum_n \right) \) be \(N_t_{n-1} \). Then:

\[
d_r(v_i, v_j) = \begin{cases}
N_t_{n-1} & \text{if } r = 1 \\
\frac{n(n-1)}{2} + \left[\frac{N_t_{n-1} - n}{n} \left(\frac{N_t_{n-1} - n - 1}{2} - \delta \right) \right] & \text{if } r = 2 \\
N_t_{n-1} + n - n^2 \delta & \text{if } r = 3 \\
\delta & \text{if } r = 4.
\end{cases}
\]

where \(\delta = \frac{1}{2} \sum_{r=2}^{n-2} \left(\sum_{k=2}^{n-2} \binom{n-r}{k} \right) \).

Proof. We have \(N_t_{n-1} = n(2^n - 1) \). The proof is obvious when \(r = 1 \). When \(r = 4 \) and \(n \geq 4 \), then \(d_4(v_i, v_j) \) is the total number of unordered pairs of disjoint subsets containing at least 2 elements of a set. Hence the result follows.

Now suppose, \(r = 2 \). Let \(P = \{2^m : 0 \leq m \leq n - 1\} \) implies \(|P^c| = 2 \frac{N_t_{n-1}}{n} - n + 1 \).

So the total number of unordered pairs of elements of \(P^c \) is \(\frac{(2 \frac{N_t_{n-1}}{n} - n)(2 \frac{N_t_{n-1}}{n} - n + 1)}{2} \), which follows the result.

Suppose \(r = 3 \). We have, \(|V| = 2 \frac{N_t_{n-1}}{n} + 1 \). Let \(d_r(v_i, v_j) = d_r \). In this case the number of unordered pairs is given by

\[
d_3(v_i, v_j) = \frac{(2 \frac{N_t_{n-1}}{n} + 1)(2 \frac{N_t_{n-1}}{n})}{2} - (d_1 + d_2 + d_4) = N_t_{n-1} + n - n^2.
\]

Hence proved.
Remark 3.3. \(\delta = 0 \) for \(n = 2 \) or 3.

Theorem 3.4. Let \(G = SM(\sum_n) \), \(n \geq 2 \). Then \(w(G) = 4\left(\frac{N_{t_{n-1}}}{n}\right)^2 + 2\cdot\frac{N_{t_{n-1}}}{n} - n^2 + n + 2\delta \).

Proof. By the definition of \(w(G) \),

\[
w(G) = \sum_{\{u,v\} \subseteq V} d(u, v) = 1\cdot N_{t_{n-1}} + 2\left[\frac{n(n-1)}{2}\right] + \left[\frac{(2\cdot\frac{N_{t_{n-1}}}{n} - n)(2\cdot\frac{N_{t_{n-1}}}{n} - n + 1)}{2} - \delta\right] + 3[N_{t_{n-1}} + n - n^2] + 4\delta \\
= 4\left(\frac{N_{t_{n-1}}}{n}\right)^2 + 2\cdot\frac{N_{t_{n-1}}}{n} - n^2 + n + 2\delta.
\]

\[\blacksquare\]

Theorem 3.5. Let \(G = SM(\sum_n) \), \(n \geq 2 \). Then

\[ww(G) = 6\left(\frac{N_{t_{n-1}}}{n}\right)^2 + 3\cdot\frac{N_{t_{n-1}}}{n} + 2\cdot N_{t_{n-1}} - 3n^2 + 3n + 7\delta \]

Proof. By using proposition 3.2, we get

\[
\sum_{\{u,v\} \subseteq V} (d(u,v))^2 = 1^2\cdot N_{t_{n-1}} + 4\left[\frac{n(n-1)}{2} + \frac{(2\cdot\frac{N_{t_{n-1}}}{n} - n)(2\cdot\frac{N_{t_{n-1}}}{n} - n + 1)}{2} - \delta\right] \\
+ 9[N_{t_{n-1}} + n - n^2] + 16\delta \\
= 8\left(\frac{N_{t_{n-1}}}{n}\right)^2 + 4\cdot\frac{N_{t_{n-1}}}{n} + 2\cdot N_{t_{n-1}} - 5n^2 + 5n + 12\delta.
\]
Therefore,

\[\text{ww}(G) = \frac{1}{2} [w(G) + \sum_{[u,v] \subseteq V} (d(u,v))^2] \]

\[= \frac{1}{2} \left[8 \left(\frac{N_{t_n-1}}{n} \right)^2 + 4 \frac{N_{t_n-1}}{n} + 2N_{t_n-1} - 5n^2 + 5n + 12\delta + 4 \left(\frac{N_{t_n-1}}{n} \right)^2 \right. \]

\[+ 2 \frac{N_{t_n-1}}{n} - n^2 + n + 2\delta \]

\[= 6 \left(\frac{N_{t_n-1}}{n} \right)^2 + 3 \frac{N_{t_n-1}}{n} + 2N_{t_n-1} - 3n^2 + 3n + 7\delta \]

Hence the theorem.

Lemma 3.6. If \(G = SM(B_n) \), \(T = \{3^m : 0 \leq m \leq n - 1\} \), \(v_i, v_j \in V(G) \), then

\[d(v_i, v_j) = \begin{cases}
1, & \text{if } i \text{ is a balancing component of } j \text{ or } j \text{ is a balancing component of } i. \\
2, & \text{if } i, j \in T \text{ or } i, j \notin T, \text{ and } i \text{ and } j \text{ have at least one common balancing component.} \\
3, & \text{neither } i \text{ nor } j \text{ is a balancing component but exactly one of them belongs to } T. \\
4, & \text{i, j } \notin T, \text{ and } i \text{ and } j \text{ have no common balancing component.}
\end{cases} \]

Proposition 3.7. Let \(G = SM(B_n) \) be an \(n^{th} \) SM Balancing graph. Let \(d_r(v_i, v_j) \) denote the number of unordered pairs of vertices for which \(d(v_i, v_j) = r \). Let \(\tau = \frac{1}{2} (3^n - 1) \).

Let the \((n - 1)^{th}\) term of the Nandu sequence of \(G = SM(B_n) \) be \(N_{t_n-1} \). Then:

\[d_r(v_i, v_j) = \begin{cases}
\frac{N_{t_n-1}}{n(n-1)} + \left(\frac{3N_{t_n-1}}{2n} - n \right) \left(\frac{3N_{t_n-1}}{2n} - n + 1 \right) - \sigma, & \text{if } r = 1 \\
\frac{N_{t_n-1}}{2} + n - 2n^2, & \text{if } r = 2 \\
\sigma, & \text{if } r = 3 \\
\frac{1}{2} \sum_{r=2}^{n-2} \left(\binom{n}{r} \sum_{k=2}^{n-2} \binom{n-r}{k} 2^{r+k-2} \right), & \text{if } r = 4.
\end{cases} \]

where \(\sigma = \frac{1}{2} \sum_{r=2}^{n-2} \left(\binom{n}{r} \sum_{k=2}^{n-2} \binom{n-r}{k} 2^{r+k-2} \right) \).

Proof. Since the \((n - 1)^{th}\) term of the Nandu sequence of \(G = SM(B_n) \) is \(N_{t_n-1} \), the number of cases when \(r = 1 \) is \(N_{t_n-1} \). When \(r = 4 \) and \(n \geq 4 \), the \(d_r(v_i, v_j) \) is the total number of unordered pairs of disjoint subsets containing at least 2 elements of a set consisting of \(n \geq 4 \) elements. Hence the result follows.
The relation between Wiener index and Nandu sequence of SM family

Now consider the case when \(r = 2 \). Let \(T = \{3^m : 0 \leq m \leq n - 1\} \) implies
\[|T^c| = \frac{3.Nt_{n-1}}{2n} - n + 1. \] So the total number of unordered pairs of elements of \(T^c \) is
\[\frac{\left(\frac{3.Nt_{n-1}}{2n} - n \right) \left(\frac{3.Nt_{n-1}}{2n} - n + 1 \right)}{2}, \] which follows the result.

Suppose \(r = 3 \). We have,
\[|V| = \frac{3.Nt_{n-1}}{2n} - 1. \] Therefore the number of unordered pairs is
\[\left(\frac{3.Nt_{n-1}}{2n} - 1 \right) - (d_1 + d_2 + d_4) = \frac{Nt_{n-1}}{2} + n - n^2. \] Hence the result.

Remark 3.8. \(\sigma = 0 \) for \(n = 2 \) or 3.

Theorem 3.9. Let \(G = SM(B_n), n \geq 2 \). Then \(w(G) = \frac{9}{4} \left(\frac{Nt_{n-1}}{n} \right)^2 + 3 \cdot \frac{Nt_{n-1}}{2n} + \frac{Nt_{n-1}}{2} + n - n^2 + 2\sigma. \)

Proof. By the definition of \(w(G) \),

\[
w(G) = \sum_{\{u,v\} \subseteq V} d(u,v) = 1.Nt_{n-1} + 2\left[\frac{n(n-1)}{2} + \frac{3.Nt_{n-1}}{2n} - n \right] - \sigma \\
+ 3\cdot \left(\frac{Nt_{n-1}}{2} + n - n^2 \right) + 4\sigma \\
= \frac{9}{4} \left(\frac{Nt_{n-1}}{n} \right)^2 + 3 \cdot \frac{Nt_{n-1}}{2n} + \frac{Nt_{n-1}}{2} + n - n^2 + 2\sigma.
\]

Theorem 3.10. Let \(G = SM(B_n), n \geq 2 \). Then

\[
ww(G) = \frac{27}{4} \cdot \left(\frac{Nt_{n-1}}{n} \right)^2 + \frac{1}{2} Nt_{n-1} + \frac{9Nt_{n-1}}{4n} + 3n - 3n^2 + 7\sigma.
\]
Proof. By using the above proposition 3.7, we get

$$\sum_{\{u,v\} \subseteq V} (d(u,v))^2 = 1.N_{tn-1} + 4 \left[\frac{n(n-1)}{2} + \left(\frac{3.N_{tn-1}}{2n} - n \right) \left(\frac{3.N_{tn-1}}{2n} - n + 1 \right) - \sigma \right]$$

$$+ 9. \left(\frac{N_{tn-1}}{2} + n - n^2 \right) + 16\sigma$$

$$= \frac{9}{2} \cdot \left(\frac{N_{tn-1}}{n} \right)^2 + 3 \cdot \frac{N_{tn-1}}{n} + \frac{N_{tn-1}}{2} + 5n - 5n^2 + 12\sigma$$

Therefore,

$$ww(G) = \frac{1}{2} \left[w(G) + \sum_{\{u,v\} \subseteq V} (d(u,v))^2 \right]$$

$$= \frac{1}{2} \cdot 9 \cdot \left(\frac{N_{tn-1}}{n} \right)^2 + 3 \cdot \frac{N_{tn-1}}{n} + \frac{N_{tn-1}}{2} + 5n - 5n^2 + 12\sigma$$

$$+ \frac{9}{4} \cdot \left(\frac{N_{tn-1}}{n} \right)^2 + 3 \cdot \frac{N_{tn-1}}{2n} + \frac{N_{tn-1}}{2} + n - n^2 + 2\sigma$$

$$= \frac{27}{4} \cdot \left(\frac{N_{tn-1}}{n} \right)^2 + \frac{1}{2} N_{tn-1} + \frac{9 N_{tn-1}}{4n} + 3n - 3n^2 + 7\sigma.$$

\[\blacksquare\]

4. Summation of Nandu series and the generating function

Now let us have a look into the summation of the Nandu series of the SM balancing graphs and SM sum graphs. Generating functions are used to represent sequences efficiently by coding the terms of a sequence as coefficients of powers of a variable x in a formal power series. Also generating functions can be used to solve recurrence relations and to solve many types of counting problems such as the number of ways to select or distribute objects of different kinds, subject to variety of constraints. Here we provide generating functions for the Nandu sequences.

Lemma 4.1. Let $\{N_t\}$, where $N_t = \frac{1}{2} \sum_{v \in V} deg v$, be the Nandu sequence for the SM sum graphs. Then its summation is given by

$$\sum_{r=1}^{n} N_t = 2n \cdot 2^n - \frac{n(n+1)}{2} - n.$$
Proof. We have,
\[
\sum_{r=1}^{n} N_{tr} = \sum_{r=1}^{n} (r+1)(2^r - 1) = \sum_{r=1}^{n} (r.2^r + 2^r - r - 1)
\]
\[
= 2\left[1 - (n+1)2^n + n.2^{n+1}\right] + 2(2^n - 1) - \frac{n(n+1)}{2} - n
\]
\[
= 2n.2^n - \frac{n(n+1)}{2} - n.
\]
\[\blacksquare\]

Lemma 4.2. Let \{\textit{N}_{tn}\}, where \textit{N}_{tn} = \frac{1}{2} \sum_{v \in V} \text{deg} \ v, be the Nandu sequence for the SM balancing graphs. Then \[\sum_{r=1}^{n} N_{tr} = \frac{3}{4}[2n.3^n + 3^n - 1] - n - \frac{n(n+1)}{2} - n\].

Proof.
\[
\sum_{r=1}^{n} N_{tr} = \sum_{r=1}^{n} (r+1)(3^r - 1) = \sum_{r=1}^{n} (r.3^r + 3^r - r - 1)
\]
\[
= 2\left[1 - (n+1)3^n + n.3^{n+1}\right] + \frac{3(3^n - 1)}{2} - \frac{n(n+1)}{2} - n
\]
\[
= \frac{3}{4}[2n.3^n + 3^n - 1] - n - \frac{n(n+1)}{2}.
\]
\[\blacksquare\]

Definition 4.3. A closed form of the generating function of the Nandu sequence of SM sum graph is given by \[G(x) = \sum_{r=1}^{n} (r+1)(2^r - 1)x^r\].

Definition 4.4. A closed form of the generating function of the Nandu sequence of SM balancing graph is given by \[G(x) = \sum_{r=1}^{n} (r+1)(3^r - 1)x^r\].

5. Girth of SM graphs

The girth of a graph \textit{G} is the length of the smallest cycle of \textit{G}. A cycle of smallest length is called a girdle of \textit{G}.

Theorem 5.1. The girth of a SM sum graph is given by \[g \left(SM \left(\sum_n \right) \right) = 4 \].

Proof. Consider the graph \textit{G} = \textit{SM} \left(\sum_n \right), n > 2. Since the SM sum graphs are triangle -free graphs, the girth of these graphs are more than 3. We can partition the vertex set of
G as $X \cup Y$, where $X = \{v_i : \text{where } i = 2^r \text{ for } 0 \leq r \leq n - 1\}$ and $Y = V - X$. Now let $v_i \in X$ and $v_j \in Y$, then there is a vertex v_i adjacent to v_j and v_{2^n-1}. So $v_iv_jv_{i}v_{2^n-1}$ is a cycle of length 4. Therefore a girdle of G is having a length 4. Hence the girth is $g \left(SM \left(\sum_n \right) \right) = 4$.

Theorem 5.2. The girth of a SM balancing graph is given by $g(SM(B_n)) = 4$.

Proof. Proof is same as above.

6. Conclusion

We derived a relationship between the Nandu sequence and Wiener index of of SM family of Graphs. This may be helpful to study the nature and different graph theoretic parameters related to n^{th} SM Balancing graphs and n^{th} SM sum graphs. The same way we can find some other parameters also in connection with Nandu sequence. There are many graph parameters related with the number of edges of a graph. Since these SM graphs are systematically arranged graphs, this type of relationships may help in further studies of nature and structure of Graphs.

References