1-movable Independent Outer-connected Domination in Graphs

Renario G. Hinampas, Jr., Jocecar Lomarda-Hinampas and Analyn R. Dahunan

Colleges of Teacher Education and Advanced Studies,
Bohol Island State University-Main Campus,
CPG North Avenue, 6300 Tagbilaran City,
Bohol, Philippines.

Abstract

A nonempty subset S of $V(G)$ is a 1-movable independent outer-connected dominating set of G if S is an independent outer-connected dominating set of G and for every $v \in S$, there exists $u \in (V(G) \setminus S) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is an independent outer-connected dominating set of G. The cardinality of the smallest 1-movable independent outer-connected dominating set of G is called 1-movable independent outer-connected domination number of G denoted by $\tilde{\gamma}_{mic}^1(G)$. A 1-movable independent outer-connected dominating set with cardinality equal to $\tilde{\gamma}_{mic}^1(G)$ is called $\tilde{\gamma}_{mic}^1$-set of G. This paper investigates the properties of the 1-movable independent outer-connected dominating set in graphs through characterization of those sets in the join and corona of graphs and the corresponding values or bounds of the parameter are determined.

AMS subject classification: 05C69.

Keywords: Domination, independent domination, outer-connected domination, independent outer-connected domination, 1-movable independent outer-connected domination, join, corona.
1. Introduction

Let $G = (V(G), E(G))$ be a graph and $v \in V(G)$. The open neighborhood of v is the set $N_G(v) = N(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of v is the set $N_G[v] = N[v] = N(v) \cup \{v\}$. If $S \subseteq V(G)$, then the open neighborhood of S is the set $N_G(S) = N(S) = \cup_{u \in S} N_G(u)$ and the closed neighborhood of S is the set $N_G[S] = N[S] = S \cup N(S)$.

A subset S of $V(G)$ is a dominating set of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that $uv \in E(G)$, that is, $N_G[S] = V(G)$. The domination number of G denoted by $\gamma(G)$ is the cardinality of the smallest dominating set of G. A dominating set of G with cardinality equal to $\gamma(G)$ is called a γ-set of G. The join and corona of a dominating set were investigated in [4].

An independent dominating set of G is an independent set of G if for every two elements $x, y \in S$, $xy \notin E(G)$. The independence number of G, denoted by $\beta(G)$, is the largest cardinality of an independent set in G. A nonempty subset S of $V(G)$ is an independent dominating set of G if S is both an independent set and a dominating set of G. The independent domination number of G, denoted by $\gamma_i(G)$, is the cardinality of the smallest independent dominating set of G. An independent dominating set of G with cardinality equal to $\gamma_i(G)$ is called a γ_i-set of G. Independent dominating sets and its variant were investigated in [2] and [13].

In 2007, Cyman defined outer-connected domination in graphs. A dominating set S is an outer-connected dominating set of G if the subgraph $\langle V(G) \setminus S \rangle$ is connected. The outer-connected domination number of G denoted by $\gamma_c(G)$, is the cardinality of the smallest outer-connected dominating set of G. An outer-connected dominating set of G with cardinality equal to $\gamma_c(G)$ is called γ_c-set of G. Outer-connected dominating sets in graphs were investigated in [3] and [5].

A dominating set S is an independent outer-connected dominating set of G if S is an independent dominating set of G and the subgraph $\langle V(G) \setminus S \rangle$ is connected. The independent outer-connected domination number of G denoted by $\gamma_{ic}(G)$, is the cardinality of the smallest independent outer-connected dominating set of G. An independent outer-connected dominating set of G with cardinality equal to $\gamma_{ic}(G)$ is called γ_{ic}-set of G.

In 2011, Blair, Gera and Horton introduced 1-movable domination in graphs. A nonempty set $S \subseteq V(G)$ is a 1-movable dominating set of G if S is a dominating set of G and for every $v \in S$, $S \setminus \{v\}$ is a dominating set of G or there exists a vertex $u \in (V(G) \setminus S) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is a dominating set of G. The 1-movable domination number of a graph G, denoted by $\gamma_m^1(G)$, is the cardinality of the smallest 1-movable dominating set of G. A 1-movable dominating set of G with cardinality equal to $\gamma_m^1(G)$ is called γ_m^1-set of G. This concept was investigated in [1] and [6]. Moreover, the movability of some variants of domination were investigated in [7], [8], [9], [10], [11] and [12].

A nonempty subset S of $V(G)$ is a 1-movable independent outer-connected dominating set of G if S is an independent outer-connected dominating set of G and for every $v \in S$, there exists $u \in (V(G) \setminus S) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is an indepen-
dent outer-connected dominating set of G. The cardinality of the smallest 1-movable independent outer-connected dominating set of G is called 1-movable independent outer-connected domination number of G and is denoted by $\tilde{\gamma}_{mic}^1(G)$. A 1-movable independent outer-connected dominating set with cardinality equal to $\tilde{\gamma}_{mic}^1(G)$ is called $\tilde{\gamma}_{mic}^1$-set of G.

The graph in the figure shows that the set $S_1 = \{a\}$ of a graph G is a $\tilde{\gamma}_{ic}$-set of G. Thus, $\tilde{\gamma}_{ic}(G) = |S_1| = 1$. Moreover, the set $S_2 = \{e, f\}$ is a $\tilde{\gamma}_{mic}^1$-set of G. Hence, $\tilde{\gamma}_{mic}^1(G) = |S_2| = 2$.

2. Results

A 1-movable independent outer-connected dominating set does not always exist in a connected nontrivial graph G. Here, we denote $\tilde{\mathcal{R}}_{mic}^1$ be the family of all graphs with a 1-movable independent outer-connected dominating set. In this paper, it is considers all connected nontrivial graphs which belong to the family $\tilde{\mathcal{R}}_{mic}^1$.

Remark 2.1. Let G be a connected nontrivial graph of order $n \geq 2$. Then $1 \leq \tilde{\gamma}_{mic}^1(G) \leq \beta(G)$.

Theorem 2.2. Let G be a connected nontrivial graph of order $n \geq 2$. Then, $\tilde{\gamma}_{mic}^1(G) = 1$ if and only if one of the following holds:

(i) G is a complete graph of order 2; or

(ii) there exists two adjacent vertices x, y and each dominates G.

Proof. Let G be a connected nontrivial graph of order $n \geq 2$. Assume that $\tilde{\gamma}_{mic}^1(G) = 1$. Then the graph G has a 1-movable independent outer-connected dominating set of G, say S. If $|V(G)| = 2$, then G is a complete graph of order 2. Suppose $|V(G)| \geq 3$. Let $S = \{a\}$ be a 1-movable independent outer-connected dominating set of G. Since S is a 1-movable independent outer-connected dominating set of G, there exists $b \in (V(G) \setminus S) \cap N_G(a)$ such that $(S \setminus \{a\}) \cup \{b\} = \{b\}$ is an independent outer-connected dominating set of G. So, $ab \in E(G)$ and each vertex a and b dominates G.

For the converse, suppose that (i) holds. Then $G = K_2$. Let $V(K_2) = \{x, y\}$ and suppose $S = \{x\}$. Then S is an independent dominating set of G and $(V(G) \setminus S) = \{y\}$ is connected. Hence, S is an independent outer-connected dominating set of G. Moreover,
Theorem 2.4. \(S \setminus \{x\} \cup \{y\} \) is an independent dominating set and \((V(G) \setminus (S \setminus \{x\} \cup \{y\})) = \{\{x\}\} \) is connected. Hence, \(S \setminus \{x\} \cup \{y\} \) is an independent outer-connected dominating set of \(G \). Thus, \(S \) is a 1-movable independent outer-connected dominating set of \(G \). Since \(|S| = 1 \), \(S \) is a \(\gamma_{mic} \)-set by Remark 2.1. Therefore, \(\gamma_{mic}^{-1}(G) = |S| = 1 \). Suppose (ii) holds. Let \(x, y \) be the vertices with \(xy \in E(G) \) and each dominates \(G \) and suppose \(S = \{x\} \). Then, \(S \) is an independent dominating set of \(G \) and \((V(G) \setminus S) = \{\{y\}\} + (V(G) \setminus \{x, y\}) \) is connected. Hence, \(S \) is an independent outer-connected dominating set of \(G \). Also, since \(y \) dominates \(G \), \(S \setminus \{x\} \cup \{y\} \) is an independent dominating set of \(G \) and \((V(G) \setminus (S \setminus \{x\} \cup \{y\})) = \{\{x\}\} + (V(G) \setminus \{x, y\}) \) is connected. Hence, \(S \) is an independent outer-connected dominating set of \(G \). Thus, \(S \) is a 1-movable independent outer-connected dominating set of \(G \). Since \(|S| = 1 \), by Remark 2.1, \(\gamma_{mic}^{-1}(G) = |S| = 1 \).

\[\square \]

Corollary 2.3. For any complete graph \(K_n \) of order \(n \geq 2 \), \(\gamma_{mic}^{-1}(K_n) = 1 \).

The join of two graphs \(G \) and \(H \) denoted by \(G + H \) is the graph with vertex-set \(V(G + H) = V(G) \cup V(H) \) and edge-set \(E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\} \). The next results characterizes the 1-movable independent outer-connected dominating sets in the join of two connected graphs and the exact values or bounds of the parameter are determined.

Theorem 2.4. Let \(G \) and \(H \) be connected nontrivial graphs. A subset \(S \) of \(V(G + H) \) is a 1-movable independent outer-connected dominating set of \(G + H \) if and only if one of the following holds:

(i) \(S \) is an independent dominating set of \(G \) such that

(a) if \(|S| = 1 \), then either \(S \) is a 1-movable independent dominating set of \(G \) or there exists \(z \in V(H) \) that dominates \(H \); and

(b) if \(|S| \geq 2 \), then \(S \) is a 1-movable independent dominating set of \(G \)

(ii) \(S \) is an independent dominating set of \(H \) such that

(a) if \(|S| = 1 \), then either \(S \) is a 1-movable independent dominating set of \(H \) or there exists \(w \in V(G) \) that dominates \(G \); and

(b) if \(|S| \geq 2 \), then \(S \) is a 1-movable independent dominating set of \(H \).

Proof. Assume that \(S \) is a 1-movable independent outer-connected dominating set of \(G + H \). Then either \(S \subseteq V(G) \) or \(S \subseteq V(H) \). Suppose \(S \subseteq V(G) \). Then \(S \) is an independent dominating set of \(G \). Suppose \(|S| = 1 \), say \(S = \{a\} \) for some \(a \in V(G) \). Since \(S \) is a 1-movable outer-connected dominating set of \(G + H \), there exists \(u \in (V(G + H) \setminus S) \cap N(a) \) such that \((S \setminus \{a\}) \cup \{u\} \) is an independent outer-connected dominating set of \(G + H \). If \(u \in V(G) \), then \(S \) is a 1-movable independent dominating set of \(G \). If \(u \in V(H) \), then \(u \) dominates \(H \). Suppose that \(|S| \geq 2 \) and let \(v \in S \). Since \(S \) is an independent set, and \(S \subseteq V(G) \). Since \(S \) is a 1-movable independent
outer-connected dominating set of $G + H$, there exists $u \in (V(G + H) \setminus S) \cap N(v)$ such that $S \setminus \{v\} \cup \{u\}$ is an independent outer-connected dominating set of $G + H$. Moreover, S being an independent set, it follows that $u \in V(G) \setminus S$. Hence, S is a 1-movable independent dominating set of G. Thus, (i) holds. Similarly, (ii) holds if $S \subseteq V(H)$.

For the converse suppose (i) holds. Then S is an independent dominating set of $G + H$. Suppose $|S| = 1$, say $S = \{x\}$ for some $x \in V(G)$. Then $(V(G + H) \setminus S) = (V(G) \setminus S) + H$ is connected. Hence S is an independent outer-connected dominating set of $G + H$. Let $v \in S$. By assumption, suppose first that S is a 1-movable independent dominating set of G. Then there exists $u \in (V(G) \setminus S) \cap N_G(x)$ such that $S \setminus \{x\} \cup \{u\} = \{u\}$ is an independent dominating set of G and hence of $G + H$ and the subgraph $(V(G + H) \setminus \{u\}) = (V(G) \setminus \{u\}) + H$ is connected. Hence, $(S \setminus \{x\}) \cup \{u\} = \{u\}$ is an independent outer-connected dominating set of $G + H$. Suppose $|S| \geq 2$. Then $(V(G + H) \setminus S) = (V(G) \setminus S) + H$ is connected. Hence S is an independent outer-connected dominating set of $G + H$. Let $v \in S$. By assumption, there exists $u \in (V(G) \setminus S) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is an independent dominating set of $G + H$. Moreover, $(V(G + H) \setminus (S \setminus \{v\})) \cup \{u\} = (V(G) \setminus (S \setminus \{v\})) \cup \{u\} + H$ is connected. Thus, $(S \setminus \{v\}) \cup \{u\}$ is an independent outer-connected dominating set of $G + H$. Hence, in either case, S is a 1-movable independent outer-connected dominating set of $G + H$. Similarly, if (ii) holds, then $S \subseteq V(H)$ is a 1-movable independent outer-connected dominating set of $G + H$.

Corollary 2.5. Let G and H be connected nontrivial graphs. Then

\[
\tilde{\gamma}_{mic}^1(G + H) = \begin{cases}
1 & \text{if } \gamma(G) = 1 = \gamma(H) \text{ or } \gamma_{mi}^1(G) = 1 \text{ or } \gamma_{mi}^1(H) = 1 \\
\min \{\gamma_{mi}^1(G), \gamma_{mi}^1(H)\} & \text{otherwise.}
\end{cases}
\]

Proof. Let G and H be connected nontrivial graphs. Then consider the following cases:

Case 1: $\gamma(G) = 1 = \gamma(H)$.
Let $S = \{a\}$ be a γ-set of G and $\{z\}$ be a γ-set of H. By Theorem 2.4 (ia), S is a 1-movable independent outer-connected dominating set of $G + H$. So, $1 \leq \tilde{\gamma}_{mic}^1(G + H) \leq |S| = 1$. Thus $\tilde{\gamma}_{mic}^1(G + H) = 1$.

Case 2: $\gamma_{mi}^1(G) = 1$ or $\gamma_{mi}^1(H) = 1$.
Let $S = \{a\}$ be a γ_{mi}-set of G. By Theorem 2.4 (ia), S is a 1-movable independent outer-connected dominating set of $G + H$. So, $1 \leq \tilde{\gamma}_{mic}^1(G + H) \leq |S| = 1$. So, $\tilde{\gamma}_{mic}^1(G + H) = 1$. Similarly, if $D = \{w\}$ is a $\tilde{\gamma}_{mic}^1(H)$, then by Theorem 2.4 (iiia), S is a 1-movable independent outer-connected dominating set of $G + H$. So, $1 \leq \tilde{\gamma}_{mic}^1(G + H) \leq |S| = 1$. Thus, $\tilde{\gamma}_{mic}^1(G + H) = 1$.

Case 3: $\gamma_{mi}^1(G) \geq 2$ and $\gamma_{mi}^1(H) \geq 2$.
Let S be a γ_{mi}-set of G with $|S| \geq 2$. By Theorem 2.4 (ib), S is a 1-movable independent
outer-connected dominating set of $G + H$. Also, if S is a γ_{mi}^1-set of H, then by Theorem 2.4(ii), S is a 1-movable independent outer-connected dominating set of $G + H$. Hence,
\[\widetilde{\gamma}_{mic}^1(G + H) \leq \min \{ \gamma_{mi}^1(G), \gamma_{mi}^1(H) \}. \]

Suppose that S is a γ_{mi}^1-set of $G + H$. By Theorem 2.4(iii), S is a 1-movable independent dominating set of G or by Theorem 2.4(ii), S is a 1-movable independent dominating set of H. Hence, \(\widetilde{\gamma}_{mic}^1(G + H) = |S| \geq \min \{ \gamma_{mi}^1(G), \gamma_{mi}^1(H) \} \). Therefore, \(\widetilde{\gamma}_{mic}^1(G + H) = \min \{ \gamma_{mi}^1(G), \gamma_{mi}^1(H) \} \).

Theorem 2.6. Let H be a connected nontrivial graph. Then $S \subseteq V(K_1 + H)$ is a 1-movable independent outer-connected dominating set of $K_1 + H$ if and only if one of the following holds:

(i) $S = V(K_1)$ and there exists $a \in V(H)$ that dominates H.

(ii) S is an independent dominating set of H such that if $|S| \geq 2$, then S is a 1-movable independent dominating set of H.

Proof. Suppose S is a 1-movable independent outer-connected dominating set in $K_1 + H$ and $S = V(K_1) = \{x\}$. Then there exists $a \in V(H)$ such that $(S \setminus V(K_1)) \cup \{a\} = \{a\}$ is an independent outer-connected dominating set of $K_1 + H$. Thus, $a \in V(H)$ dominates H. Suppose $S \neq V(K_1)$. Then $S \subseteq V(H)$ and S is an independent dominating set in H. Suppose $|S| \geq 2$. Since S is a 1-movable independent outer-connected dominating set of $K_1 + H$, for all $v \in S$, there exists $u \in (V(K_1 + H) \setminus S) \cap N_G(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is an independent outer-connected dominating set of $K_1 + H$. Since S is an independent set, $u \neq x$. Hence $u \in (V(H) \setminus S) \cap N_G(v)$ for all $v \in S$. Therefore, S is a 1-movable independent dominating set of H.

For the converse, suppose (i) holds. Then $S = V(K_1) = \{x\}$ is an independent dominating set of $K_1 + H$ and $(V(K_1 + H) \setminus V(K_1)) = H$ is connected. Hence, S is an independent outer-connected dominating set of $K_1 + H$. By assumption, there exists $a \in V(H)$ that dominates H. Thus, $(S \setminus \{x\}) \cup \{a\} = \{a\}$ is an independent dominating set of $K_1 + H$ and $(V(K_1 + H) \setminus \{a\}) = K_1 + (V(H) \setminus \{a\})$ is connected. Hence, $(S \setminus \{x\}) \cup \{a\} = \{a\}$ is an independent outer-connected dominating set of $K_1 + H$. This concludes that S is a 1-movable independent outer-connected dominating set of $K_1 + H$. Suppose (ii) holds. Then S is an independent dominating set of $K_1 + H$ and $(V(K_1 + H) \setminus S) = K_1 + (V(H) \setminus S)$ is connected. Thus S is an independent outer-connected dominating set of $K_1 + H$. Suppose $|S| = 1$, say $S = \{w\}$ for some $w \in V(H)$. Then $(S \setminus \{w\}) \cup \{x\} = \{x\}$ is an independent dominating set of $K_1 + H$ and $(V(K_1 + H) \setminus \{x\}) = H$ is connected. Thus, $(S \setminus \{w\}) \cup \{x\} = \{x\}$ is an independent outer-connected dominating set of $K_1 + H$. Suppose $|S| \geq 2$. Let $v \in S$. By assumption, S is a 1-movable independent dominating set of H. Hence there exists $u \in (V(H) \setminus S) \cap N_H(v)$ such that $(S \setminus \{v\}) \cup \{u\}$ is an independent dominating set of H and hence of $K_1 + H$ and $(V(K_1 + H) \setminus S) = K_1 + (V(H) \setminus (S \setminus \{v\}) \cup \{u\})$ is connected. Therefore, S is a 1-movable independent outer-connected dominating set of $K_1 + H$. \[\square\]
Corollary 2.7. Let H be a connected nontrivial graph. Then

$$\tilde{\gamma}_{\text{mic}}^1(K_1 + H) = \begin{cases}
1 & \text{if } \gamma(H) = 1 \\
\gamma_{\text{mi}}^1(H) & \text{if } \gamma(H) \neq 1.
\end{cases}$$

Proof. Consider the following cases:

Case 1: $\gamma(H) = 1$

Let $S = V(K_1)$. Since $\gamma(H) = 1$, there exists $a \in V(H)$ that dominates H. Hence S is a 1-movable independent outer-connected dominating set of $K_1 + H$ by Theorem 2.6(i). Hence, $1 \leq \tilde{\gamma}_{\text{mic}}^1(K_1 + H) \leq |S| = 1$. So, $\tilde{\gamma}_{\text{mic}}^1(K_1 + H) = 1$. Similarly, if $S = \{z\}$ is a γ-set of H, then S is a 1-movable independent outer-connected dominating set of $K_1 + H$ by Theorem 2.6(ii). Thus, $1 \leq \tilde{\gamma}_{\text{mic}}^1(K_1 + H) \leq |S| = 1$. Therefore, $\gamma_{\text{mic}}^1(K_1 + H) = 1$.

Case 2: $\gamma(H) \neq 1$

Let S be a $\tilde{\gamma}_{\text{mic}}^1$-set of $K_1 + H$. Since $\gamma(H) \neq 1$, $|S| \geq 2$. By Theorem 2.6(ii), S is a 1-movable independent dominating set of H. Hence, $\tilde{\gamma}_{\text{mic}}^1(K_1 + H) = |S| \geq \gamma_{\text{mi}}^1(H)$. On the other hand, suppose that S is a γ_{mi}^1-set of H. By Theorem 2.6(ii), S is a 1-movable independent outer-connected dominating set of $K_1 + H$. Hence, $\tilde{\gamma}_{\text{mic}}^1(K_1 + H) \leq |S| = \gamma_{\text{mi}}^1(H)$. Therefore, $\tilde{\gamma}_{\text{mic}}^1(K_1 + H) = \gamma_{\text{mi}}^1(H)$. \hfill \blacksquare

The corona of two graphs G and H, denoted by $G \circ H$, is the graph obtained by taking one copy of G of order n and n copies of H, and then joining the ith vertex of G to every vertex in the ith copy of H. For every $v \in V(G)$, we denote by H^v the copy of H whose vertices are joined or attached to the vertex v. The next results present the characterization of the 1-movable independent outer-connected dominating sets in the corona of two connected nontrivial graphs and the exact values or bounds of the corresponding parameter are determined.

Theorem 2.8. Let G and H be connected nontrivial graphs of orders $n \geq 2$ and $m \geq 2$, respectively. A subset C of $V(G \circ H)$ is a 1-movable independent outer-connected dominating set of $G \circ H$ if and only if $C = \bigcup_{v \in V(G)} D_v$ where D_v is a 1-movable independent dominating set of H for each $v \in V(G)$.

Proof. Assume that C is a 1-movable independent outer-connected dominating set of $G \circ H$. Suppose $C \bigcap V(G) \neq \phi$. Let $v \in C \bigcap V(G)$. Since C is an independent set, $w \notin C$ for all $w \in V(H^v)$. Hence, $\langle V(H^v) \rangle$ is a component subgraph of $\langle V(G \circ H) \rangle \backslash C$ which contradicts the assumption that $\langle V(G \circ H) \rangle \backslash C$ is connected. Hence, $C \bigcap V(G) = \phi$. This leads to a conclusion that $C \bigcap V(H^v) \neq \phi$ for all $v \in V(G)$. Let $D_v = C \bigcap V(H^v)$ for each $v \in V(G)$. Since C is a 1-movable independent outer-connected dominating set of $G \circ H$, by Theorem 2.6(ii), D_v is a 1-movable independent dominating set of H^v for each $v \in V(G)$.\hfill \blacksquare
For the converse, suppose \(C = \bigcup_{v \in V(G)} D_v \) where \(D_v \) is a 1-movable independent dominating set of \(H^v \) for each \(v \in V(G) \). Then, \(C = \bigcup_{v \in V(G)} D_v \) is an independent dominating set of \(G \circ H \) and \(\langle V(G \circ H) \setminus C \rangle = G \circ \langle V(H^v) \setminus D_v \rangle \) is connected. Hence, \(C = \bigcup_{v \in V(G)} D_v \) is an independent outer-connected dominating set of \(G \circ H \). Let \(w \in C \). Then \(w \in D_v \) for all \(v \in V(G) \). Since \(D_v \) is a 1-movable independent dominating set of \(H^v \), there exists \(u \in V(H^v) \setminus D_v \cap N(w) \) such that \(C \setminus \{w\} \cup \{u\} \) is an independent dominating set of \(G \circ H \) and the subgraph \(\langle V(G \circ H) \setminus (C \setminus \{w\} \cup \{u\}) \rangle = G \circ \langle V(H^v) \setminus (D_v \setminus \{w\}) \cup \{u\} \rangle \) is connected. Thus, \(C \setminus \{w\} \cup \{u\} \) is an independent outer-connected dominating set of \(G \circ H \). Therefore, \(C \) is a 1-movable independent outer-connected dominating set of \(G \circ H \). □

Corollary 2.9. Let \(G \) and \(H \) be connected nontrivial graphs of orders \(m \geq 2 \) and \(n \geq 2 \), respectively. Then, \(\tilde{\gamma}^1_{mic}(G \circ H) = m \gamma^1_{mi}(H) \).

Proof. Suppose that \(C \) is a \(\tilde{\gamma}^1_{mic} \)-set of \(G \circ H \). By Theorem 2.8, \(C = \bigcup_{v \in V(G)} D_v \) where \(D_v \) is a 1-movable independent dominating set of \(H^v \) for each \(v \in V(G) \). Hence, \(\tilde{\gamma}^1_{mic}(G \circ H) = |C| = |\bigcup_{v \in V(G)} D_v| = |V(G)| |D_v| \geq m \gamma^1_{mi}(H) \). Also, suppose \(D \) is a \(\gamma^1_{mi} \)-set of \(H \). For each \(v \in V(G) \), let \(D_v \cong D \). Then, \(C = \bigcup_{v \in V(G)} D_v \) is a 1-movable independent outer-connected dominating set of \(G \circ H \). Hence, \(\tilde{\gamma}^1_{mic}(G \circ H) \leq |C| = \bigg| \bigcup_{v \in V(G)} D_v \bigg| = |V(G)| |D_v| = m \gamma^1_{mi}(H) \). Therefore, \(\tilde{\gamma}^1_{mic}(G \circ H) = m \gamma^1_{mi}(H) \). □

References

