Approximation of the Common Solution of Equilibrium Problems and Fixed Point Problems of Multi-valued Pseudocontractive-type Mappings in Hilbert Spaces

F.O. Isiogugu1 P. Pillay

School of Mathematics, Statistics and Computer Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
Department of Mathematics, University of Nigeria, Nsukka, Nigeria.

E. E. Chima
Department of Mathematics, University of Nigeria, Nsukka, Nigeria.

Abstract
A combined Ishikawa and Reich-Sabach iteration scheme is introduced in a real Hilbert space H for the approximation of the common solutions of equilibrium problems of bifunctions and fixed point problems of multi-valued pseudocontractive-type mappings. It is also proved that the iteration scheme converges strongly to a common element of the sets of fixed points of a finite family of multi-valued pseudocontractive-type mappings and the sets of solutions of a finite family of equilibrium problems. A numerical example for the computation of this algorithm is presented with concrete examples. The obtained results improve, complement and extend many results on equilibrium problems, multi-valued and single-valued mappings in the contemporary literature.

AMS subject classification: 47H10, 54H25.
Keywords: Hilbert spaces, multi-valued pseudocontractive-type mapping, resolvent of bifunctions, strong convergence, strict fixed point sets, equilibrium problem, finite families.

1Corresponding Author
1. Introduction

Let X be a normed space, K a subset of X and $T : D(T) \subseteq X \to 2^X$ a multi-valued map.

Definition 1.1. K is called proximinal if for each $x \in X$ there exists $k \in K$ such that

$$||x - k|| = \inf\{||x - y|| : y \in K\} = d(x, K). \quad (1.1)$$

It is known that every closed convex subset of a uniformly convex Banach space is proximinal. We shall denote the family of all nonempty closed and bounded subsets of X by $CB(X)$, the family of all nonempty closed and convex subsets of X by $CC(X)$, the family of all nonempty subsets of X by 2^X and the family of all proximinal subsets of X by $P(X)$, while H denotes the Hausdorff metric induced by the metric d on a normed space X, that is, for every $A, B \in CB(X)$,

$$H(A, B) = \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\}.$$

Definition 1.2. A point $x \in D(T)$ is called a fixed point of T if $x \in Tx$. If $Tx = \{x\}$, x is called a strict fixed point of T. The set $F(T) = \{x \in D(T) : x \in Tx\}$ is called the fixed point set of the multi-valued map T while the set $Fs(T) = \{x \in D(T) : Tx = \{x\}\}$ is called the strict fixed point set of T.

Definition 1.3. T is called L-Lipschitzian if there exists $L \geq 0$ such that for all $x, y \in D(T)$

$$H(Tx, Ty) \leq L||x - y||. \quad (1.2)$$

In (1.2), if $L \in [0, 1)$ T is said to be a contraction while T is nonexpansive if $L = 1$. T is called quasi-nonexpansive if $F(T) = \{x \in D(T) : x \in Tx\} \neq \emptyset$ and for all $p \in F(T)$,

$$H(Tx,Tp) \leq ||x - p||. \quad (1.3)$$

Clearly, every nonexpansive mapping with nonempty fixed point set is quasi-nonexpansive.

Definition 1.4. ([1]) T is said to be k-strictly pseudocontractive-type of Isiogugu [1] if there exists $k \in (0, 1)$ such that given any pair $x, y \in D(T)$ and $u \in Tx$, there exists $v \in Ty$ satisfying $||u - v|| \leq H(Tx, Ty)$ and

$$H^2(Tx, Ty) \leq ||x - y||^2 + k||x - u - (y - v)||^2. \quad (1.4)$$

If $k = 1$ in (1.4), T is said to be pseudocontractive-type while T is nonexpansive-type if $k = 0$.

Definition 1.5. ([15]) A multi-valued mapping $T : K \to P(K)$ is said to satisfy condition (1) if there exists a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with $f(0) = 0$ and $f(r) > 0$ for all $r \in (0, \infty)$ such that

$$d(x, Tx) \geq f(d(x, F(T))), \quad \forall x \in K.$$
Let H be a real Hilbert space with an inner product $\langle.,.\rangle$ and a norm $\|\|$, respectively and let K be a nonempty closed convex subset of H. Let $A : H \to H$ be an operator on H and $F : K \times K \to \mathbb{R}$ be a bifunction on K, where \mathbb{R} is the set of real numbers. The variational inequality problem of A in K denoted by $VIP(A,K)$ is to find an $x^* \in K$ such that
\[
\langle x - x^*, A(x^*) \rangle \geq 0, \quad \forall x \in K,
\] (1.5)
while the equilibrium problem for F is to find $x^* \in K$ such that
\[
F(x^*, x) \geq 0, \quad \forall x \in K. \tag{1.6}
\]

The set of solutions of (1.6) is denoted by $EP(F)$. Suppose $F(x, y) = \langle y - x, Ax \rangle$ for all $x, y \in K$, then $w \in EP(F)$ if and only if w is a solution of (1.5). Many problems in optimization, economics and physics reduce to finding a solution of (1.5), (see for examples, [3], [4] [6] and the references therein). The following conditions are assumed for solving the equilibrium problems for a bifunction $F : K \times K \to \mathbb{R}$:

(A1) $F(x, x) = 0$ for all $x \in K$.

(A2) F is monotone, that is, $F(x, y) + F(y, x) \leq 0$, for all $x, y \in K$.

(A3) For each $x, y, z \in K$, $\lim_{t \downarrow 0} F(tz + (1-t)x, y) \leq F(x, y)$.

(A4) For each $x \in K$, $y \mapsto F(x, y)$ is convex and lower semicontinuous.

Several algorithms have been introduced by authors for approximating solutions of equilibrium problems for a bifunction (or finite family of bifunctions) as well as a common element of the fixed point sets of finite family of multi-valued (or single-valued) mappings and the set of solutions of finite family of equilibrium problems (see for examples [7], [8], [9], [10], [11] and references therein).

In [7], Reich and Sabach proposed three algorithms for solving (common) equilibrium problems of bifunction(s) g in a general reflexive Banach spaces using the well chosen convex function f, the Bregman distance and the projection associated with it. They proposed one of the algorithms as follows.

Let X be a reflexive Banach space, $\{K_i\}_{i=1}^N$ a finite family of nonempty, closed and convex subsets of X. Let $\{\lambda^i\}_{i=1}^N$ be a finite family of positive real numbers and $\{g_i\}_{i=1}^N$ a finite family of bifunctions, with $g_i : K_i \times K_i \to \mathbb{R}$ for each $i = 1, 2, \ldots, N$. Suppose $f : X \to \mathbb{R}$ is a coercive Legendre function which is bounded, uniformly Fr\'{e}chet differentiable and totally convex on bounded subsets of X, Res_{λ^i, g_i}^f is the resolvent of g_i with respect to λ^i and f for each $i = 1, 2, \ldots, N$ and D_f is the Bregman distance on X.

If $E = \bigcap_{i=1}^N EP(g_i) \neq \emptyset$, then the sequences $\{x_n\}_{n=1}^\infty$ were generated from an arbitrary $x_0 \in X$ as follows:
Algorithm 1 (Algorithm II [7])

\[
\begin{align*}
x_0 &\in X, \\
K_i^0 &= X, \quad i = 1, 2, \ldots, N \\
y_n^i &= \text{Res}_{x_n^i}^f (x_n^i + e_n^i), \\
K_{n+1}^i &= \{ z \in K_n^i : D_f (z, y_n^i) \leq D_f (z, x_n^i + e_n^i) \}, \\
K_{n+1} &= \bigcap_{i=1}^N K_{n+1}^i, \\
x_{n+1} &= \text{proj}_{K_{n+1}}^f (x_0), \quad n = 0, 1, 2, \ldots
\end{align*}
\]

Furthermore, they proved that if \(\lim\inf_{n \to \infty} \lambda_n^i > 0 \) and \(\lim_{n \to \infty} e_n = 0 \), the sequences converge strongly to \(\text{proj}_{E}^f (x_0) \).

Recently, Isiogugu [8] obtained a strong convergence of a hybrid algorithm to a common element of the fixed point sets of two multi-valued strictly pseudocontractive-type mappings and the set of solutions of an equilibrium problem in Hilbert spaces using a strict fixed point set condition. She proved the following theorem:

Theorem 1.6. ([8]) Let \(K \) be a nonempty closed convex subset of a real Hilbert space \(H \), let \(f : K \times K \to \mathbb{R} \) be a bifunction satisfying (A1)-(A4) and let \(S, T : K \to P(K) \) be two strictly pseudocontractive-type mappings with contractive coefficients \(\lambda_1 \) and \(\lambda_2 \) respectively such that \(\mathcal{F} = F_\delta (T) \bigcap F_\delta (S) \bigcap EP(f) \neq \emptyset \). Let \(\{x_n\} \) be a sequence generated from an arbitrary \(x_0 \in K \) as follows:

\[
\begin{align*}
x_0 &\in H, \\
K_1 &= K, \\
x_1 &= P_K x_0, \\
y_n &= \alpha_n x_n + (1 - \alpha_n) [\beta_n v_n + (1 - \beta_n) z_n], \\
u_n &\in K \text{ such that } f (u_n, y) + \frac{1}{r_n} (y - u_n, u_n - y_n) \geq 0, \quad \forall y \in K, \\
K_{n+1} &= \{ z \in K_n : \| z - u_n \|^2 \leq \| z - x_n \|^2 \}, \\
x_{n+1} &= \text{proj}_{K_{n+1}}^f (x_0),
\end{align*}
\]

where \(v_n \in Tx_n, z_n \in Sx_n \). \((\alpha_n)_{n=1}^\infty, (\beta_n)_{n=1}^\infty\) are sequences in \([0,1]\) satisfying

(i) \(\alpha_n \geq \max [\lambda_1, \lambda_2] \).

(ii) \(\lim\inf_{n \to \infty} (1 - \alpha_n)(1 - \beta_n)(\alpha_n - \lambda_1) > 0 \), \(\lim\inf_{n \to \infty} (1 - \alpha_n)(\alpha_n - \lambda_2)\beta_n > 0 \)

(iii) \(\{r_n\} \subset [a, \infty) \) for some \(a > 0 \).

Then \(\{x_n\} \) converges strongly to \(p \in P_\mathcal{F} x_0 \).

Isiogugu et al. [13] observed that in Algorithms 1, if \(T^i : K^i \to K^i \) is the identity map on \(K^i, i = 1, 2, \ldots, N \), respectively and \(u_n^i = \alpha_n x_n + (1 - \alpha_n) T^i x_n + e_n^i = x_n + e_n^i \), then we can rewrite Algorithm 1 in the following form:
Algorithm 2.

\[
\begin{aligned}
& x_0 \in X, \\
& K_0^i = X, \quad i = 1, 2, \ldots, N \\
& \upsilon_n^i = \alpha_n x_n + (1 - \alpha_n) T^i x_n + e_n^i, \\
& y_n^i = \text{Res}^f_{\upsilon_n^i, y_n^i}(\upsilon_n^i), \\
& K_{n+1}^i = \{z \in K_n^i : D_f(z, y_n^i) \leq D_f(z, \upsilon_n^i)\}, \\
& K_{n+1} = \bigcap_{i=1}^N K_{n+1}^i, \\
& x_{n+1} = \text{proj}^f_{K_{n+1}}(x_0),
\end{aligned}
\]

Motivated by the above observations in Algorithms 2 and the iteration scheme in Theorem 1.1 considered by Isiogugu in [8], Isiogugu et al. [13] constructed a hybrid algorithm for approximating a common element of the fixed point sets of a finite family of multi-valued nonexpansive mappings and the set of solutions of a finite family of equilibrium problems in Hilbert spaces without error terms. They studied the following iteration scheme:

Let \(H \) be a real Hilbert space and \(\{K^i\}_{i=1}^N \) a finite family of nonempty closed convex subsets of \(H \). Let \(\{f^i\}_{i=1}^N \) be a finite family of bifunctions and \(\{T^i\}_{i=1}^N \) a finite family of nonexpansive mappings such that \(f^i : K^i \times K^i \to \mathbb{R} \) and \(T^i : K^i \to P(K^i) \) for all \(i = 1, 2, \ldots, N \), respectively. Let \(\{\alpha_n^i\}_{n=1}^\infty \) be sequences in \([0,1]\) and \(\{r_n^i\}_{n=1}^\infty \subset [a, \infty) \) for some \(a > 0 \) for all \(i=1, 2, \ldots, N \), then from an arbitrary \(x_0 \in H \) the sequence \(\{x_n\}_{n=1}^\infty \) is generated as follows:

Algorithm 3 (Algorithm 7 [13]).

\[
\begin{aligned}
& x_0 \in H, \\
& K_1^i = K^i, \quad \forall \ i = 1, 2, \ldots, N, \\
& K_1 = \bigcap_{i=1}^N K_1^i, \\
& x_1 = P_{K_1}x_0, \\
& y_n^i = \alpha_n^i x_n + (1 - \alpha_n^i) y_n^i, \\
& u_n^i \in K^i \text{ such that } f^i(u_n^i, y) + \frac{1}{r_n^i} (y - u_n^i, u_n^i - y_n^i) \geq 0, \quad \forall y \in K^i, \\
& K_{n+1}^i = \{z \in K_n^i : \|z - u_n^i\|^2 \leq \|z - x_n\|^2\}, \\
& K_{n+1} = \bigcap_{i=1}^N K_{n+1}^i, \\
& x_{n+1} = P_{K_{n+1}}x_0,
\end{aligned}
\]

where \(y_n^i \in T^i x_n \).

Using the above algorithm, they proved the following theorem:

Theorem 1.7. (Theorem 2 [13]). Let \(H, \{K^i\}_{i=1}^N, \{T^i\}_{i=1}^N, \{f^i\}_{i=1}^N, \{\alpha_n^i\}_{n=1}^\infty \) and \(\{r_n^i\}_{n=1}^\infty \) be as in algorithm 3. Suppose \(f^i \) satisfying (A1)-(A4) for all \(i = 1, 2, \ldots, N, \mathcal{F} = \)
Motivated by Algorithm 3 above, we introduce a combined Ishikawa and Reich-Sabach iteration scheme in a real Hilbert space H for the approximation of the common solution of equilibrium problems of bifunctions and fixed point problems of multi-valued pseudocontractive-type mappings; establish close and convex property for the set of fixed points of multi-valued pseudocontractive-mapping which guarantee the application of the algorithm to this class of mappings; and prove that the iteration scheme converges strongly to a common element of the fixed point sets of a finite family of multi-valued pseudocontractive-type mappings and the set of solutions of a finite family of equilibrium problems. Furthermore, a numerical example of the computation of this algorithm is presented with concrete examples. This work is a continuation of the study on the computability of algorithms for approximating the solutions of equilibrium problems for bifunctions involving the construction of the sequences $\{K_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$, from an arbitrary $x_0 \in H$, where $K_{n+1} = \{z \in K_n : \|z - u_n\|^2 \leq \|z - x_n\|^2\}$, $x_{n+1} = P_{K_{n+1}}x_0$, while P_{K_n} is the projection map and $\{u_n\}_{n=1}^{\infty}$ is the sequence of the resolvent of the bifunctions. The obtained results improve, complement and extend many results on equilibrium problems, multi-valued and single-valued mappings in the contemporary literature.

2. Preliminaries

Lemma 2.1. Let H be a real Hilbert space and let K be a nonempty closed convex subset of H. Let P_K be the convex projection onto K, then, the convex projection is characterized by the following relations;

(i) $x^* = P_K(x) \iff \langle x - x^*, y - x^* \rangle \leq 0$, for all $y \in K$.

(ii) $\|x - P_Kx\|^2 \leq \|x - y\|^2 - \|y - P_Kx\|^2$.

(iii) $\|x - P_Ky\|^2 \leq \|x - y\|^2 - \|P_Ky - y\|^2$.

Lemma 2.2. ([3]). Let K be a nonempty closed convex subset of a real Hilbert space H and $F : K \times K \to \mathbb{R}$ a bifunction satisfying (A1)-(A4). Let $r > 0$ and $x \in H$. Then, there exists $z \in K$ such that

$$F(z, y) + \frac{1}{r}(y - z, z - x) \geq 0, \quad \forall y \in K.$$$$

Lemma 2.3. ([4]). Let K be a nonempty closed convex subset of a real Hilbert space H. Assume that $F : K \times K \to \mathbb{R}$ that satisfies (A1)-(A4). Let $r > 0$ and $x \in H$, define
\[T_r : H \rightarrow 2^K \text{ by} \]
\[T_r(x) = \{ z \in K : F(z, y) + \frac{1}{r}(y - z, z - x) \geq 0 \}, \quad \forall y \in K. \]

Then, the following conditions hold:

1. \(T_r \) is single valued.
2. \(T_r \) is firmly nonexpansive, that is for any \(x, y \in H \), \(\| T_r x - T_r y \|^2 \leq (T_r x - T_r y, x - y) \).
3. \(F(T_r) = EP(F) \).
4. \(EP(F) \) is closed and convex.

Lemma 2.4. ([6]). Let \(K \) be a nonempty closed convex subset of a real Hilbert space \(H \) and \(F : K \times K \rightarrow \mathbb{R} \) a bifunction satisfying (A1)-(A4). Let \(r > 0 \) and \(x \in H \). Then, for all \(x \in H \) and \(p \in F(T_r) \),
\[\| p - T_r x \|^2 + \| T_r x - x \|^2 \leq \| p - x \|^2. \]

Lemma 2.5. ([16]). Let \(H \) be a real Hilbert space and \(T : D(T) \subseteq H \rightarrow P(H) \) be a multi-valued \(L \)-Lipschitzian mapping, then, fixed point set of \(T \) is closed.

3. Main Results

Proposition 3.1. Let \(H \) be a real Hilbert space, \(C \) a closed convex subset of \(H \) and \(T : C \subseteq H \rightarrow CC(C) \) be a multi-valued, \(L \)-Lipschitzian pseudocontractive-type mapping. If \(F_s(T) \) (the strict fixed point set) of \(T \) is nonempty, then, it is convex.

Proof. Let \(p_1, p_2 \in F_s(T) \), we show that \(p = \lambda p_1 + (1 - \lambda)p_2 \in F_s(T) \). For each \(x \in D(T) \), let \(T_\beta x = T[(1 - \beta)x + \beta u_x] \), where \(u_x \in Tx \) with \(d(x, Tx) = \| x - u_x \| \) and \(\beta \in \left(0, \frac{1}{\sqrt{1 + L^2 + 1}} \right) \). Clearly, \(T_\beta x \) is well defined since \(u_x \) is unique and \(C \) is convex. Also if \(p^* \in F_s(T) \), then, \(T_\beta p^* = \{ p^* \} \). Observe that for any \(u_\beta x \in T_\beta x \), given any \(p^* \in F_s(T) \), the pseudocontractive-type condition on \(T \) implies that
\[\| u_\beta x - p^* \|^2 \leq H^2(T_\beta x, Tp^*) \leq \| (1 - \beta)x + \beta u_x - p^* \|^2 + \| ((1 - \beta)x + \beta u_x) - u_\beta x \|^2. \]

Similarly,
\[\| u_x - p^* \|^2 \leq H^2(Tx,Tp^*) \leq \| x - p^* \|^2 + \| x - u_x \|^2 \]
It follows that for the pair $p, (1 - \beta)p + \beta u_p$ and u_p, there exists $u_{\beta p} \in T_{\beta} p = T[(1 - \beta)p + \beta u_p]$ with $\|u_p - u_{\beta p}\| \leq H(Tp, T_{\beta} p)$. Now,

\[
d^2(p, T_{\beta} p) \leq \|p - u_{\beta p}\|^2 = \|\lambda p_1 + (1 - \lambda)p_2 - u_{\beta p}\|^2 \\
= \|\lambda[p_1 - u_{\beta p}] + (1 - \lambda)[p_2 - u_{\beta p}]\|^2 \\
= \lambda\|p_1 - u_{\beta p}\|^2 + (1 - \lambda)\|p_2 - u_{\beta p}\|^2 \\
- \lambda(1 - \lambda)\|p_1 - p_2\|^2.
\]

Also,

\[
d^2(p_1, T_{\beta} p) \leq \|p_1 - u_{\beta p}\|^2 \leq H^2(Tp_1, T_{\beta} p) \\
\leq \|[1 - \beta)p + \beta u_p] - p_1\|^2 + \|[1 - \beta)p + \beta u_p] - u_{\beta p}\|^2 \\
\leq \|p - p_1\|^2 + \beta\|u_p - p_1\|^2 - (1 - \beta)\|p - u_p\|^2 \\
+ (1 - \beta)\|p - u_{\beta p}\|^2 + \beta\|u_p - u_{\beta p}\|^2 - (1 - \beta)\|p - u_p\|^2 \\
\leq \|p - p_1\|^2 + \beta H^2(Tp, Tp_1) - \beta(1 - \beta)\|p - u_p\|^2 \\
+ (1 - \beta)\|p - u_{\beta p}\|^2 + \beta H^2(Tp, T_{\beta} p)^2 - \beta(1 - \beta)\|p - u_p\|^2 \\
\leq \|p - p_1\|^2 + \beta\|p - p_1\|^2 + \|p - u_p\|^2 - \beta(1 - \beta)\|p - u_p\|^2 \\
+ (1 - \beta)\|p - u_{\beta p}\|^2 + \beta L_2^2\|p - [(1 - \beta)p + \beta u_p]\|^2 \\
- \beta(1 - \beta)\|p - u_p\|^2 \\
\leq \|p - p_1\|^2 + \beta\|p - p_1\|^2 + \|p - u_p\|^2 - \beta(1 - \beta)\|p - u_p\|^2 \\
+ (1 - \beta)\|p - u_{\beta p}\|^2 + \beta L_2^2\|p - u_p\|^2 - \beta(1 - \beta)\|p - u_p\|^2 \\
\leq \|p - p_1\|^2 + (1 - \beta)\|p - u_{\beta p}\|^2
\]

Similarly,

\[
d^2(p_2, T_{\beta} p) \leq \|p_2 - u_{\beta p}\|^2 \leq \|p - p_2\|^2 + (1 - \beta)\|p - u_{\beta p}\|^2
\]

Hence,

\[
\|p - u_{\beta p}\|^2 \leq \lambda\|p - p_1\|^2 + (1 - \beta)\|p - u_{\beta p}\|^2 \\
+ (1 - \lambda)\|p - p_2\|^2 + (1 - \beta)\|p - u_{\beta p}\|^2 \\
- \lambda(1 - \lambda)\|p_1 - p_2\|^2 \\
= \|\lambda p_1 + (1 - \lambda)p_2 - p\|^2 + (1 - \beta)\|p - u_{\beta p}\|^2 \\
= +(1 - \beta)\|p - u_{\beta p}\|^2
\]
This implies that $0 \leq \beta \| p - u_{\beta p} \| \leq 0$. Since $\beta \in (0, \frac{1}{\sqrt{1 + L^2} + 1})$, we have that $\| p - u_{\beta p} \| = 0$. Observe that $d(p, T_\beta p) \leq \| p - u_{\beta p} \| = 0 \leq d(p, T_\beta p)$, therefore, $d(p, T_\beta p) = \| p - u_{\beta p} \| = 0$ and $p = u_{\beta p} \in T_\beta p$.

$$d(p, T_\beta p) \leq d(p, T_\beta p) + H(T_\beta p, T p) \leq L\|(1 - \beta)p + \beta u_p - p\| = L\beta d(p, T p).$$

Thus, $0 \leq (1 - \beta L)d(p, T_p) \leq 0$. Consequently, $d(p, T_p) = 0$ and proximinal property of T guarantees the existence $u \in T p$ such that $\| u - p \| = 0$. Hence, $p \in T p$.

We now consider the following algorithm.

Let H be a real Hilbert space and $\{K^i\}_{i=1}^N$ a finite family of nonempty closed convex subsets of H. Let $\{F^i\}_{i=1}^N$ be a finite family of bifunctions and $\{T^i\}_{i=1}^N$ a finite family of L^i-Lipschitzian pseudocontractive-type mappings such that $F^i : K^i \times K^i \to \mathbb{R}$ and $T^i : K^i \to CC(K^i)$ for all $i = 1, 2, \ldots, N$ respectively. Let $\{\alpha^i_n\}_{n=1}^\infty$, $\{\beta^i_n\}_{n=1}^\infty$ be sequences in $[0,1]$ and $\{r^i_n\}_{n=1}^\infty \subset [a, \infty)$ for some $a > 0$, for all $i = 1, 2, \ldots, N$. Then, from an arbitrary $x_0 \in H$ we generate the sequence $\{x^i_n\}_{n=1}^\infty$ as follows:

Algorithm 4.

\[\begin{align*}
x_0 &\in H, \\
K^i_0 &\equiv K^i, \quad \forall i = 1, 2, \ldots, N, \\
z^i_n &\equiv (1 - \beta^i_n)x_n + \beta^i_n y^i_n, \\
y^i_n &\equiv (1 - \alpha^i_n)x_n + \alpha^i_n w^i_n, \\
u^i_n &\in K^i \text{ such that } F^i(u^i_n, y) + \frac{1}{r^i_n} \langle y - u^i_n, u^i_n - y^i_n \rangle \geq 0, \quad \forall y \in K^i, \\
K^i_{n+1} &\equiv \{ z \in K^i_n : \| z - u^i_n \|^2 \leq \| z - x_n \|^2 \}, \\
K^i_{n+1} &\equiv \bigcap_{i=1}^N K^i_{n+1}, \\
x_{n+1} &\equiv P_{K_{n+1}}x_0,
\end{align*}\]

where $u^i_n \in T^i(z^i_n) = T^i(\beta^i_n x_n + \beta^i_n y^i_n)$ with $d(\beta^i_n x_n + \beta^i_n y^i_n, T^i(1 - \beta^i_n)x_n + \beta^i_n y^i_n) = ||(1 - \beta^i_n)x_n + \beta^i_n y^i_n - w^i_n||$, $v^i_n \in T^i x_n$ with $||x_n - v^i_n|| = d(x_n, T^i x_n)$ and $||u^i_n - v^i_n|| \leq H(T^i z^i_n, T^i x_n)$.

Theorem 3.2. Let H, $\{K^i\}_{i=1}^N$, $\{F^i\}_{i=1}^N$, $\{T^i\}_{i=1}^N$, $\{\alpha^i_n\}_{n=1}^\infty$, $\{\beta^i_n\}_{n=1}^\infty$ and $\{r^i_n\}_{n=1}^\infty$ be as in Algorithm 4. Suppose F^i satisfying (A1)-(A4) for all $i = 1, 2, \ldots, N$, $\mathbb{F} = \bigcap_{i=1}^N F^i \bigcap_{i=1}^N P^i \neq \emptyset$, then $\{x^i_n\}$ converges strongly to $p \in P_{\mathbb{F}}x_0$ if for each $i = 1, 2, \ldots, N$ and for all $n \geq 1$, $\{\alpha^i_n\}$ and $\{\beta^i_n\}$ are real sequences satisfying:

(i) $0 \leq \alpha^i_n \leq \beta^i_n < 1$;
(ii) $\liminf_{n \to \infty} \alpha_n^i = \alpha^i > 0$;

(iii) $\sup_{n \geq 1} \beta_n^i \leq \beta^i \leq \frac{1}{\sqrt{1 + (L)^2} + 1}$.

Proof. Since K_n^i is closed and convex for all $n \geq 1$ and for all $i = 1, 2, \ldots, N$, $K_n = \bigcap_{i=1}^{N} K_n^i$ is closed and convex and hence $P_{K_{n+1}}x_0$ is well defined, also, $u_n^i = T_{r_n}y_n^i$. Next, we show that $F \subset K_n$, for all $n \geq 1$. $F \subset K_1^i = K_1$ for all $i = 1, 2, \ldots, N$, therefore, $F \subset \bigcap_{i=1}^{N} K_1^i = K_1$. Assume $F \subset K_n = \bigcap_{i=1}^{N} K_n^i$. Using Lemma 2.3, for all $p \in F$ we have

$$
\|p - u_n^i\|^2 = \|p - T_{r_n}y_n^i\|^2 \\
\leq \|p - y_n^i\|^2 \\
= \|(1 - \alpha_n^i)x_n + \alpha_n^i w_n^i - p\|^2 \\
= \|(1 - \alpha_n^i)(x_n - p) + \alpha_n^i (w_n^i - p)\|^2 \\
= (1 - \alpha_n^i)\|x_n - p\|^2 + \alpha_n^i \|w_n^i - p\|^2 - \alpha_n^i (1 - \alpha_n^i)\|x_n - w_n^i\|^2 \\
\leq (1 - \alpha_n^i)\|x_n - p\|^2 + \alpha_n^i H^2(T^i z_n^i, T^i p) - \alpha_n^i (1 - \alpha_n^i)\|x_n - w_n^i\|^2 \\
\leq (1 - \alpha_n^i)\|x_n - p\|^2 + \alpha_n^i \left[\|z_n^i - p\|^2 + \|z_n^i - w_n^i\|^2\right] - \alpha_n^i (1 - \alpha_n^i)\|x_n - w_n^i\|^2 \\
= (1 - \alpha_n^i)\|x_n - p\|^2 + \alpha_n^i \|z_n^i - p\|^2 + \alpha_n^i d^2(z_n^i, T^i z_n^i) - \alpha_n^i (1 - \alpha_n^i)\|x_n - w_n^i\|^2. \quad (3.1)
$$

Also,

$$
\|z_n^i - w_n^i\|^2 = \|(1 - \beta_n^i)x_n + \beta_n^i v_n^i - w_n^i\|^2 \\
= \|(1 - \beta_n^i)(x_n - w_n^i) + \beta_n^i (v_n^i n - w_n^i)\|^2 \\
= (1 - \beta_n^i)\|x_n - w_n^i\|^2 + \beta_n^i \|v_n^i - w_n^i\|^2 - \beta_n^i (1 - \beta_n^i)\|x_n - v_n^i\|^2. \quad (3.2)
$$
(3.1) and (3.2) imply that
\[
\|p - y_n^i\|^2 \leq (1 - \alpha_n^i)\|x_n - p\|^2 + \alpha_n^i (\|x_n - w_n^i\|^2 + \beta_n^i\|v_n^i - w_n^i\|^2)
\]
\[
+ \alpha_n^i [(1 - \beta_n^i)\|x_n - w_n^i\|^2 + \beta_n^i\|v_n^i - w_n^i\|^2 - \beta_n^i (1 - \beta_n^i)\|x_n - v_n^i\|^2]
\]
\[
= \alpha_n^i [(1 - \beta_n^i)\|x_n - w_n^i\|^2 + \beta_n^i\|v_n^i - w_n^i\|^2 - \beta_n^i (1 - \beta_n^i)\|x_n - v_n^i\|^2]
\]
\[
= \alpha_n^i [(1 - \beta_n^i)\|x_n - w_n^i\|^2 + \beta_n^i\|v_n^i - w_n^i\|^2 - \beta_n^i (1 - \beta_n^i)\|x_n - v_n^i\|^2]
\]
\[
\leq (1 - \alpha_n^i)\|x_n - p\|^2 + \alpha_n^i (\|x_n - p\|^2 + \|x_n - v_n^i\|^2)
\]
\[
(3.3)\]

(3.3) and (3.4) imply that
\[
\|p - y_n^i\|^2 \leq (1 - \alpha_n^i)\|x_n - p\|^2 + \alpha_n^i [(\|x_n - p\|^2 + \|x_n - v_n^i\|^2)
\]
\[
+ \alpha_n^i [(1 - \beta_n^i)\|x_n - w_n^i\|^2 + \beta_n^i\|v_n^i - w_n^i\|^2 - \beta_n^i (1 - \beta_n^i)\|x_n - v_n^i\|^2]
\]
\[
+ \alpha_n^i (\|x_n - p\|^2 + \|x_n - v_n^i\|^2)
\]
\[
= \alpha_n^i [(1 - \beta_n^i)\|x_n - w_n^i\|^2 + \beta_n^i\|v_n^i - w_n^i\|^2 - \beta_n^i (1 - \beta_n^i)\|x_n - v_n^i\|^2]
\]
\[
= \alpha_n^i [(1 - \beta_n^i)\|x_n - w_n^i\|^2 + \beta_n^i\|v_n^i - w_n^i\|^2 - \beta_n^i (1 - \beta_n^i)\|x_n - v_n^i\|^2]
\]
\[
\leq (1 - \alpha_n^i)\|x_n - p\|^2 + \alpha_n^i (\|x_n - p\|^2 + \|x_n - v_n^i\|^2)
\]
\[
\leq (1 - \alpha_n^i)\|x_n - p\|^2 + \alpha_n^i (\|x_n - p\|^2 + \|x_n - v_n^i\|^2)
\]
\[
(3.4)\]
This shows that \(p \in K_{n+1}^i \) for all \(i = 1, 2, \ldots, N \), therefore, \(p \in \bigcap_{i=1}^{N} K_{n+1}^i = K_{n+1} \) and hence \(\mathbb{F} \subseteq K_n \) for all \(n \geq 1 \). From \(x_n = P_{K_n}x_0 \) and Lemma 2.1 (i), we obtain

\[
\langle x_n - y, x_0 - x_n \rangle \geq 0, \quad \forall \ y \in K_n.
\]

(3.6)

and

\[
\langle x_n - q, x_0 - x_n \rangle \geq 0, \quad \forall \ q \in F.
\]

(3.7)

Using Lemma 2.1 (ii), we obtain

\[
\|x_n - x_0\|^2 = \|P_{K_n}x_0 - x_0\|^2 \leq \|x_0 - q\|^2 - \|q - x_n\|^2 \\
\leq \|x_0 - q\|^2,
\]

for each \(q \in \mathbb{F} \subset K_n \) and for all \(n \geq 1 \). Consequently, the sequences \(\{x_n\}, \{v_n^i\} \) and \(\{w_n^i\} \) \(i = 1, 2, \ldots, N \) are bounded. Furthermore, since \(x_n = P_{K_n}x_0, x_{n+1} = P_{K_{n+1}}x_0 \in K_{n+1} \subset K_n \), then from definition of \(P_K \) we have \(\|x_n - x_0\| \leq \|x_{n+1} - x_0\| \) for all \(n \geq 1 \). Therefore, the sequence \(\{\|x_n - x_0\|\}_{n=1}^{\infty} \) is nondecreasing. Thus, \(\lim_{n \to \infty} \|x_n - x_0\| \) exists.

From the construction of \(K_n \) we have that \(K_m \subset K_n \) and \(x_m = P_{K_n}x_0 \in K_n \) for any integer \(m \geq n \). Thus, from Lemma 2.1 (iii)

\[
\|x_m - x_n\|^2 = \|x_m - P_{K_n}x_0\|^2 \\
\leq \|x_m - x_0\|^2 - \|x_n - x_0\|^2.
\]

(3.8)

Letting \(m, n \to \infty \) in (3.8), we have \(\|x_m - x_n\| \to 0 \). Hence \(\{x_n\} \) is a Cauchy sequence. Since \(H \) is Hilbert and \(K^i \) is closed and convex for all \(i = 1, 2, \ldots, N \), we can assume that \(x_n \to P^* \in K^i \), for all \(i = 1, 2, \ldots, N \) as \(n \to \infty \). We now show that \(P^* \in F(T^i) \), for all \(i = 1, 2, \ldots, N \). From (3.5), we obtain

\[
\sum_{n=0}^{\infty} \alpha^2[1 - 2\beta - L^2\beta^2]|x_n - v_n^i|^2 \leq \sum_{n=0}^{\infty} \alpha^2 \beta_n^i[1 - 2\beta_n^i - L^2\beta_n^i]^2 |x_n - v_n^i|^2 \\
\leq \sum_{n=0}^{\infty} (|x_n - p|^2 - |x_{n+1} - x_n|^2) \\
\leq \|x_0 - p\|^2 + D < \infty.
\]

It then follows that \(\lim_{n \to \infty} |x_n - v_n^i| = 0 \). Since \(v_n^i \in T^i x_n \) we have that \(d(x_n, T^i x_n) \leq |x_n - v_n^i| \to 0 \) as \(n \to \infty \). Since \(T^i \) satisfies condition (1), \(\lim_{n \to \infty} d(x_n, F(T^i)) = 0 \).

Thus, there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(\|x_{n_k}^i - p_k^i\| \leq \frac{1}{2k} \) for some \(\{p_k^i\}_{k=1}^{\infty} \subseteq F(T^i) \). We now show that \(\{p_k^i\}_{k=1}^{\infty} \) is a Cauchy sequence in \(F(T^i) \). Observe that when \(m = n + 1 \) in (3.8) we obtain

\[
\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.
\]

(3.9)
Consequently, \(\lim_{n \to \infty} \|x_{n_{k+1}} - x_{n_k}\| = 0 \) for all subsequences \(\{x_{n_k}\} \) of \(\{x_n\} \). It then follows that
\[
\|p_{k+1}^i - p_k^i\| \leq \|p_{k+1}^i - x_{n_{k+1}}^i\| + \|x_{n_{k+1}}^i - x_n^i\| + \|x_n^i - p_k^i\|
\leq \frac{1}{2k+1} + \frac{1}{2k} + \|x_{n_{k+1}}^i - x_n^i\|
\leq \frac{1}{2k-1} + \|x_{n_{k+1}}^i - x_n^i\|.
\]
Therefore, \(\{p_k^i\} \) is a Cauchy sequence and converges to some \(q^i \in F(T^i) \) because \(F(T^i) \) is closed. Now,
\[
\|x_{n_k}^i - q^i\| \leq \|x_{n_k}^i - p_k^i\| + \|p_k^i - q^i\|.
\]
Hence \(x_{n_k}^i \to q^i \) as \(k \to \infty \).

It remains to show that \(p^* \) is in \(EP(F^i) \) for all \(i = 1, 2, \ldots, N \). Since \(x_n \) converges strongly to \(p^* \), uniqueness of limit of a convergent sequence guarantees that \(p^* = q^i \) for all \(i = 1, 2, \ldots, N \). Hence \(p^* \in F(T^i) \), for all \(i = 1, 2, \ldots, N \). It then follows that \(p^* \in \bigcap F(T^i) \).

Combining (3.9) and (3.10) we have
\[
\lim_{n \to \infty} \|x_{n+1} - u_n^i\| = 0.
\]

It follows from \(\lim_{n \to \infty} \|x_n - p^*\| = 0 \) and (3.11) that
\[
\lim_{n \to \infty} \|u_n^i - p^*\| = 0.
\]

Observe that
\[
\|p^* - x_n\|^2 - \|p^* - u_n^i\|^2 = \|x_n\|^2 - \|u_n^i\|^2 - 2\langle p^*, x_n - u_n^i \rangle
\leq \|x_n - u_n^i\| (\|x_n\| + \|u_n^i\|) + 2\|p^*\| \|x_n - u_n^i\|.
\]
It follows from (3.11) that
\[
\lim_{n \to \infty} \|p^* - x_n\| - \|p^* - u^i_n\| = 0.
\tag{3.14}
\]

Now from (3.13)
\[
\|p^* - y^i_n\| \leq \|p^* - x_n\|.
\tag{3.15}
\]

Also, using \(u^i_n = T^{r_i} y^i_n\), Lemma 2.4 and (3.15) we have
\[
\|u^i_n - y^i_n\|^2 = \|T^{r_i} y^i_n - y^i_n\|^2 \\
\leq \|p^* - y^i_n\|^2 - \|p^* - T^{r_i} y^i_n\|^2 \\
\leq \|p^* - x_n\|^2 - \|p^* - r_i y^i_n\|^2 \\
= \|p^* - x_n\|^2 - \|p^* - u^i_n\|^2.
\tag{3.16}
\]

Therefore, from (3.14) and (3.16)
\[
\lim_{n \to \infty} \|u^i_n - y^i_n\| = 0.
\tag{3.17}
\]

Consequently, from (3.12) and (3.17)
\[
\lim_{n \to \infty} \|y^i_n - p^*\| = 0.
\tag{3.18}
\]

From the assumption that \(r^i_n \geq a > 0\),
\[
\lim_{n \to \infty} \frac{\|u^i_n - y^i_n\|}{r^i_n} = 0.
\tag{3.19}
\]

Since \(u^i_n = T^{r_i} y^i_n\) implies
\[
F(u^i_n, y) + \frac{1}{r^i_n} \langle y - u^i_n, u^i_n - y^i_n \rangle \geq 0,
\]
we deduce from (A2) that
\[
\frac{\|u^i_n - y^i_n\|^2}{r^i_n} \geq \frac{1}{r^i_n} \langle y - u^i_n, u^i_n - y^i_n \rangle \geq -F(u^i_n, y) \geq F(y, u^i_n). \forall y \in K^i
\]

By taking limit as \(n \to \infty\) of the above inequality and from (A4), (3.12) and (3.18), \(F(y, p^*) \leq 0\), for all \(y \in K^i\). Let \(t \in (0, 1)\) and for all \(y \in K^i\), since \(p^* \in K^i\), \(y_t = ty + (1-t)p^* \in K^i\). Hence \(F(y_t, p^*) \leq 0\). Therefore, from (A1),
\[
0 = F(y_t, y_t) \leq t F(y_t, y) + (1-t) F(y_t, p^*) \leq t F(y_t, y),
\]
that is, \(F(y_t, y) \geq 0\). Letting \(t \downarrow 0\), from (A3) we obtain \(F(p^*, y) \geq 0\) for all \(y \in K^i\) so that \(p^* \in EP(F^i)\) for all \(i = 1, 2, \ldots, N\). Hence \(p^* \in \mathbb{F}\).
Finally, we show that $p^* = P_Fx_0$. By taking the limits as $n \to \infty$ in (3.7) we have

$$(p^* - p^*, x_0 - p^*) \geq 0, \quad \forall q \in F.$$

Thus, from Lemma 2.1 (i) $p^* = P_Fx_0$. This completes the proof. ■

Remark 3.3. If $N = 1$ in Algorithm 4, we obtain the following algorithms considered by Isiogugu et al. in [16].

Let H be a real Hilbert space and K a nonempty closed convex subset of H. Let F be a bifunction and T an L-Lipschitzian pseudocontractive-type mapping such that $F : K \times K \to \mathbb{R}$ and $T : K \to CC(K)$ respectively. Let $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ be sequences in $[0,1]$ and $\{r_n\}_{n=1}^{\infty} \subset [a, \infty)$ for some $a > 0$, then from an arbitrary $x_0 \in H$ we generate the sequences $\{x_n\}_{n=1}^{\infty}$ as follows.

Algorithm 5.

$$
\begin{align*}
x_0 & \in H, \\
K_0 & = K, \\
z_n & = (1 - \beta_n)x_n + \beta_n v_n, \\
y_n & = (1 - \alpha_n)x_n + \alpha_n w_n, \\
u_n & \in K \text{ such that } F(u_n, y) + \frac{1}{r_n}\langle y - u_n, u_n - y_n \rangle \geq 0, \quad \forall y \in K, \\
K_{n+1} & = \{z \in K : \|z - u_n\|^2 \leq \|z - x_n\|^2\}, \\
x_{n+1} & = P_{K_{n+1}}x_0,
\end{align*}
$$

Algorithm 6.

$$
\begin{align*}
x_0 & \in H, \\
z_n & = (1 - \beta_n)x_n + \beta_n v_n, \\
y_n & = (1 - \alpha_n)x_n + \alpha_n w_n, \\
u_n & \in K \text{ such that } F(u_n, y) + \frac{1}{r_n}\langle y - u_n, u_n - y_n \rangle \geq 0, \quad \forall y \in K, \\
x_{n+1} & = \frac{1}{2}(u_n + x_n),
\end{align*}
$$

where $w_n \in T(z_n) = T((1 - \beta_n)x_n + \beta_n v_n)$ with $d((1 - \beta_n)x_n + \beta_n v_n, T[(1 - \beta_n)x_n + \beta_n v_n]) = ||(1 - \beta_n)x_n + \beta_n v_n - w_n||$, $v_n \in Tx_n$ with $||x_n - v_n|| = d(x_n, Tx_n)$ and $||w_n - v_n|| \leq H(Tz_n, Tx_n)$.

4. **Numerical example of the computation**

We will apply Lemma 2.7 in the computation of the sequences $\{K_n^i\}_{n=1}^{\infty}, i = 1, 2, 3, \ldots, N$ from which we can easily determine the sequence $\{x_n\}_{n=0}^{\infty}$.
Example 4.1. Let $H = \mathbb{R}$ (the reals with the usual norm and inner product), $i = 1, 2, \ldots, 4$ and $K_i = [-\sqrt{10i}, 1]$, for all i. Then for each i, we define:

(i) $T^i : [-\sqrt{10i}, 1] \to CC([-\sqrt{10i}, 1])$ by

\[
T^i x = \begin{cases}
[-\sqrt{10i} x, -2x], & x \in [0, 1]

\{ -\frac{x}{\sqrt{10i}} \}, & x \in (-\sqrt{10i}, 0).
\end{cases}
\]

Obviously, T^i satisfies condition 1 since $d(x, F(T^i)) = d(x, \{0\}) = |x - 0| = |x|$, for all $i = 1, 2, 3, 4$, while

\[
d(x, T^i x) = \begin{cases}
d(x, [-\sqrt{10i} x, -2ix]), & x \in [0, 1]
d(x, \{-\frac{x}{\sqrt{10i}}\}), & x \in (-\sqrt{10i}, 0).
\end{cases}
\]

\[
\geq |x| = f(d(x, F(T^i)), \forall i.
\]

Where $f : [0, \infty) \to [0, \infty)$ is defined by $f(r) = r$.

Now, given any pair $x, y \in [0, 1]$,

\[
H^2(T^i x, T^i y) = |\sqrt{10i}(x - y)|^2 = 10i|x - y|^2 = |x - y|^2 + (10i - 1)|x - y|^2
\]

Also, given any $u \in T^i x, u = -\alpha x, 2i \leq \alpha \leq \sqrt{10i}$ and we can choose $v = -\alpha y \in T^i y$ so that $|u - v|^2 \leq H^2(T^i x, T^i y)$. Observe that

\[
|x - u - (y - v)|^2 = (1 + \alpha)^2 |x - y|^2.
\]

It then follows that

\[
H^2(T^i x, T^i y) = |x - y|^2 + \frac{10i - 1}{(1 + \alpha)^2} |x - u - (y - v)|^2
\leq |x - y|^2 + \frac{10i - 1}{(1 + 2i)^2} |x - u - (y - v)|^2
\leq |x - y|^2 + |x - u - (y - v)|^2, \forall i = 1, 2, 3, 4.
\]

Similarly, for any $x \in [0, 1], y \in [-\sqrt{10i}, 0]$,

\[
H^2(T^i x, T^i y) = |\sqrt{10i} x - \frac{y}{\sqrt{10i}}|^2 \leq |\sqrt{10i} x - \sqrt{10i} y|^2
\leq |x - y|^2 + |x - u - (y - v)|^2, \forall i = 1, 2, 3, 4.
\]
Furthermore, for any \(x, y \in [-\sqrt{10}, 0) \),

\[
H^2(T^i x, T^i y) = \frac{1}{\sqrt{10}i} \|x - y\|^2 \leq \|x - y\|^2 + \|x - u - (y - v)\|^2, \quad \forall i = 1, 2, 3, 4.
\]

Observe that for \(i = 1 \), any pair \(x, y \in [0, 1] \) and \(u \in T^1 x, v = 0 \). In particular for \(u = -2x \)

\[
H^2(T^1 x, T^1 y) = \|x - 0\|^2 + \frac{10 - 1}{(1 + 2)^2} \|x - (-2x)\|^2 = \|x - y\|^2 + \|x - u - (y - v)\|^2 > \|x - y\|^2 + k \|x - u - (y - v)\|^2, \quad \forall k \in (0, 1).
\]

Hence, \(T^1 \) is not \(K \)-strictly pseudocontractive-type mapping. Therefore, \(T^i \) is an \(L^i \)-Lipschitzian pseudocontractive-type mapping for each \(i = 1, 2, 3, 4 \) with \(L^i = \sqrt{10i} \).

It then follows that:

(ii) \(\psi_n^i = \begin{cases} -2ix_n, & x_n \in [0, 1] \\ -\frac{x_n}{\sqrt{10i}}, & x_n \in [-\sqrt{10i}, 0). \end{cases} \)

(iii) \(\{\alpha^i_n\}_{n=1}^\infty = \frac{10ni - (n + 1)(\sqrt{1 + 10i} + 1)}{10ni(\sqrt{1 + 10i} + 1)} \).

(iv) \(\{\beta^i_n\}_{n=1}^\infty = \frac{12ni - (n + 1)(\sqrt{1 + 10i} + 1)}{12ni(\sqrt{1 + 10i} + 1)} \).

(v) \(z_n^i = (1 - \beta^i_n)x_n + \beta^i_n \psi_n^i \).

(vi) \(w_n^i = \begin{cases} -2iz_n^i, & z_n^i \in [0, 1] \\ -\frac{z_n^i}{\sqrt{10i}}, & z_n^i \in [-\sqrt{10i}, 0). \end{cases} \)

(vii) \(y_n^i = (1 - \alpha^i_n)x_n + \alpha^i_n w_n^i \).

(viii) \(K_{n+1}^i = \begin{cases} \left[-\sqrt{10i}, \frac{1}{2}(x_n + u_n^i)\right], & x_n \in [0, 1] \\ \left[\frac{1}{2}(x_n + u_n^i), 1\right], & x_n \in [-\sqrt{10i}, 0). \end{cases} \)

(ix) \(K_{n+1} = \begin{cases} \left[-\sqrt{10i}, \min_{1 \leq i \leq 4} \frac{1}{2}(x_n + u_n^i)\right], & x_n \in [0, 1] \\ \left[\max_{1 \leq i \leq 4} \frac{1}{2}(x_n + u_n^i), 1\right], & x_n \in [-\sqrt{10i}, 0). \end{cases} \)

(x) \(x_{n+1} = \begin{cases} \min_{1 \leq i \leq 4} \frac{1}{2}(x_n + u_n^i), & x_n \in [0, 1] \\ \max_{1 \leq i \leq 4} \frac{1}{2}(x_n + u_n^i), & x_n \in [-\sqrt{10i}, 0). \end{cases} \)

We will define \(F^i : [-\sqrt{10i}, 1) \times [-\sqrt{10i}, 1] \rightarrow R, \{r_n^i\}_{n=1}^\infty \) and \(\{u_n^i\}_{n=1}^\infty \) as in [13].

That is,

(xi) \(F^i(x, y) = -ix^2 + iy^2 \).
Observe that

\[F^i(z, y) + \frac{1}{r}(y - z, z - x) \geq 0 \Rightarrow iy^2 - iz^2 + \frac{1}{r}(y - z)(z - x) \geq 0, \]

\[\Rightarrow iy^2 - iz^2 + \frac{1}{r}[yz - xy - z^2 + xz] \geq 0, \]

\[\Rightarrow iyz - ixy - z^2 + xz \geq 0, \]

\[\Rightarrow iyz + (z - x)y - irz^2 - z^2 + xz \geq 0. \]

Now \(F(y) = iyz + (z - x)y - irz^2 - z^2 + xz \) a is a quadratic function of \(y \) with coefficients \(a = ir \), \(b = z - x \) and \(c = -irz^2 - z^2 + xz \). Therefore, we can compute the discriminant \(\Delta \) of \(F \) as follows:

\[
\Delta = (z - x)^2 + 4ir(irz^2 + z^2 - xz) \\
= z^2 + x^2 - 2xz + 4i^2r^2z^2 + 4irz^2 - 4irxz \\
= (1 + 4i^2r^2 + 4ir)z^2 - 2(2ir + 1)xz + x^2 \\
= (1 + 2ir)^2z^2 - 2(1 + 2ir)xz + x^2 \\
= [(1 + 2ir)z - x]^2. \tag{4.1}
\]

Obviously, \(F(y) \geq 0 \) for all \(y \in \mathbb{R} \) if it has at most one solution in \(\mathbb{R} \). Thus \(\Delta \leq 0 \) and hence \(z = T_{ri}^i(x) = \frac{x}{1 + 2ir} \). Consequently

(xii) \(\{u^i_n\}_{n=1}^{\infty} = T_{ri}^i(y^i_n) = \left\{ \frac{y^i_n}{2ir^i_n + 1} \right\}_{n=1}^{\infty}. \)

(xiii) \(\{r^i_n\}_{n=1}^{\infty} = \left\{ \frac{ni + 1}{ni} \right\}_{n=1}^{\infty}, \)

It is easy to see that \(F_s(T^i) = \{0\} \neq \emptyset, E P(F^i) = \{0\} \) for each \(i \) and

\[
\mathbb{F} = \bigcap_{i=1}^{N} F_s(T^i) \cap \bigcap_{i=1}^{N} E P(F^i) = \{0\}.
\]

The algorithm is computed with Microsoft word Excel 97-2003 Workbook.

Table 1 shows different sequences generated from different values of \(x_0 \). In particular, we considered without loss of generality \(x_0 = 1, -1, \frac{1}{2}, -\frac{1}{2}, -\sqrt{10} \).
Approximation of the Common Solution of Equilibrium Problems

Table 1.

<table>
<thead>
<tr>
<th>n</th>
<th>X_n</th>
<th>X_{n-1}</th>
<th>X_n</th>
<th>X_{n-1}</th>
<th>X_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.536659107</td>
<td>-0.54104205</td>
<td>0.268329553</td>
<td>-0.270521025</td>
<td>-3.16227766</td>
</tr>
<tr>
<td>1</td>
<td>0.29117122</td>
<td>-0.295466249</td>
<td>0.145585609</td>
<td>-0.147283124</td>
<td>-0.93150027</td>
</tr>
<tr>
<td>2</td>
<td>0.158693418</td>
<td>-0.160754457</td>
<td>0.079346708</td>
<td>-0.080377228</td>
<td>-0.508350231</td>
</tr>
<tr>
<td>3</td>
<td>0.086702252</td>
<td>-0.087838166</td>
<td>0.043351125</td>
<td>-0.043919083</td>
<td>-0.277768673</td>
</tr>
<tr>
<td>4</td>
<td>0.047442303</td>
<td>-0.048032645</td>
<td>0.023721151</td>
<td>-0.024016322</td>
<td>-0.151892562</td>
</tr>
<tr>
<td>5</td>
<td>0.025986962</td>
<td>-0.026279408</td>
<td>0.01299348</td>
<td>-0.013139703</td>
<td>-0.083102786</td>
</tr>
<tr>
<td>6</td>
<td>0.014243777</td>
<td>-0.014383278</td>
<td>0.007121888</td>
<td>-0.007191638</td>
<td>-0.04548392</td>
</tr>
<tr>
<td>7</td>
<td>0.007809537</td>
<td>-0.007874512</td>
<td>0.003904768</td>
<td>-0.003937255</td>
<td>-0.024901395</td>
</tr>
<tr>
<td>8</td>
<td>0.004282798</td>
<td>-0.004312073</td>
<td>0.002141398</td>
<td>-0.002156036</td>
<td>-0.013635973</td>
</tr>
<tr>
<td>9</td>
<td>0.002349157</td>
<td>-0.002361708</td>
<td>0.001174578</td>
<td>-0.001180854</td>
<td>-0.007468379</td>
</tr>
<tr>
<td>10</td>
<td>0.001288376</td>
<td>-0.001293691</td>
<td>0.000644367</td>
<td>-0.000646845</td>
<td>-0.004091009</td>
</tr>
<tr>
<td>11</td>
<td>0.000707086</td>
<td>-0.000708741</td>
<td>0.000353542</td>
<td>-0.00035437</td>
<td>-0.002241237</td>
</tr>
<tr>
<td>12</td>
<td>0.000387997</td>
<td>-0.000388332</td>
<td>0.000193998</td>
<td>-0.000194159</td>
<td>-0.001227978</td>
</tr>
<tr>
<td>13</td>
<td>0.000212924</td>
<td>-0.00021278</td>
<td>0.000106462</td>
<td>-0.000106389</td>
<td>-0.000672871</td>
</tr>
<tr>
<td>14</td>
<td>0.000116857</td>
<td>-0.000116602</td>
<td>0.000058428</td>
<td>-0.0000583</td>
<td>-0.000368729</td>
</tr>
<tr>
<td>15</td>
<td>0.000064138</td>
<td>-0.000063901</td>
<td>0.000032069</td>
<td>-0.00003195</td>
<td>-0.000202075</td>
</tr>
<tr>
<td>16</td>
<td>0.000035205</td>
<td>-0.000035021</td>
<td>0.000017602</td>
<td>-0.00001751</td>
<td>-0.00011075</td>
</tr>
<tr>
<td>17</td>
<td>0.000019325</td>
<td>-0.000019194</td>
<td>0.000009662</td>
<td>-0.000009597</td>
<td>-0.000060701</td>
</tr>
<tr>
<td>18</td>
<td>0.000010608</td>
<td>-0.00001052</td>
<td>0.000005304</td>
<td>-0.00000526</td>
<td>-0.000033271</td>
</tr>
<tr>
<td>19</td>
<td>0.000005823</td>
<td>-0.000005766</td>
<td>0.000002911</td>
<td>-0.000002883</td>
<td>-0.000018237</td>
</tr>
<tr>
<td>20</td>
<td>0.000003196</td>
<td>-0.000003136</td>
<td>0.000001315</td>
<td>-0.000001158</td>
<td>-0.000000996</td>
</tr>
<tr>
<td>21</td>
<td>0.000001754</td>
<td>-0.000001732</td>
<td>0.000000877</td>
<td>-0.000000866</td>
<td>-0.000005479</td>
</tr>
<tr>
<td>22</td>
<td>0.000000963</td>
<td>-0.000000949</td>
<td>0.000000481</td>
<td>-0.000000474</td>
<td>-0.000003003</td>
</tr>
<tr>
<td>23</td>
<td>0.000000528</td>
<td>-0.000000525</td>
<td>0.000000264</td>
<td>-0.000000259</td>
<td>-0.000001646</td>
</tr>
<tr>
<td>24</td>
<td>0.000000289</td>
<td>-0.000000285</td>
<td>0.000000144</td>
<td>-0.000000141</td>
<td>-0.000000902</td>
</tr>
<tr>
<td>25</td>
<td>0.000000158</td>
<td>-0.000000156</td>
<td>0.000000079</td>
<td>-0.000000077</td>
<td>-0.000000494</td>
</tr>
<tr>
<td>26</td>
<td>0.000000086</td>
<td>-0.000000085</td>
<td>0.000000043</td>
<td>-0.000000042</td>
<td>-0.000000271</td>
</tr>
<tr>
<td>27</td>
<td>0.000000047</td>
<td>-0.000000046</td>
<td>0.000000023</td>
<td>-0.000000022</td>
<td>-0.000000148</td>
</tr>
<tr>
<td>28</td>
<td>0.000000025</td>
<td>-0.000000025</td>
<td>0.000000012</td>
<td>-0.000000012</td>
<td>-0.000000081</td>
</tr>
<tr>
<td>29</td>
<td>0.000000013</td>
<td>-0.000000013</td>
<td>0.000000006</td>
<td>-0.000000006</td>
<td>-0.000000044</td>
</tr>
<tr>
<td>30</td>
<td>0.000000007</td>
<td>-0.000000007</td>
<td>0.000000003</td>
<td>-0.000000003</td>
<td>-0.000000024</td>
</tr>
<tr>
<td>31</td>
<td>0.000000003</td>
<td>-0.000000003</td>
<td>0.000000001</td>
<td>-0.000000001</td>
<td>-0.000000013</td>
</tr>
<tr>
<td>32</td>
<td>0.000000001</td>
<td>-0.000000001</td>
<td>0.000000001</td>
<td>-0.000000001</td>
<td>-0.000000007</td>
</tr>
<tr>
<td>33</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000003</td>
</tr>
<tr>
<td>34</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
</tr>
<tr>
<td>35</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
</tr>
<tr>
<td>36</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
<td>0.000000001</td>
</tr>
</tbody>
</table>

Competing Interests
The Authors declare that there is no competing interest.

Acknowledgement
The first author acknowledges with thanks the bursary and financial support from Department of Science and Technology and National Research Foundation, Republic of South Africa Center of Excellence in Mathematical and Statistical Sciences (DST-NRF.
COE-MaSS) Post Doctoral Bursary. Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the CoE-MaSS.

References

[12] F. O. Isiogugu, P. Pillay and D. Baboolal, Approximation of a common element of the set of fixed points of multi-valued type-one demicontractive-type mappings

