On the Forcing Vertex Steiner Number of A Graph

J.John
Department of Mathematics, Government College of Engineering
Tirunelveli 7, India

A.Arockiamary
Department of Mathematics, Government College of Engineering
Tirunelveli 7, India

Abstract
Let \(x \) be a vertex of \(G \). For a minimum \(x \)-Steiner set \(W \) of \(G \), a subset \(T \subseteq W \) is called a forcing subset for \(W \), if \(W \) is the unique minimum \(x \)-Steiner set containing \(T \). A forcing subset for \(W \) of minimum cardinality is a minimum forcing subset of \(W \). The forcing \(x \)-Steiner number of \(W \), denoted by \(f_{sx}(W) \), is the cardinality of a minimum forcing subset of \(W \). The forcing \(x \)-Steiner number of \(G \), denoted by \(f_{sx}(G) \), is \(f_{sx}(G) = \min f_{sx}(W) \), where the minimum is taken over all minimum \(x \)-Steiner sets \(W \) in \(G \). Some general properties satisfied by these concepts are studied. The forcing vertex Steiner number of some standard graphs are obtained. For every pair \(a, b \) of integers with \(0 \leq a \leq b \), there exists a connected graph \(G \) such that \(f_s(G) = a \) and \(f_{sx}(G) = b \) for some vertex \(x \) in \(G \).

Keywords: Steiner distance, Steiner number, forcing Steiner number, vertex Steiner number, forcing vertex Steiner number.

AMS Subject Classification: 05C12.

1. INTRODUCTION
By a graph \(G = (V, E) \), we mean a finite undirected connected graph without loops or multiple edges. The order and size of \(G \) are denoted by \(p \) and \(q \) respectively. The distance \(d(u, v) \) between two vertices \(u \) and \(v \) in a connected graph \(G \) is the
length of a shortest $u - v$ path in G. An $u - v$ path of length $d(u, v)$ is called an $u - v$ geodesic. It is known that the distance is a metric on the vertex set of G. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, and denoted by $radG$ and the maximum eccentricity is its diameter, and denoted by $diamG$ of G. For basic graph theoretic terminology, we refer to Harary [2]. For a nonempty set W of vertices in a connected graph G, the Steiner distance $d(W)$ of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner-W-tree. It is to be noted that $d(W) = d(u, v)$ when $W = \{u, v\}$. If v is an end vertex of a Steiner-W-tree, then $v \in W$. Also, if $< W >$ is connected, then any Steiner-W-tree contains the elements of W only. The Steiner distance of a graph is introduced in [6]. The set of all vertices of G that lie on some Steiner-W-tree is denoted by $S(W)$. If $S(W) = V$, then W is called a Steiner set of G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of G and this cardinality is the Steiner numbers of G. If W is a Steiner set of G and v a cut vertex of G, then v lies in every Steiner-W-tree of G and so $W \cup \{v\}$ is also a Steiner set of G. The Steiner number of a graph was introduced in [7] and further studied in [3,4,8,9,10,11,12,13]. Let G be a connected graph and W a minimum Steiner set of G. A subset $T \subseteq W$ is called a forcing subset for W, if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing Steiner number of W, denoted by $f_s(W)$, is the cardinality of a minimum forcing subset of W. The forcing Steiner number of G, denoted by $f_s(G)$, is $f_s(G) = \min f_s(W)$, where the minimum is taken over all minimum Steiner sets W in G. A vertex v is called a simplicial vertex of a graph G if the subgraph induced by its neighbors is complete. Let x be a vertex of a connected graph G and $W \subset V(G)$ such that $x \notin W$. Then W is called an x-Steiner set of G if every vertex of G lies on some Steiner-W-tree of G. The minimum cardinality of an x-Steiner set of G is defined as the x-Steiner number of G and denoted by $s_x(G)$. Any x-Steiner set of cardinality $s_x(G)$ is called an s_x-set of G.

Throughout the following G denotes a connected graph.

The following theorems are used in the sequel.

Theorem 1.1. [7] Each simplicial vertex of a graph G belongs to every Steiner set of G. In particular, each end-vertex of G belongs to every Steiner set of G.

Theorem 1.2. [14] Let G be a connected graph and W be the set of all Steiner vertices of G. Then $f_s(G) \leq s(G) - |W|$.
Theorem 1.3.[14] For a complete graph $G = K_p (p \geq 2)$ or a non-trivial tree $G = T$, $f_s(G) = 0$.

Theorem 1.4.[11] Every simplicial vertex of G other than the vertex x (whether x is extreme or not) belongs to every x-Steiner set for any vertex in G.

Theorem 1.5.[11] For any vertex x in G, $s(G) \leq s_x(G) + 1$.

Theorem 1.6.[12] Let G be a connected graph, x a vertex of G and W the set of all x-Steiner vertices of G. Then $f_{sx}(G) \leq s_x(G) - |W|$.

Theorem 1.7.[12] For a complete graph $G = K_p (p \geq 2)$ or a non-trivial tree G, $f_{sx}(G) = 0$ for any vertex x in G.

Theorem 1.8.[12] Let G be a connected graph and x a cut vertex of G. Then $f_s(G) = f_{sx}(G)$.

2 ON THE FORCING VERTEX STEINER NUMBER OF A GRAPH

Definition 2.1. Let x be a vertex of G. For a minimum x-Steiner set W of G, a subset $T \subseteq W$ is called a forcing subset for W, if W is the unique minimum x-Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing x-Steiner number of W, denoted by $f_{sx}(W)$, is the cardinality of a minimum forcing subset of W. The forcing x-Steiner number of G, denoted by $f_{sx}(G)$, is $f_{sx}(G) = \min \{ f_{sx}(W) \}$, where the minimum is taken over all minimum x-Steiner sets W in G.

Remark 2.2. From Theorem 1.5, there is a relationship between Steiner number and the vertex Steiner number. The following example shows there is no relationship between the forcing Steiner number and the forcing vertex Steiner number of a graph.

Example 2.3. For the graph G given in Figure 2.1, $W_1 = \{v_1, v_2, v_5\}, W_2 = \{v_1, v_3, v_5\}$ and $W_3 = \{v_2, v_5, v_6\}$ are the s-sets of G such that $f_s(W_1) = 2, f_s(W_2) = f_s(W_3) = 1$ so that $f_s(G) = 1$. For the vertex $x = v_3, W = \{v_1, v_5\}$ is the unique s_x-set of G so that $f_{sx}(G) = 0$. Therefore $f_{sx}(G) < f_s(G)$.
Also for the graph G given in Figure 2.2, $S_1 = \{z, z, u_1\}, S_2 = \{z, z, v_1\}$ are the s- sets of G such that $f_s(S_1) = 1, f_s(S_2) = 1$, so that $f_s(G) = 1$. For the vertex $x = s, W_1 = \{z, z, u_1, w_1, w_2\}, W_2 = \{z, z, u_1, y_1, y_2\}, W_3 = \{z, z, v_1, w_1, w_2\}, W_4 = \{z, z, v_1, y_1, y_2\}, W_5 = \{z, z, u_1, w_1, y_2\}, W_6 = \{z, z, u_1, w_2, y_1\}, W_7 = \{z, z, v_1, y_1, w_2\}, W_8 = \{z, z, v_1, w_1, y_2\}$ are the s_x- sets of G such that $f_{sx}(W_1) = f_{sx}(W_2) = f_{sx}(W_3) = f_{sx}(W_4) = f_{sx}(W_5) = f_{sx}(W_6) = f_{sx}(W_7) = f_{sx}(W_8) = 5$ so that $f_{sx}(G) = 5$. Therefore $f_s(G) < f_{sx}(G)$.

So we have the following realization result.

Theorem 2.4. For every pair a, b of integers with $0 \leq a \leq b$, there exists a connected graph G such that $f_s(G) = a$ and $f_{sx}(G) = b$ for some vertex x in G.

Proof. Case 1. $a = b$. If $a = 0, b = 0$, let $G = K_a$. Then by Theorems 1.3 and 1.7, $f_s(G) = 0 = a$ and $f_{sx}(G) = 0 = b$. Now, assume that $a \geq 1$. Let $P: t, y, z$ be a path on three vertices and $P_i: u_i, v_i (1 \leq i \leq a)$ be a copy of path on two
vertices. Let H be the graph obtained from P and $P_i (1 \leq i \leq a)$ by joining the vertices t and u_i and the vertices z and $v_i (1 \leq i \leq a)$. Now, let G be the graph in Figure 2.3 obtained from H by adding 2 edges tz_1 and zz_2. Let $Z = \{z_1, z_2\}$ and $H_i = \{u_i, v_i\} (1 \leq i \leq a)$. Let $x = t$.

First, we show that $s(G) = a + 2$. Since the vertices u_i, v_i do not lie on any Steiner-Z tree of G, it is clear that Z is not a Steiner set of G. We observe that every s-set of G must contain exactly one vertex from each $H_i = \{u_i, v_i\} (1 \leq i \leq a)$. Thus, $s(G) \geq a + 2$. On the other hand, since the set $W = Z \cup \{v_1, v_2, \ldots, v_a\}$ is a Steiner set of G, it follows that $s(G) \leq |W| = a + 2$. Hence $s(G) = a + 2$.

Next, we show $f_s(G) = a$. By Theorem 1.1, every Steiner set of G contains Z and so it follows from Theorem 1.2 that $f_s(G) \leq s(G) - |Z| = a$. Now, since $s(G) = a + 2$ and every s-set of G contains Z, it is easily seen that every s-set S is of the form $Z \cup \{c_1, c_2, \ldots, c_a\}$, where $c_i \in H_i (1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then there is a vertex $c_j (1 \leq j \leq a)$ such that $c_j \not\in T$. Let d_j be a vertex of H_j distinct from c_j. Then $S_1 = (S - \{c_j\}) \cup \{d_j\}$ is a s-set properly containing T. Thus S is not the unique s-set containing T and so T is not a forcing subset of S. This is true for all s-sets of G and so $f_s(G) = a$.

Since t is a cut vertex of G, by Theorem 1.8, $f_{sx}(G) = b$.

Case 2. $1 < a < b$.

Let $P: u, v, w$ be a path on three vertices and let $P_i: u_i, v_i (1 \leq i \leq a)$ be a copy of path on two vertices. Let H be the graph obtained from P and
First, show that $s(G) = c$. Let S be any Steiner set of G. Then by Theorem 1.1, $Z \subseteq S$. It is clear that Z is not a Steiner set of G. We observe that every Steiner set of G must contain exactly one vertex from each $H_i (1 \leq i \leq a)$ and so $s(G) \geq c - a + a = c$. On the other hand, since the set $S_1 = Z \cup \{u_1, u_2, \ldots, u_a\}$ is a Steiner set of G, it follows that $s(G) \leq |S_1| = c$. Thus $s(G) = c$.

Next, we show that $f_s(G) = a$. Since every s-set of G contains Z, it follows from Theorem 1.2 that $f_s(G) \leq s(G) - |Z| = c - (c - a) = a$. Now, since $s(G) = c$ and every s-set of G contains Z, it is easily seen that every s-set S of G is of the form $Z \cup \{c_1, c_2, \ldots, c_a\}$ where $c_i \in H_i (1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then there is a vertex $x \in S$ such that $x \notin T$. Suppose that $x = c_j$, let e_j be a vertex of H_j distinct from c_j. Then $S_2 = (S - \{c_j\}) \cup \{e_j\}$ is a s-set properly containing T. Thus S is not the unique s-set containing T so that T is not a forcing subset of S. This is true for all s-sets of G and so it follows that $f_s(G) = a$.

Now, we show that $s_x(G) = c + b - a$. Let S be any x-Steiner set of G. Then by Theorem 1.4, $Z \subseteq S$. It is clear that Z is not an x-Steiner set of G. We observe that every s_x-set of G must contain exactly one vertex from each $H_i (1 \leq i \leq a)$ and exactly one vertex from each $Q_j (1 \leq j \leq b - a)$. Thus $s_x(G) \geq c + b - a$. On the other hand, $S_3 = Z \cup \{u_1, u_2, \ldots, u_a\} \cup \{y_1, y_2, \ldots, y_{b-a}\}$ is an x-Steiner set of G and so $s_x(G) = c + b - a$.

Next, we show that $f_{sx}(G) = b$. Since every s_x-set of G contains Z, it follows from Theorem 1.6 that $f_{sx}(G) \leq s_x(G) - |Z| = (c + b - a) - (c - a) = b$. Now, since $s_x(G) = c + b - a$ and every s_x-set of G contains Z, it is easily seen that every s_x-set S of G is of the form $Z \cup \{c_1, c_2, \ldots, c_a\} \cup \{d_1, d_2, \ldots, d_{b-a}\}$, where $c_i \in H_i (1 \leq i \leq a)$ and $d_j \in Q_j (1 \leq j \leq b - a)$. Let T be any proper subset of S with $|T| < b$. Then there is a vertex $y \in S$ such that $y \notin T$. If $y = c_i$, then let e_i be a vertex of H_i distinct from c_i. Then $S' = (S - \{c_i\}) \cup \{e_i\}$ is a smaller x-forcing set than S.

Finally, we show that $s_{sx}(G) = c + b - a$. Let S be any sx-Steiner set of G. Then by Theorem 1.5, $Z \subseteq S$. It is clear that Z is not an sx-Steiner set of G. We observe that every s_{sx}-set of G must contain exactly one vertex from each $H_i (1 \leq i \leq a)$ and exactly one vertex from each $Q_j (1 \leq j \leq b - a)$. Thus $s_{sx}(G) \geq c + b - a$. On the other hand, $S_4 = Z \cup \{u_1, u_2, \ldots, u_a\} \cup \{y_1, y_2, \ldots, y_{b-a}\}$ is an sx-Steiner set of G and so $s_{sx}(G) = c + b - a$.
\{c_i\} \cup \{e_i\} is an s_x-set properly containing T. If y = d_j then let f_j be a vertex of Q_j distinct from d_j. Then S'' = (S - \{d_j\}) \cup \{f_j\} is an s_x-set properly containing T. Thus S is not the unique s_x-set containing T and so T is not a forcing subset of S. This is true for all s_x-sets of G and so f_{sx}(G) = b.

We leave the following problem as an open problem.

Problem 2.5. For every pair a, b of integers with 0 ≤ a ≤ b, does there exist a connected graph G such that f_{sx}(G) = a and f_s(G) = b for some vertex x in G?

REFERENCES

[12] J.John and A. Arockiamary, The forcing vertex Steiner number of a Graph (Paper Communicated)
