On generalized \ast-n-derivations in \ast-rings

Uttam Kumar Sharma
Department of Mathematics,
MKR Government Degree College Gaziabad-201012.

Santosh Kumar
Department of Mathematics,
Gyan Mahavidyalaya Aligarh-202001.

Abstract
Let R be a \ast-ring. In this paper we introduce the notion of generalized \ast-n-derivation in R. An additive mapping $x \rightarrow x^\ast$ of R into itself is called an involution on R if it satisfies the conditions: (i) $(x^\ast)^\ast = x$, (ii) $(xy)^\ast = y^\ast x^\ast$ for all $x, y \in R$. A ring R equipped with an involution \ast is called a \ast-ring. It is shown that if a prime \ast-ring R admits a nonzero generalized \ast-n-derivation F (resp. a reverse generalized \ast-n-derivation) equipped with a \ast-n-derivation (resp. a reverse \ast-n-derivation) D, then R is commutative. Further, some related properties of generalized \ast-n-derivation in a semiprime \ast-ring have also been investigated.

AMS subject classification:
Keywords: Associative ring, involution, derivation, reverse derivation, \ast-derivation, reverse \ast-derivation, \ast-n-derivation, reverse \ast-n-derivation, generalized \ast-n-derivation, reverse generalized \ast-n-derivation, prime \ast-ring, semi prime \ast-ring.

1. Introduction
Throughout the paper, R will represent an associative ring with centre $Z(R)$. The ring R is called a prime ring if $xRy = 0$ implies $x = 0$ or $y = 0$. It is called semi prime if $xRx = 0$ implies $x = 0$. Given an integer $n > 1$, the ring R is said to be n-torsion free if for $x \in R$, $nx = 0$ implies $x = 0$. An additive mapping $D : R \rightarrow R$ is said to be a derivation (resp. a reverse derivation) on R if $D(xy) = D(x)y + xD(y)$ (resp. $D(xy) = D(y)x + yD(x)$) holds for all $x, y \in R$. An additive mapping $x \rightarrow x^\ast$ of R into itself is called an involution on R if it satisfies the conditions:
A ring R equipped with an involution $'*$ is called a $*$-ring. An additive mapping $D : R \to R$ is called a $*$-derivation (resp. a $*$-reverse derivation) on R if $D(xy) = D(x)y^* + xD(y)$ (resp. $D(xy) = D(y)x^* + yD(x)$) holds for all $x, y \in R$. Let R be a commutative $*$-ring. Then $D : R \to R$ defined by $D(x) = a(x - x^*)$, where $a \in R$, is a $*$-derivation on R (see [7]). An additive map $T : R \to R$ is called a left (resp. right) $*$-multiplier if $T(xy) = T(x)y^*$ (resp. $T(xy) = x^*T(y)$) holds for all $x, y \in R$.

There are many works dealing with the commutativity of prime and semi prime rings admitting certain types of derivations (see [3-6,8,12,17]). Ali [2] defined symmetric $*$-bi derivation, a symmetric left (resp. right) $*$-bi multiplier and studied some properties of prime $*$-rings and semi prime $*$-rings, possessing symmetric $*$-bi derivation and a symmetric left (resp. right) $*$-bi multiplier. Motivated by these concepts and the notion of n-derivation given by Park (see [11]). Very recently Ashraf [18] defined the concept of $*$-n-derivation in prime $*$-rings and semi prime $*$-rings and study some of their properties. Thus the notion of $*$-n-derivation gives a generalization of $*$-derivation earlier known to us in $*$-rings.

Let n be a fixed positive integer. An n-additive mapping $D : R \times R \times \cdots \times R \to R$ is called a $*$-n-derivation of R if the relations

$$D(x_1, x_2, \ldots, x_n) = D(x_1, x_2, \ldots, x_n)(x'_1)^* + x_1D(x_1, x_2, \ldots, x_n)$$

$$D(x_1, x_2x_2', \ldots, x_n) = D(x_1, x_2, \ldots, x_n)(x'_2)^* + x_2D(x_1, x_2', \ldots, x_n)$$

$$\vdots$$

$$D(x_1, x_2, \ldots, x_n, x'_n) = D(x_1, x_2, \ldots, x_n)(x'_n)^* + x_nD(x_1, x_2, \ldots, x'_n)$$

holds for all $x_1, x'_1, x_2, x_2', \ldots, x_n, x'_n \in R$. Similarly, an n-additive mapping $D : R \times R \times \cdots \times R \to R$ is called the reverse $*$-n-derivation of R if the relations

$$D(x_1x'_1, x_2, \ldots, x_n) = D(x_1', x_2, \ldots, x_n)x'_1^* + x'_1D(x_1, x_2, \ldots, x_n)$$

$$D(x_1, x_2x'_2, \ldots, x_n) = D(x_1, x'_2, \ldots, x_n)x'_2^* + x'_2D(x_1, x_2', \ldots, x_n)$$

$$\vdots$$

$$D(x_1, x_2, \ldots, x_n, x'_n) = D(x_1, x_2, \ldots, x'_n)x'_n^* + x'_nD(x_1, x_2, \ldots, x'_n)$$
On generalized *-n-derivations in *-rings

\[D(x_1, x_2, \ldots, x_n x'_n) = D(x_1, x_2, \ldots, x'_n)x^*_n + x'_n D(x_1, x_2, \ldots, x_n) \]

holds for all \(x_1, x'_1, x_2, x'_2, \ldots, x_n, x'_n \in R \). As an example of *-n-derivation, consider \(C \) be the ring of complex numbers with involution * defined by \(z^* = \overline{z} \), where \(\overline{z} \) denotes the conjugate of the complex number \(z \). Now define \(D : C \times C \times \cdots \times C \to C \) such that
\[D(z_1, z_2, \ldots, z_n) = \lambda (z_1 - \overline{z_1})(z_2 - \overline{z_2}) \cdots (z_n - \overline{z_n}) \]
where \(\lambda \) is any fixed complex number. We can easily verify that \(D \) is a *-n-derivation of \(C \).

An n-additive mapping \(T_1 : R \times R \times \cdots \times R \to R \) is called the left *-n-multiplier of \(R \) if
\[T_1(x_1 x'_1, x_2, \ldots, x_n) = T_1(x_1, x_2, \ldots, x_n)(x'_1)^* \]
\[T_1(x_1, x_2 x'_2, \ldots, x_n) = T_1(x_1, x_2, \ldots, x_n)(x'_2)^* \]
\[\ldots \]
\[T_1(x_1, x_2, \ldots, x_n x'_n) = T_1(x_1, x_2, \ldots, x_n)(x'_n)^* \]
holds for all \(x_1, x'_1, x_2, x'_2, \ldots, x_n, x'_n \in R \). An additive mapping \(T_2 : R \times R \times \cdots \times R \to R \) is called the right *-n-multiplier of \(R \) if
\[T_2(x_1 x'_1, x_2, \ldots, x_n) = (x'_1)^* T_2(x_1, x_2, \ldots, x_n) \]
\[T_2(x_1, x_2 x'_2, \ldots, x_n) = (x'_2)^* T_2(x_1, x_2, \ldots, x_n) \]
\[\ldots \]
\[T_2(x_1, x_2, \ldots, x_n x'_n) = (x'_n)^* T_2(x_1, x_2, \ldots, x_n) \]
holds for all \(x_1, x'_1, x_2, x'_2, \ldots, x_n, x'_n \in R \). As examples of a left *-n-multiplier and a right *-n-multiplier.

Example 1.1. Consider \(S \) to be a commutative ring which is not a zero ring and
\[R = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \mid 0, x, y, z \in S \right\}. \]
\[
T_1\left(\begin{pmatrix} 0 & x_1 & y_1 \\ 0 & 0 & z_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & x_2 & y_2 \\ 0 & 0 & z_2 \\ 0 & 0 & 0 \end{pmatrix}, \ldots, \begin{pmatrix} 0 & x_n & y_n \\ 0 & 0 & z_n \\ 0 & 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

\[
T_2\left(\begin{pmatrix} 0 & x_1 & y_1 \\ 0 & 0 & z_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & x_2 & y_2 \\ 0 & 0 & z_2 \\ 0 & 0 & 0 \end{pmatrix}, \ldots, \begin{pmatrix} 0 & x_n & y_n \\ 0 & 0 & z_n \\ 0 & 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

and
\[
\begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & z & y \\ 0 & 0 & x \\ 0 & 0 & 0 \end{pmatrix}.
\]

One can easily verify that \(* \) is an involution on \(R \). Also it is straightforward to check that \(T_1 \) is a nonzero left \(* \)-n-multiplier but not a right \(* \)-n-multiplier of the \(* \)-ring and \(T_2 \) is a nonzero right \(* \)-n-multiplier but not a left \(* \)-n-multiplier of the \(* \)-ring. Finally, an \(n \)-additive map \(T : R \times R \times \cdots \times R \to R \) is called a \(* \)-n-multiplier of \(R \) if it is both the left \(* \)-n-multiplier and right \(* \)-n-multiplier of \(R \). As an example of a \(* \)-n-multiplier, consider \(C \) to be the ring of complex numbers with involution \(* \) defined by \(z^* = \overline{z} \), where \(\overline{z} \) denotes the conjugate of the complex numbers \(z \). Now define \(T : C \times C \times \cdots \times C \to C \) such that \(T(z_1, z_2, \ldots, z_n) = \mu \overline{z}_1 \overline{z}_2 \cdots \overline{z}_n \), where \(\mu \) is any fixed complex number. One can easily verify that \(T \) is a \(* \)-n-multiplier of \(C \).

Now we define generalized \(* \)-derivation (resp. reverse generalized \(* \)-derivation). An additive map \(F : R \to R \) is said to be a generalized derivation if there exist derivation \(D \) on \(R \) such that
\[
F(xy) = F(x)y + xD(y) \quad \text{for all} \quad x, \ y, \ z \in R.
\]

An additive map \(F : R \to R \) is said to be a generalized \(* \)-derivation if there exist a \(* \)-derivation \(D \) on \(R \) such that
\[
F(xy) = F(x)y^* + xD(y) \quad \text{for all} \quad x, \ y, \ z \in R.
\]

or
\[
F(xy) = F(y)x^* + yD(x) \quad \text{for all} \quad x, \ y, \ z \in R.
\]

An additive map \(F : R \times R \times \cdots \times R \to R \) is called generalized \(* \)-n-derivation if there exist a \(* \)-n-derivation \(D : R \times R \times \cdots \times R \to R \) such that
\[
F(x_1x_1', x_2, \ldots, x_n) = F(x_1, x_2, \ldots, x_n)(x_1')^* + x_1D(x_1', x_2, \ldots, x_n)
\]

\[
F(x_1, x_2x_2', \ldots, x_n) = F(x_1, x_2, \ldots, x_n)(x_2')^* + x_2D(x_1, x_2', \ldots, x_n)
\]
On generalized \ast-n-derivations in \ast-rings

$F(x_1,x_2,\ldots,x_n) = F(x_1,x_2,\ldots,x_n)(x_n)^* + x_nD(x_1,x_2,\ldots,x_n)$

and reverse generalized \ast-n-derivation defined as:

$F(x_1x'_1,x_2,\ldots,x_n) = F(x_1,x_2,\ldots,x_n)(x_1)^* + x_1D(x_1,x_2,\ldots,x_n)$

$F(x_1x'_2,x_2,\ldots,x_n) = F(x_1,x_2,\ldots,x_n)(x_2)^* + x_2D(x_1,x_2,\ldots,x_n)$

$F(x_1,x_2,\ldots,x_n) = F(x_1,x_2,\ldots,x_n')D(x_1,x_2,\ldots,x_n)$

holds for all $x_i,x'_i \in R; i = 1, 2, \ldots, n$. As example of generalized \ast-n-derivation is:

Example 1.2. Let S be a commutative ring which is not a zero ring and

$R = \left\{ \begin{pmatrix} 0 & x & y & \cdots & 0 \\ 0 & 0 & z & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \mid 0, x, y, z \in S \right\}.$

$F : R \times R \times \cdots \times R \rightarrow R$ and $r \rightarrow r^*$ such that

$F\left(\begin{pmatrix} 0 & x_1 & y_1 \\ 0 & 0 & z_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & x_2 & y_2 \\ 0 & 0 & z_2 \\ 0 & 0 & 0 \end{pmatrix}, \ldots, \begin{pmatrix} 0 & x_n & y_n \\ 0 & 0 & z_n \\ 0 & 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & x_1x_2\cdots x_n \end{pmatrix}.$

there exist a \ast-n-derivation D such that

$D\left(\begin{pmatrix} 0 & x_1 & y_1 \\ 0 & 0 & z_1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & x_2 & y_2 \\ 0 & 0 & z_2 \\ 0 & 0 & 0 \end{pmatrix}, \ldots, \begin{pmatrix} 0 & x_n & y_n \\ 0 & 0 & z_n \\ 0 & 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 & z_1z_2\cdots z_n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

and

$\begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}^* = \begin{pmatrix} 0 & z & y \\ 0 & 0 & x \\ 0 & 0 & 0 \end{pmatrix}.$

In 1989, Bresar and Vukman (see [7, Proposition 1]) proved that if a prime \ast-ring R admits a nonzero \ast-derivation (resp. \ast-derivation) D, then R is commutative. In this paper, we prove its analogue in the setting of the \ast-n-generalized derivation for prime \ast-rings. We obtain some results related with \ast-n-multipliers in prime \ast-rings and semiprime \ast-rings. In fact our results generalize, extend and complement several results obtained earlier on the \ast-n-derivation, symmetric \ast-biderivation for prime \ast-rings and semiprime \ast-rings.
2. Preliminary Results

We begin with Lemma, most of which have been proved elsewhere.

Lemma 2.1. Let R be a $*$-prime ring having generalized $*n$-derivations F_1 and F_2 and D_1 and D_2 corresponding $*n$-derivations. Further assume that I_1, I_2, \ldots, I_n are non-zero ideals of R such that $F_1(i_1, i_2, \ldots, i_n) = F_2(i_1, i_2, \ldots, i_n)$ for all $i_r \in I_r$, $1 \leq r \leq n$, then $D_1 = D_2$.

Proof. We have

$$F_1(i_1, i_2, \ldots, i_n) = F_2(i_1, i_2, \ldots, i_n) \quad \text{for all } i_r \in I_r; \quad 1 \leq r \leq n \quad (2.1)$$

Now putting $i_1 r_1$, where $r_1 \in R$, $i_1 \in I_1$ in relation (2.1), We obtain

$$F_1(i_1 r_1, i_2, \ldots, i_n) = F_2(i_1 r_1, i_2, \ldots, i_n)$$

using relation (2.1), we get

$$i_1 D_1(r_1, i_2, \ldots, i_n) = i_1 D_2(r_1, i_2, \ldots, i_n)$$

i.e.

$$i_1 D_1(r_1, i_2, \ldots, i_n) - i_1 D_2(r_1, i_2, \ldots, i_n) = 0.$$

This shows that

$$i_1 R\{D_1(r_1, i_2, \ldots, i_n) - D_2(r_1, i_2, \ldots, i_n)\} = \{0\}.$$

Since $I_1 \neq \{0\}$, the primeness of R implies that

$$D_1(r_1, i_2, \ldots, i_n) = D_2(r_1, i_2, \ldots, i_n) \quad \text{for all } i_r \in I_r; \quad 1 \leq r \leq n. \quad (2.2)$$

Now putting $i_2 r_2$, where $r_2 \in R$, $i_2 \in I_2$ in (2.2), we get

$$D_1(r_1, i_2 r_2, \ldots, i_n) = D_2(r_1, i_2 r_2, \ldots, i_n)$$

i.e.

$$D_1(r_1, i_2, \ldots, i_n) r_2^* + i_2 D_1(r_1, r_2, \ldots, i_n) = D_2(r_1, i_2, \ldots, i_n) r_2^* + i_2 D_2(r_1, r_2, \ldots, i_n).$$

By (2.2), we get

$$i_2 D_1(r_1, r_2, i_3, \ldots, i_n) = i_2 D_2(r_1, r_2, i_3, \ldots, i_n)$$

$$i_2 D_1(r_1, r_2, i_3, \ldots, i_n) - i_2 D_2(r_1, r_2, i_3, \ldots, i_n) = 0.$$
On generalized $*$-n-derivations in $*$-rings

This shows that

$$i_2 R[D_1(r_1, r_2, i_3, \ldots, i_n) - D_2(r_1, r_2, i_3, \ldots, i_n)] = \{0\}.$$

Since $I_2 \neq \{0\}$, the primeness of R implies that

$$D_1(r_1, r_2, i_3, \ldots, i_n) - D_2(r_1, r_2, i_3, \ldots, i_n) = 0.$$

Now, continuing this process, we conclude that

$$D_1 = D_2.$$

3. Main Result

In 1989, Bresar and Vukman (see [7, Proposition 1]) proved that if a prime $*$-ring R admits a nonzero $*$-derivation (resp reverse $*$-derivation) D, then R is commutative. We obtained the following.

Theorem 3.1. Let R be a prime $*$-ring and if it admits a nonzero generalized $*$-n-derivation (resp. reverse generalized $*$-n-derivation) F associated with a $*$-n-derivation D. Then R is commutative ring.

Proof. By the hypothesis, we have for all $x_1, y, z, x_2, \ldots, x_n \in R$

$$F((x_1 y)z, x_2, \ldots, x_n) = F(x_1 y, x_2, \ldots, x_n)z^* + x_1 y D(z, x_2, \ldots, x_n)$$

$$F((x_1 y)z, x_2, \ldots, x_n) = \{F(x_1, x_2, \ldots, x_n)y^* + x_1 D(y, x_2, \ldots, x_n)\}z^* + x_1 y D(z, x_2, \ldots, x_n)$$

$$F((x_1 y)z, x_2, \ldots, x_n) = F(x_1, x_2, \ldots, x_n)y^*z^* + x_1 D(y, x_2, \ldots, x_n)z^* + x_1 y D(z, x_2, \ldots, x_n)$$

(3.1)

Also,

$$F(x_1(yz), x_2, \ldots, x_n) = F(x_1, x_2, \ldots, x_n)(yz)^* + x_1 D(yz, x_2, \ldots, x_n)$$

$$F(x_1(yz), x_2, \ldots, x_n) = F(x_1, x_2, \ldots, x_n)z^*y^* + x_1\{D(y, x_2, \ldots, x_n)z^* + yD(z, x_2, \ldots, x_n)\}$$

$$F(x_1(yz), x_2, \ldots, x_n) = F(x_1, x_2, \ldots, x_n)z^*y^* + x_1\{D(y, x_2, \ldots, x_n)z^* + x_1 y D(z, x_2, \ldots, x_n)\}.$$

(3.2)
Combining (3.1) and (3.2), we get
\[F(x_1, x_2, \ldots, x_n)z^*y^* = F(x_1, x_2, \ldots, x_n)y^*z^*. \]
Putting \(y\) and \(z\) instead of \(y^*\) and \(z^*\), respectively. We find that,
\[F(x_1, x_2, \ldots, x_n)z y = F(x_1, x_2, \ldots, x_n) y z. \quad (3.3) \]
Now replacing \(y\) by \(y r\), where \(r \in R\) in (3.3), and using it again
\[F(x_1, x_2, \ldots, x_n) y r z = F(x_1, x_2, \ldots, x_n) y z r \]
thus
\[F(x_1, x_2, \ldots, x_n) R[r, z] = 0 \]
Since \(F \neq \{0\}\), \(*\)-primeness of \(R\) implies that \(rz = zr\) for all \(z, r \in R\). Therefore \(R\) is commutative. \(\qed\)

Theorem 3.2. Let \(R\) be a 2-torsion free prime \(*\)-ring possessing generalized \(*\)-\(n\)-derivations \(F_1\) and \(F_2\) associated with \(*\)-\(n\)-derivations \(D_1\) and \(D_2\). If \(F_1(x_1, x_2, \ldots, x_n) D_2(y_1, y_2, \ldots, y_n) + F_2(x_1, x_2, \ldots, x_n) D_1(y_1, y_2, \ldots, y_n) = 0\) for all \(x_1, x_2, \ldots, x_n;\)
\(y_1, y_2, \ldots, y_n \in R\) then either \(F_1 = 0\) or \(F_2\) is a left multiplier and either \(F_2 = 0\) or \(F_1\) is a left multiplier.

Proof. Suppose that
\[F_1(x_1, x_2, \ldots, x_n) D_2(y_1, y_2, \ldots, y_n) + F_2(x_1, x_2, \ldots, x_n) D_1(y_1, y_2, \ldots, y_n) = 0. \]
Replacing \(y_1 z\) instead of \(y_1\), we get
\[F_1(x_1, x_2, \ldots, x_n) D_2(y_1 z, y_2, \ldots, y_n) + F_2(x_1, x_2, \ldots, x_n) D_1(y_1 z, y_2, \ldots, y_n) = 0 \]
\[F_1(x_1, x_2, \ldots, x_n)(D_2(y_1, y_2, \ldots, y_n)z^* + y_1 D_2(z, y_2, \ldots, y_n)) \]
\[+ F_2(x_1, x_2, \ldots, x_n)(D_1(y_1, y_2, \ldots, y_n)z^* \]
\[+ y_1 D_1(z, y_2, \ldots, y_n)) = 0 \]
\[F_1(x_1, x_2, \ldots, x_n) D_2(y_1, y_2, \ldots, y_n)z^* + F_1(x_1, x_2, \ldots, x_n) y_1 D_2(z, y_2, \ldots, y_n) \]
\[+ F_2(x_1, x_2, \ldots, x_n) D_1(y_1, y_2, \ldots, y_n)z^* \]
\[+ y_1 D_1(z, y_2, y_3, \ldots, y_n) = 0 \]
\[(F_1(x_1, x_2, \ldots, x_n) D_2(y_1, y_2, \ldots, y_n) + F_2(x_1, x_2, \ldots, x_n) D_1(y_1, y_1, \ldots, y_n))z^* \]
\[+ F_1(x_1, x_2, \ldots, x_n) y_1 D_2(z, y_2, \ldots, y_n) \]
\[+ F_2(x_1, x_2, \ldots, x_n) y_1 D_1(z, y_2, y_3, \ldots, y_n) = 0. \]
By the given hypothesis,

\[F_1(x_1, x_2, \ldots, x_n)y_1D_2(z, y_2, \ldots, y_n) + F_2(x_1, x_2, \ldots, x_n)y_1D_1(z, y_2, \ldots, y_n) = 0. \tag{3.4} \]

Now we multiplying (3.4) from the right by \(pD_1(r_1, r_2, \ldots, r_n) \); and using (3.4), where \(r_i, p \in R \) we get

\[
F_1(x_1, x_2, \ldots, x_n)y_1D_2(z, y_2, \ldots, y_n)pD_1(r_1, r_2, \ldots, r_n) + F_2(x_1, x_2, \ldots, x_n)y_1D_1(z, y_2, \ldots, y_n)pD_1(r_1, r_2, \ldots, r_n) = 0.
\]

Since \(R \) is 2-torsion free, we get

\[
F_2(x_1, x_2, \ldots, x_n)y_1D_1(z, y_2, \ldots, y_n)pD_1(r_1, r_2, \ldots, r_n) = 0
\]

By \(*\)-primeness of \(R \), either

\[
F_2(x_1, x_2, \ldots, x_n)y_1D_1(z, y_2, \ldots, y_n) = 0
\]

or

\[
D_1(r_1, r_2, \ldots, r_n) = 0.
\]

But in first,

\[
F_2(x_1, x_2, \ldots, x_n)y_1D_1(z, y_2, \ldots, y_n) = 0
\]

\[
F_2(x_1, x_2, \ldots, x_n)\ast RD_1(z, y_2, \ldots, y_n) = \{0\}.
\]

By \(*\)-primeness of \(R \), either \(F_2(x_1, x_2, \ldots, x_n) = 0 \) or \(D_1(z, y_2, \ldots, y_n) = 0 \) this means that \(F_2 = 0 \) or \(F_1 \) is a left multiplier.

Now, multiplying (3.4) from left by \(D_2(r_1, r_2, \ldots, r_n)p \), where \(r_i, p \in R \), we get

\[
D_2(r_1, r_2, \ldots, r_n)pF_1(x_1, x_2, \ldots, x_n)y_1D_2(z, y_2, \ldots, y_n) + D_2(r_1, r_2, \ldots, r_n)pF_2(x_1, x_2, \ldots, x_n)y_1D_1(z, y_2, y_3, \ldots, y_n) = 0.
\]

Using (3.4) and the fact that \(R \) is 2-torsion free, we find

\[
D_2(r_1, r_2, \ldots, r_n)pF_1(x_1, x_2, \ldots, x_n)y_1D_2(z, y_2, \ldots, y_n) = 0
\]

i.e.

\[
D_2(r_1, r_2, \ldots, r_n)RF_1(x_1, x_2, \ldots, x_n)y_1D_2(z, y_2, \ldots, y_n) = \{0\}
\]

\[
D_2(r_1, r_2, \ldots, r_n)\ast RF_1(x_1, x_2, \ldots, x_n)y_1D_2(z, y_2, \ldots, y_n) = \{0\}.
\]
Since R is \ast-prime, we get either $D_2(r_1, r_2, \ldots, r_n) = 0$ or $F_1(x_1, x_2, \ldots, x_n)y_1 D_2(z, y_2, \ldots, y_n) = 0$ from second relation,

$$F_1(x_1, x_2, \ldots, x_n)y_1 D_2(z, y_2, \ldots, y_n) = 0.$$

This gives

$$F_1(x_1, x_2, \ldots, x_n)^* RD_2(z, y_2, \ldots, y_n) = \{0\}$$

either $F_1(x_1, x_2, \ldots, x_n) = 0$ or $D_2(z, y_2, \ldots, y_n) = 0$ i.e. $F_1 = 0$ or $D_2 = 0$. □

Theorem 3.3. Let R be a semiprime \ast-ring admitting a generalized \ast-n-derivation F. then $F(R, R, \ldots, R) \subseteq Z$.

Proof. Since R is a \ast-ring and having a generalized \ast-n-derivation F, we have relation (3.3) in theorem (3.1).

Now putting $yF(x_1, x_2, \ldots, x_n)$ instead of y, we get

$$F(x_1, x_2, \ldots, x_n)y[F(x_1, x_2, \ldots, x_n), z] = 0 \text{ for all } x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n, z \in R.$$

This relation gives

$$ZF(x_1, x_2, \ldots, x_n)y[F(x_1, x_2, \ldots, x_n), z] = 0 \quad (3.5)$$

Now replacing y by zy in the relation $F(x_1, x_2, \ldots, x_n)y[F(x_1, x_2, \ldots, x_n), z] = 0$, we obtain

$$F(x_1, x_2, \ldots, x_n)zy[F(x_1, x_2, \ldots, x_n), z] = 0 \quad (3.6)$$

comparing (3.5) and (3.6), we get

$$F(x_1, x_2, \ldots, x_n)zy[F(x_1, x_2, \ldots, x_n), z] = zF(x_1, x_2, \ldots, x_n)y[F(x_1, x_2, \ldots, x_n), z].$$

This means that

$$[F(x_1, x_2, \ldots, x_n), z]y[F(x_1, x_2, \ldots, x_n), z] = 0$$

i.e.

$$[F(x_1, x_2, \ldots, x_n), z]R[F(x_1, x_2, \ldots, x_n), z] = \{0\}.$$

This gives

$$[F(x_1, x_2, \ldots, x_n), z]^* R[F(x_1, x_2, \ldots, x_n), z]^* = \{0\}.$$

Now by the \ast-semiprimeness of R, yields that

$$[F(x_1, x_2, \ldots, x_n), z] = 0$$
On generalized $*$-n-derivations in $*$-rings

i.e.

$$F(R, R, \ldots, R) \subseteq Z.$$

Theorem 3.4. Let R be a semiprime ring with involution $*$. If F is a generalized $*$-n-derivation of R associated with a $*$-n-derivation D such that

$$F(x_1, x_2, \ldots, x_n)y_1 = x_1F(y_1, y_2, \ldots, y_n)$$

for all $x_1, x_2, \ldots, x_n; y_1, y_2, \ldots, y_n \in R,$

then F is a left multiplier.

Proof. By the given hypothesis, we have

$$F(x_1, x_2, \ldots, x_n)y_1 = x_1F(y_1, y_2, \ldots, y_n)$$

for all $x_1, x_2, \ldots, x_n; y_1, y_2, \ldots, y_n \in R$.

Using y_1z instead of y_1 where $z \in R$, we obtain

$$F(x_1, x_2, \ldots, x_n)y_1z = x_1F(y_1z, y_2, \ldots, y_n)$$

$$F(x_1, x_2, \ldots, x_n)y_1z = x_1(F(y_1, y_2, \ldots, y_n)z^* + y_1D(z, y_2, y_3, \ldots, y_n))$$

Using hypothesis

$$x_1F(x_1, x_2, \ldots, x_n)z = x_1F(y_1, y_2, \ldots, y_n)z^* + x_1y_1D(z, y_2, y_3, \ldots, y_n).$$

We replace z^* in place of z, we get

$$x_1F(x_1, x_2, \ldots, x_n)z = x_1F(y_1, y_2, \ldots, y_n)z + x_1y_1D(z, y_2, y_3, \ldots, y_n)$$

$$x_1y_1D(z, y_2, y_3, \ldots, y_n) = 0.$$

Replacing $D(z, y_2, y_3, \ldots, y_n)$ instead of x_1, we obtain

$$D(z, y_2, y_3, \ldots, y_n)y_1D(z, y_2, y_3, \ldots, y_n) = 0.$$

This implies that

$$D(z, y_2, y_3, \ldots, y_n)RD(z, y_2, y_3, \ldots, y_n) = 0.$$

This gives

$$D(z, y_2, y_3, \ldots, y_n)^*RD(z, y_2, y_3, \ldots, y_n)^* = 0.$$

Using $*$-semiprimeness F is a left multiplier.

References