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Abstract

In this work we introduce a wide class of infinite dimensional Banach spaces which
we call spaces of type λp, 1 ≤ p < ∞. Being aware that Grothendiek conjecture
about smallness of the ideal of nuclear operators was disproved in 1983 by G. Pisier,
in general Banach spaces, we show that it is true in this class. In fact we search
for a class as wide as possible in which Grothendiek conjecture holds. The class
λ2 contains every Banach space in which there exists such sequence of projections
{Pn} on subspaces ε- isometric to the Euclidean space �2

n, such that ‖Pn‖ = o(
√

n).
In 1974 W.J.Davis and W.B.Johnson showed that this property is satisfied by any
uniformly convex Banach space. We notice that in any Banach space an analogous
sequence of projections satisfying ‖Pn‖ = O(

√
n), always exists. Moreover, we

show that the class Sp, 1 ≤ p < ∞, introduced by Morell and Retherford in 1975
is contained in the class of type λ2 which in tern, is contained in the class λ1 in
which the Grothendiek conjecture holds.
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1. Introduction

In 1955 Alexander Grothendieck [1] posed the following conjecture: Is it true that for
any arbitrary infinite dimensional Banach spaces X and Y there always exists a bounded
linear operator from X into Y which is not nuclear?. Many attempts were done from that
time to solve this problem. In 1983 Gilles Pisier [2, 3] constructed infinite-dimensional
Banach space X such that the projective and injective tensor products X⊗̂πX and X⊗̂εX

coincide. This disproved Grothendieck conjecture.
It is of interest for which Banach spaces this conjecture holds. In 1975 Morell and

Retherford [4] introduced a class of Banach spaces called of type Sp, 1 ≤ p < ∞, in
which this conjecture holds.

Our task here is to get a class of Banach spaces as wide as possible in which this
conjecture holds. Of course such class must contain the class Sp and does not contain
Pisier spaces.

For such class we introduce the class of Banach spaces of type λp, 1 ≤ p < ∞,
which increases as λ decreases in which this conjecture holds. The class λ2 contains
every Banach space in which there exists such sequence of projections {Pn} on subspaces
ε-isometric to the Euclidean space �2

n, such that ‖Pn‖ = o(
√

n). In [5] W.J. Davis and
W.B.Johnson showed that this property is satisfied by any uniformly convex Banach
space. We notice that in any Banach space an analogous sequence of projections satis-
fying ‖Pn‖ = O(

√
n), always exists. This is a consequence of the famous result [6] of

A.Dvoretzky in 1961. The class λ2 contains Sp and is contained in the class λ1 in which
Grothendiek conjecture holds. We give several examples for such classes.

2. Basic Definitions and facts

By L(E, F ) we denote the Banach space of all linear continuous operators from a Banach
space E into a Banach space F endowed with the usual norm. By �p is denoted the space
of p-absolutely summable sequences of real numbers and by �p

n the Euclidean space
equipped with the norm of �p. By Lp is denoted the space of p-Lebesgue integrable
functions. A bounded linear operator P from a Banach space E into itself is called a
projection on E if P 2 = P (The idempotent property) [7]. The Banach-Mazur distance
[8] of two isomorphic Banach spaces E and F , is defined by d(E, F ) = inf ‖T ‖‖T −1‖,
where the infimum is taken over all isomorphisms T from E onto F .

Definition 2.1. [Ideals of operators] [9, 10] An ideal of operators A = {A(X, Y ) :
X, Y ∈ X } where X is the category of all Banach spaces, is a collection of linear subsets
A(X, Y ) of L(X, Y ) satisfying the following conditions:

1. A(X, Y ) contains the space F(X, Y ) of finite rank operators.

2. U ∈ L(Y, Y0), T ∈ A(X, Y ), V ∈ L(X0, X) �⇒ UT V ∈ A(X0, Y0).

If on each component A(X, Y ) there is a norm ρ (or quasi norm) satisfying

ρ(UT V ) ≤ ‖U‖‖V ‖ρ(T ) ∀ U ∈ L(Y, Y0), T ∈ A(X, Y ), V ∈ L(X0, X)
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then this ideal is called a normed (or quasi normed) operator ideal respectively.

Example 2.2.

1. The ideal Lc = {Lc(X, Y ) : X, Y ∈ X } of compact operators [9] is a normed
operator ideal with the usual operator norm.

2. The ideal N of nuclear operators [1, 9, 11] is a normed operator ideal.

3. The ideal �p of p-absolutely summing operators and the ideal D�p of operators
whose duals are p-absolutely summing [9, 10, 12] are normed operator ideals.

4. The ideal N ∞
2 [10] of all operators T ∈ L(X, Y ) which has a representation

T (x) =
∞∑

n=1

βnfn(x)yn where {fn}∞n=1 ⊆ X∗, {yn}∞n=1 ⊆ Y and lim
n

βn = 0, with

∞∑
n=1

|fn(x)|2 < +∞,

∞∑
n=1

|g(yn)|2 < +∞ for every x ∈ X, g ∈ Y ∗.

5. The ideal Sapp

�p , (p > 0) is a quasinormed operator ideal [9, 11], where

Sapp

�p (X, Y ) = {T ∈ L(X, Y ) :
∞∑

n=0

αn(T )p < +∞},

and αn(T ), is the nth approximation number of the operator T .

Remark 2.3.

1. It is well known [10], that if an operator A is p-absolutely summing, then
∞∑

n=1

‖A(xn)‖p < +∞ for any sequence {xn}∞n=1 in X for which
∞∑

n=1

|f (xn)|p <

+∞ ∀f ∈ X∗.

2. Every operator T ∈ N ∞
2 (X, Y ) is approximative. In fact, the sequence {Tk}∞k=1

of finite rank operators, where Tk(x) =
k∑

n=1

βnfn(x)yn converges in norm to T .

Consequently N ∞
2 (X, Y ) ⊆ Lc(X, Y ) ∀X, Y ∈ X .

3. If X, Y are Hilbert spaces then

N (X, Y ) ⊆ N∞
2 (X, Y ) = Lc(X, Y ) ∀X, Y ∈ X .

This is a consequence of spectral decomposition Theorem [11].
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Definition 2.4. [3, 10] An operator ideal A = {A(X, Y ) : X, Y ∈ X } is called small if{
A(X, Y ) = L(X, Y )

} �⇒ min{dimX, dimY } < ∞.

Example 2.5. The ideal of compact operators Lc and the ideal of absolutely summing
operators �1 are not small ideals while Sapp

�p , (p > 0) is a small ideal. In fact, for the
infinite dimensional sequence spaces �p we have,

1. Lc(�
p, �q) = L(�p, �q) ∀ 1 ≤ q < p [13, 14].

2. �1(�
1, �2) = L(�1, �2) [15].

3. In [16] it was proved that for any infinite dimensional Banach spaces X, Y and for
any 0 < p < q, it is true that:

Sapp

�p (X, Y ) � Sapp

�q (X, Y ) � L(X, Y ).

3. Basic Theorems and Technical Lemmas:

In our work we will be in need to the following results:

Theorem 3.1. (Abel Dini) Let
∞∑

n=1

an be a divergent series with an > 0, and Sn =
n∑

i=1

ai, n = 1, 2, . . . its partial sums. The series
∞∑

n=1

an

Sr
n

converges for r > 1 and

diverges for r ≤ 1.

Theorem 3.2. (Morell and Retherford [4]) Let X be an infinite dimensional Banach
space, {βn}∞n=1 a convergent to zero sequence of positive numbers with βn < 1, then
there exists a basic sequence {xn}∞n=1 such that ‖xn‖ = βn and satisfying:

sup
{( ∞∑

n=1

|x∗(xn)|2
) 1

2 : x∗ ∈ X∗, ‖x∗‖ ≤ 1
}

≤ 1.

Corollary 3.3. Let Y be an infinite dimensional Banach space, {βn}∞n=1 a monotonically
convergent to zero sequence of positive numbers. Then there exist a number c > 0 and
biorthogonal system {yn, gn}∞n=1 with the properties:

∞∑
n=1

| < yn, g > |2 < +∞ ∀g ∈ Y ∗ and ‖gn‖ ≤ c

βn

, (n = 1, 2, . . . ).

Proof. It is a direct consequence of Morell and Retherford Theorem if we remark that
for any basic sequence {yn} there is a sequence of coefficient functionals {gn} such that
1 ≤ ‖yn‖ ‖gn‖ ≤ 2γ where γ ≥ 1 is the basic constant.
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Theorem 3.4. (Bessaga and Pełczyński [16]) Let {xn}∞n=1 be a sequence in a Banach

spaces X and let {βn}∞n=1 be any convergent to zero sequence of real numbers. If
∞∑

n=1

| <

xn, x
∗ > | < +∞ ∀x∗ ∈ X∗, then the series

∞∑
n=1

βnxn unconditionally converges in

norm.

Lemma 3.5. Let X be a Banach space and {x∗
n}∞n=1 be a sequence of functionals in X∗.

If
∞∑

n=1

| < x, x∗
n > | < +∞ for every x ∈ X, then there exists a constant c > 0 such that

∞∑
n=1

| < x, x∗
n > | ≤ c‖x‖ ∀x ∈ X, and in general,

∞∑
n=1

| < x∗
n, F > | ≤ c‖F‖ ∀F ∈ X∗∗.

Proof. Let us define a sequence of seminorms Pk(x) =
k∑

n=1

| < x, x∗
n > | for(k =

1, 2, . . . ). Since these seminorms are continuous then using Banach Steinhauss Theorem

we get that P(x) = lim
k

k∑
n=1

| < x, x∗
n > | is a continuous seminorm. Hence P(x) ≤

c‖x‖ ∀x ∈ X. Now, since any ball of center at zero in X is weak* dense in the ball of
the same radius in X∗∗ then for any F ∈ X∗∗ there is a generalized sequence {xα} in X

such that

‖xα‖ ≤ ‖F‖ and lim
α

< xα, x∗ >=< x∗, F > ∀x∗ ∈ X∗

Since
∞∑

n=1

| < xα, x∗
n > | ≤ c‖xα‖ ≤ c‖F‖ ∀α, then taking limit by α we complete the

proof. �

The following Lemma is useful for showing that some operators are well defined.

Lemma 3.6. Let X, Y be Banach spaces, {fn}∞n=1 be a sequence of functionals in X∗ and
{zn}∞n=1 a sequence of elements in Y and let {µn}∞n=1 be a convergent to zero sequence
of real numbers. If for any x ∈ X and g ∈ Y ∗,

∞∑
n=1

|fn(x)g(zn)| < +∞, then the formula A(x) =
∞∑

n=1

µnfn(x)zn
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defines a compact operator from X into Y .

Proof. Applying Lemma (3.5) with g(zn)fn instead of x∗
n we get for every g ∈ Y ∗,

∞∑
n=1

| < x, g(zn)fn > | =
∞∑

n=1

|fn(x)g(zn)| < +∞ ∀x ∈ X.

Therefore, there exists cg > 0 such that
∞∑

n=1

|fn(x)g(zn)| ≤ cg‖x‖∀x ∈ X, g ∈ Y ∗.

Applying Bessaga and Pełczyński Theorem for the weakly summable series
∞∑

n=1

fn(x)zn

we get the convergence of the series
∞∑

n=1

µnfn(x)zn and the operator A is well defined.

The compactness of the operator A follows from being a limit, in norm, of the sequence

Ak(x) =
k∑

n=1

fn(x)zn (k = 1, 2, . . . ) of finite rank operators. �

Definition 3.7. [4] A Banach space X is called of type Sp,λ, 1 ≤ p < ∞ if there exist
a number λ ≥ 1 and sequences of operators {An}∞n=1, {Bn}∞n=1, such that

An : �p
n −→ X, Bn : X −→ �p

n , with BnAn = I�
p
n
, and ‖An‖‖Bn‖ ≤ λ

A space X is called of type Sp, if it is of type Sp,λ for some λ ≥ 1.

Proposition 3.8. Let X be a space of type Sp, 1 ≤ p < ∞. Then there exist sequences
of operators {An}∞n=1, {Bn}∞n=1 such that:

1. An : �2
n −→ X, Bn : X −→ �2

n and BnAn = I�2
n
.

2. inf
‖An‖‖Bn‖√

n
= 0.

Proof. Let X be a Banach space of type Sp,λ for some λ ≥ 1. Then there exist two
sequences of operators {An}∞n=1, {Bn}∞n=1, such that

An : �p
n −→ X, Bn : X −→ �p

n , with BnAn = I�
p
n
, and ‖An‖‖Bn‖ ≤ λ

Let p �= 2 and let αn : �2
n −→ �p

n and βn : �p
n :−→ �2

n be the identity mappings. There
are two possible cases:

Case I: (p > 2) Let x = {xi}ni=1 ∈ �2
n, then

‖αn(x)‖p = {
n∑

i=1

|xi |p} 1
p ≤ {

n∑
i=1

|xi |2} 1
2 = ‖x‖2.
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Since for x0 = (1, 0, 0, . . . , 0), we get ‖αn(x0)‖p = ‖x0‖2 = 1, then ‖αn‖ = 1. Let

y = (yi)
n
i=1 ∈ �p

n , r = p

2
> 1, r ′ = r

r − 1
. Then using Hölder’s inequality we get:

n∑
i=1

|yi |2 ≤ {
n∑

i=1

|yi |2r} 1
r {

n∑
i=1

1r ′ } 1
r′ . Consequently,

‖βny‖2 = {
n∑

i=1

|yi |2} 1
2 ≤ n

1
2r′

{
n∑

i=1

|yi |p
} 1

p

= n
1

2r′ ‖y‖p.

Therefore we get ‖βn‖ ≤ n
1

2r′ = n
r−1
2r = n

p−2
2p . Taking y0 = (1, 1, 1, . . . , 1) we

get n
1

2r′ ‖y0‖ = n
1

2r′ n
1
2r = √

n = ‖βn(y0)‖2. Therefore, ‖βn‖ = n
1

2r′ = n
p−2
2p . Conse-

quently, ‖αn‖‖βn‖ = n
p−2
2p (1, 2).

Case II: (p < 2) Taking r = 2

p
and using Hölder’s inequality with power r , we get:

‖αn(x)‖p
p =

n∑
i=1

|xi |p ≤
{ n∑

i=1

|xi |pr
} 1

r
n

1
r′ .

Consequently,

‖αn(x)‖p ≤ n
1

pr′
{ n∑

i=1

|xi |2
} 1

2 = n
r−1
pr ‖x‖2 = n

2−p
2p ‖x‖2

Moreover, for y0 = (1, 1, . . . , 1) we get:

‖y0‖2n
2−p
2p = n

1
2 n

2−p
2p = n

1
p = ‖αn(y0)‖p

Therefore, ‖αn‖ = n
2−p
2p . It is clear that

‖βn(x)‖2 =
{ n∑

i=1

|xi |2
} 1

2 ≤
{ n∑

i=1

|xi |p
} 1

p = ‖x‖p;

‖βn(x0)‖2 = 1 = ‖x0‖p where x0 = (1, 0, 0, . . . , 0). Therefore, ‖βn‖ = 1. Conse-
quently,

‖αn‖‖βn‖ = n
2−p
2p (2, 2)

From (1.2),(2.2) it follows that for any p ∈ (1, +∞) ‖αn‖‖βn‖ = n
|2−p|

2p .

Taking Cn = Anαn, Dn = βnBn, then we get:

Cn : �2
n −→ X, Dn : X −→ �2

n, with DnCn = I�2
n
, and ‖Cn‖‖Dn‖ ≤ λn

|p−2|
2p .
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Since |p − 2|
2p

= |1
2

− 1

p
| <

1

2

then

lim
n

‖Cn‖‖Dn‖√
n

= 0.

�

Proposition 3.9. If in a Banach space X there exist a sequence of subspaces {Ln}∞n=1,

dimLn = n, and a sequence of projections {Pn}∞n=1, such that

Pn : X −→ Ln and ‖Pn‖d(Ln, �
2
n) = o(

√
n),

then there exist sequences of operators {An}∞n=1, {Bn}∞n=1 such that:

1. An : �2
n −→ X, Bn : X −→ �2

n and BnAn = I�2
n
.

2. inf
‖An‖‖Bn‖√

n
= 0.

Proof. From the definition of Banach Mazur distance, for each n ∈ N there exist two
isomorphisms Tn, T

−1
n , such that

Tn : Ln → �2
n T −1

n : �2
n → Ln, ‖Tn‖‖T −1

n ‖ ≤ 2d(Ln, �
2
n)

Let ϕn be the canonical injection of Ln intoX. Then we get the diagram

�2
n

T −1
n−−→ Ln

ϕn−→ X
Pn−→ Ln

Tn−→ �2
n

Taking An = ϕnT
−1
n Bn = TnPn, we get,BnAn = id�2

n
. Moreover,

inf
‖An‖‖Bn‖√

n
≤ inf

‖T −1
n ‖‖Tn‖‖Pn‖√

n
≤ inf

‖Pn‖2d(Ln, �
2
n)√

n
= 0.

�

Corollary 3.10. Any uniformly convex Banach space satisfies (1) and (2). See [5].

4. Banach spaces of type λp

In this section we introduce a wider class of Banach spaces which contains the class
satisfying (1), (2) of Propositions (3.8) and (3.9) for p = 2.

Definition 4.1. A Banach space X is called of type λp, 1 ≤ p < ∞ if there exist a
sequence of elements {xn}∞n=1 and a sequence of functionals {fn}∞n=1 such that:
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i)
∞∑

n=1

| < xn, f > |p < +∞ ∀f ∈ X∗;

ii)
∞∑

n=1

| < x, fn > |2 < +∞ ∀x ∈ X;

iii)
∞∑

n=1

| < xn, fn > |p = +∞.

Proposition 4.2. Let X be a space of type λp. Then

1. dimX = ∞;

2. If X is a complemented subspace of a space Z, then Z is a space of type λp;

3. If 1 ≤ q < p, then X is of type λq .

Proof. Let us consider that the sequences {xn}∞n=1 and {fn}∞n=1 satisfy the conditions i),
ii), iii). In fact,

1) If dimX < ∞, then dimX∗ < ∞. Let dimX = m and let {ei}mi=1 be a basis

in X∗ and fn =
m∑

i=1

λinei, (n = 1, 2, . . . ). From condition ii) it follows that:

lim
n

< x, fn >= 0 ∀x ∈ X. I.e the sequence {fn}∞n=1 converges weakly to zero

in a finite dimensional space and hence is bounded in norm. Consequently, there
exists a constant c > 0 such that : |λin| ≤ c ∀(n = 1, 2, . . . ), (i = 1, 2, . . . ).
Therefore,

| < x, fn > | = |
m∑

i=1

< x, λinei > | ≤ c

m∑
i=1

| < x, ei > | (n = 1, 2, . . . )

Using Hölder’s inequality with p > 1 and p′ = p

p − 1
. we get

| < x, fn > |p ≤ cpm
p

p′
m∑

i=1

| < x, ei > |p (n = 1, 2, . . . ).

Therefore we get from property i)

∞∑
n=1

| < xn, fn > |p ≤ cpm
p

p′
∞∑

n=1

m∑
i=1

| < xn, ei > |p

= cpm
p

p′
m∑

i=1

∞∑
n=1

| < xn, ei > |p < +∞.
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This contradicts iii) and hence dim X = ∞.

2) If X is a complemented subspace of a Banach space Z, then there exists a con-
tinuous projection P from Z into X. Then, P ∗ : X∗ −→ Z∗. We define in Z∗ a
sequence {hn}∞n=1 by the equality hn = P ∗fn (n = 1, 2, . . . ) and we show that
the sequences {xn}∞n=1 and {hn}∞n=1 satisfy the conditions i), ii), iii).

i) If f ∈ Z∗, then considering f as a functional on X, we get:

∞∑
n=1

| < xn, f > |p < +∞.

ii) For any element x ∈ Z we have Px ∈ X and hence,

∞∑
n=1

| < x, hn > |2 =
∞∑

n=1

| < x, P ∗fn > |2 =
∞∑

n=1

| < Px, fn > |2 < +∞.

iii)

∞∑
n=1

| < xn, hn > |p =
∞∑

n=1

| < xn, P
∗fn > |p

=
∞∑

n=1

| < Pxn, fn > |p =
∞∑

n=1

| < xn, fn > |p = +∞.

3) We define a sequence of positive numbers {βn}∞n=1 as follows:

βn = | < xn, fn > |p−q
q (

1

Sn

)
1
q .

where Sn =
n∑

i=1

| < xi, fi > |p. Putting yn = βnxn, we prove that the sequences

{yn}∞n=1 and {fn}∞n=1, satisfy conditions i), iii) with q (condition (ii) does not depend
on p). We use Abel Dini Theorem.

Condition iii)
∞∑

n=1

| < yn, fn > |q =
∞∑

n=1

| < xn, fn > |p−q 1

Sn

| < xn, fn > |q

=
∞∑

n=1

| < xn, fn > |p 1

Sn

= +∞
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Condition i) Let s = p

p − q
> 1 i.e.

q

p
+ 1

s
= 1 Using Hölder’s inequality

with power
p

q
we get:

∞∑
n=1

| < yn, f > |q =
∞∑

n=1

| < xn, fn > |p−q 1

Sn

| < xn, f > |q ≤

≤
{ ∞∑

n=1

| < xn, f > |p
} q

p ×
{ ∞∑

n=1

| < xn, fn > |p(
1

Sn

)
p

p−q

}p−q
p

< +∞.

�

Proposition 4.3.

1. For r ∈ (1, 2], the space �r is of type λp for any p ∈ [1, +∞);

2. For any r > 2 the space �r is of type λp for p <
2r

r − 2
.

Proof. Let xn = (0, 0, . . . , 1, 0, 0, . . . ) (unity is in the nth place) and let f n be defined
by the equality: f n(ξ) = ξn for any ξ = (ξk)

∞
k=1 (n = 1, 2, 3, . . . ).

1) Let 1 < r ≤ 2. We verify conditions i)-iii) under p ≥ r ′ = r

r − 1
. In fact,

iii) is clear; ii)
∞∑

n=1

| < ξ, f n > |2 =
∞∑

n=1

|ξn|2 ≤
( ∞∑

n=1

|ξn|r
) 2

r
< +∞ ∀ξ =

(ξk)
∞
k=1 ∈ �r .

i) For any ϕ = (ϕk)
∞
k=1 ∈ �r ′

, where
1

r
+ 1

r ′ = 1, we have

∞∑
n=1

| < xn, ϕ > |p =
∞∑

n=1

|ϕn|p < +∞ for any p ≥ r ′.

From 3) of proposition (4.2) we get the proof of (1).

2) Let r > 2. Then r ′ = r

r − 1
<

2r

r − 2
. Take a number p such that:

r ′ < p <
2r

r − 2
and let hn =

(
1

n

) 1
p

f n (n = 1, 2, . . . ).
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We will prove that the sequences {xn}∞n=1 and {hn}∞n=1 satisfy conditions i)-iii).

iii)

∞∑
n=1

| < xn, hn > |p =
∞∑

n=1

1

n
| < xn, f n > |p =

∞∑
n=1

1

n
= +∞;

ii)

∞∑
n=1

| < x, hn > |2 =
∞∑

n=1

| < x, f n > |2(1

n
)

2
p ≤

≤
( ∞∑

n=1

| < x, f n > |r
) 2

r
( ∞∑

n=1

(
1

n
)

2r
p(r−2)

) r−2
r

≤
( ∞∑

n=1

|xn|r
) 2

r
( ∞∑

n=1

(
1

n
)

2r
p(r−2)

) r−2
r

< +∞

∀x = {xn}∞n=1 ∈ �r .

i)

∞∑
n=1

| < xn, ϕ > |p =
∞∑

n=1

|ϕn|p ≤
( ∞∑

n=1

|ϕn|r ′) p

r′
< +∞

∀ϕ = {ϕn}∞n=1 ∈ �r ′

From (3) of proposition (4.2) we get the proof of (2) �.

Remarks 4.4.

1. The space �∞ is of type λ1, but as will be shown is not of type λ2 (see Corollary
5.5).

2. The space �1 is not of type λ1 (see Corollary 5.5), although its dual is of type λ1.

3. For r ∈ (1, +∞) the space �r is of type λ2.

Proof. 1) Let xn and f n be the same as in Proposition (4.3), and let hn = 1

n
f n (n =

1, 2, . . . ). We show that {xn}∞n=1 and {hn}∞n=1 satisfy the conditions of λ1. Let f ∈
(�∞)∗, εn = sign < xn, f > . Then,

i)

∞∑
n=1

| < xn, f > | = lim
k

k∑
n=1

εn < xn, f >

= lim
k

f
( k∑

n=1

εnx
n
)

≤ lim
k

‖f ‖ ‖
k∑

n=1

εnx
n‖ ≤ ‖f ‖

ii)

∞∑
n=1

| < x, hn > |2 ≤
∞∑

n=1

‖x‖2∞
n2

< +∞;

iii)

∞∑
n=1

| < xn, hn > | =
∞∑

n=1

1

n
= +∞.
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3) If r ∈ (1, 2] then from Proposition 4.3 (1), �r is of type λp for any p ∈ [1, +∞)

and hence of type λ2. For r > 2, then from Proposition 4.3 (2), �r is of type λ2, since
2r

r − 2
> 2. �

5. Main Results

Theorem 5.1. If the space X is a Banach space of type λp and Y is an infinite dimensional
Banach space, then �p(X, Y ) does not contain N ∞

2 (X, Y ).

Proof. Since X is a space of type λp, then there exist two sequences {xn}∞n=1 in X, and
{fn}∞n=1 in X∗ satisfying conditions: i), ii), iii). Let us take

βn = (Sn)
−1
2p , where Sn =

n∑
i=1

| < xi, fi > |p.

By the corollary of Morell and Retherford Theorem, there exists a constant c > 0 and a
biorthogonal system {yn, gn}∞n=1 in Y such that:

∞∑
n=1

| < yn, g > |2 < +∞∀g ∈ Y ∗; ‖gn‖ ≤ c

βn

, (n = 1, 2, . . . ).

The series
∞∑

n=1

< x, fn > yn is weakly convergent. In fact,

|
∞∑

n=1

< x, fn >< yn, g > | ≤
{ ∞∑

n=1

| < x, fn > |2
} 1

2
{ ∞∑

n=1

| < yn, g > |2
} 1

2
< +∞

According to Lemma (3.6), we define an operator A from X into Y as follows:

A(x) =
∞∑

n=1

βn < x, fn > yn

Clearly we have A ∈ N ∞
2 (X, Y ). We prove that the operator A is not p-absolutely

summing. In fact, we have:

‖Axk‖ ≥
∣∣∣ gk

‖gk‖(Axk)

∣∣∣ = 1

‖gk‖βk| < xk, fk > | ≥ 1

c
β2

k | < xk, fk > |
Consequently,

∞∑
k=1

‖Axk‖p ≥ 1

cp

∞∑
k=1

(βk)
2p| < xk, fk > |p

= 1

cp

∞∑
k=1

| < xk, fk > |p 1

Sk

= +∞
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Since the space X is of type λp then from the condition i) we get

∞∑
k=1

| < xk, f > |p < +∞ ∀f ∈ X∗,

and the operator T is not p-absolutely summing. �

Corollary 5.2. If X is of type λp and Y is infinite dimensional Banach space, then
�p(X, Y ) does not contain Lc(X, Y ). This follows from the inclusion:

N ∞
2 (X, Y ) ⊆ Lc(X, Y ).

Corollary 5.3. Under the same conditions of Corollary (5.2), we get,

�p(X, Y ) �= L(X, Y ).

Corollary 5.4. If X is a reflexive space of type λp and Y is an infinite dimensional
Banach space, then

�p(X, Y ) � Lc(X, Y ).

The statement of this corollary follows from the relation

�p(X, Y ) � Lc(X, Y ),

satisfied for any reflexive Banach space X. See [18] and Corollary (5.2).

Corollary 5.5. The spaces �1, L1, are not of type λ1; and the spaces �∞, L∞, and C(�),
where � is an arbitrary compact set, are not of type λ2.

Proof. It is well known that [1, 3, 19]

�1(�
1, �2) = Ł(�1, �2), �1(L

1, �2) = Ł(L1, �2),

�2(�
∞, �2) = Ł(�∞, �2), �2(L

∞, �2) = Ł(L∞, �2), �2(C(�), �2) = Ł(C(�), �2)

It remains only to apply Corollary (5.3). �

Theorem 5.6. Let X be a Banach space in which there exist sequences of operators
{An}∞n=1, {Bn}∞n=1 such that:

1. An : �2
n −→ X, Bn : X −→ �2

n and BnAn = I�2
n
.

2. inf
‖An‖‖Bn‖√

n
= 0,
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then it is of type λ2.

Proof. Let {mk}∞k=1 be a sequence of natural numbers such that

‖Amk
‖‖Bmk

‖√
mk

<
1

k2

Without loss of generality, one can consider that

‖Amk
‖ = ‖Bmk

‖ <
4
√

mk

k

Taking m0 = 0, for j = 1, 2, . . . , mk+1, we define

x̃m0+m1+···+mk+j = Amk+1ej ,

f̃m0+m1+···+mk+j = B∗
mk+1

ej ,

where {ej }mk+1
j=1 is the canonical orthonormal basis in �2

mk+1. Let us define

xm0+m1+···+mk+j = 1
4
√

mk+1
x̃m0+m1+···+mk+j ,

fm0+m1+···+mk+j = 1
4
√

mk+1
f̃m0+m1+···+mk+j

We show that the sequences {xn}∞n=1, {fn}∞n=1, satisfy the conditions of spaces of type
λ2.

i)

∞∑
n=1

| < xn, f > |2 =
∞∑

k=0

1√
mk+1

mk+1∑
j=1

| < Amk+1ej , f > |2

=
∞∑

k=0

1√
mk+1

mk+1∑
j=1

| < ej , A
∗
mk+1

f > |2

=
∞∑

k=0

1√
mk+1

‖A∗
mk+1

f ‖2

≤
∞∑

k=0

1√
mk+1

( 1

k + 1
4
√

mk+1

)2‖f ‖2

= ‖f ‖2
∞∑

k=0

1

(k + 1)2
< +∞
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ii) Similar to i) we get
∞∑

n=1

| < x, fn > |2 ≤ ‖x‖2
∞∑

k=0

1

(k + 1)2
< +∞

iii)

∞∑
n=1

| < xn, fn > |2 =
∞∑

k=0

1

mk+1

mk+1∑
j=1

| < Amk+1ej , B
∗
mk+1

ej > |2

=
∞∑

k=0

1

mk+1

mk+1∑
j=1

| < Bmk+1Amk+1ej , ej > |2

=
∞∑

k=0

1

mk+1

mk+1∑
j=1

| < ej , ej > |2 =
∞∑

k=0

1 = +∞.

�

Corollary 5.7. Any Banach space of type Sp is of type λ2. This follows from Proposition
(3.8).

Theorem 5.8. Let X be an infinite dimensional Banach space, and Y a Banach space of
type type λ2. Then D�2(X, Y ) does not contain N ∞

2 (X, Y ).

Proof. Since Y is of type λ2, then there exist a sequence of elements {yn}∞n=1 and a
sequence of functionals {gn}∞n=1 such that:

1.
∞∑

n=1

| < yn, g > |2 < +∞ ∀g ∈ Y ∗

2.
∞∑

n=1

| < y, gn > |2 < +∞ ∀y ∈ Y

3.
∞∑

n=1

| < yn, gn > |2 = +∞.

Let us take βn = (
1

Sn

)
1
4 , where Sn =

n∑
i=1

| < yi, gi > |2. Clearly, βn → 0 as n → ∞.

From corollary of Morell and Retherford Theorem, there exist a constant c > 0 and a
biorthogonal system {fk, Fk}∞k=1, (fk ∈ X∗, Fk ∈ X∗∗) such that:

∞∑
n=1

| < fn, F > |2 < +∞ ∀F ∈ X∗∗, ‖Fn‖ ≤ c

βn

(n = 1, 2, . . . )

Using Lemma (3.6) we construct an operator A from XintoY as follows:

Ax =
∞∑

n=1

βn < x, fn > yn.
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Clearly, A ∈ N ∞
2 (X, Y ). We show that A does not belong to D�2(X, Y ). We have

A∗g =
∞∑

n=1

βn < yn, g > fn (g ∈ Y ∗).

Therefore we have

‖A∗gn‖ ≥
∣∣∣ Fn

‖Fn‖(A∗gn)

∣∣∣ ≥ 1

c
β2

n| < yn, gn > |.

Consequently,

∞∑
n=1

‖A∗gn‖2 ≥ 1

c2

∞∑
n=1

β4
n | < yn, gn > |2 =

∞∑
n=1

| < yn, gn > |2
Sn

= +∞.

Since from (2) and Lemma (3.5) we get
∞∑

n=1

| < G, gn > |2 < +∞ ∀G ∈ Y ∗∗ then

A∗ does not belong to �2(Y
∗, X∗). �

Corollary 5.9. If X is an infinite dimensional Banach space, and Y a Banach space of
type λ2. Then D�2(X, Y ) does not contain Lc(X, Y ).

Theorem 5.10. Let X, Y be infinite dimensional Banach spaces. If X is of type λ1 or Y

is of type λ2 then
N (X, Y ) � Lc(X, Y )

Proof.

1) Let X be of type λ1. Then by corollary (5.2) of Theorem (5.1), �1(X, Y ) does not
contain Lc(X, Y ). Since

N (X, Y ) ⊆ �1(X, Y ) [18]
and N (X, Y ) ⊆ Lc(X, Y ), then N (X, Y ) � Lc(X, Y ).

2) Let Y be of type λ2. Then by corollary (5.9) of Theorem (5.8), D�2(X, Y ) does
not contain Lc(X, Y ). Moreover, if T ∈ N (X, Y ) then

T ∗ ∈ N (Y ∗, X∗) ⊆ �1(Y
∗, X∗) ⊆ �2(Y

∗, X∗) [18].
Consequently, N (X, Y ) ⊆ D�2(X, Y ). From which it follows that N (X, Y ) does
not contain Lc(X, Y ) and finally

N (X, Y ) � Lc(X, Y ).

�

Corollary 5.11. The ideal N of nuclear operators is small in the class of type λ1.
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6. Conclusion

If X and Y are Banach spaces of type λ1 ( a property satisfied by any Banach space of
type λp ), then N (X, Y ) � Lc(X, Y ). This means that for any Banach spaces X and Y

of type λ1 there always exists a compact non-nuclear operator from X into Y . This also
proves that Grothendieck conjecture holds in the class of Banach spaces of type λ1.
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