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Abstract

In this paper, we study cooperative games arising from fractional edge covering
problems on graphs. We introduce two games, a rigid fractional edge covering
game and its relaxed game, as generalizations of a rigid edge covering game and
its relaxed game studied by Liu and Fang [4]. We show that main results in [4] are
well extended to fractional edge covering games. That is, we give a characteriza-
tion of the cores of both games, find relationships between them.
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1. Introduction

A transferable utility game (or game for short) is an ordered pair (V,c) of a player set
V and a characteristic function c : 2V → R∪{∞} with c( /0) = 0. For each S ⊆ V , c(S)
represents the cost which the players in S achieve together. Given a game (V,c), the
main issue is how to distribute fairly the total cost c(V ) among all the players. By
imposing different requirements for fairness of distributions, there are many concepts
of fair distributions. The core is one of these distribution concepts, which is considered
an important distribution for c(V ). Given a game (V,c) with V = {v1,v2, . . . ,vn}, the
core of (V,c) is a set of vectors in Rn defined by

C (V,c) =

{
(z1, . . . ,zn) ∈ Rn |

n

∑
i=1

zi = c(V ) and ∀S⊆V, ∑
i:vi∈S

zi ≤ c(S)

}
,

1This work was supported by research grants from the Catholic University of Daegu in 2015.
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where zi denotes the value of the entry of z corresponding to vi. The constraint imposed
on the definition of C (V,c), which is called group rationality, ensures that no coalition
would have an incentive to split from the grand coalition V , and do better on its own. We
say a game is balanced if and only if the core of a game is nonempty. Since the core of
a game is one of important distribution method, characterizing the cores of games and
determining the balancedness for games have been considered as important research
questions. In this paper, we introduce cooperative cost games that arises from fractional
edge covering problems on graphs and investigate the cores of those games.

Games arising from problems on graph structures have been studied many researchers
(see [1, 2, 3, 4, 5, 6, 7, 8, 9]). Especially, Velzen [9] studied cooperative games that arise
from domination problem on graphs to model the cost allocation problem arising from
domination problems on graphs. He introduced three kinds of cooperative games, rigid
dominating set games, intermediate dominating set games and relaxed dominating set
games, and presented a common necessary and sufficient condition for balancedness of
all the games. Kim and Fang [5] extended his work into integer dominating set games.
Then Liu and Fang [4] studied a rigid edge covering game and its relaxed game that
arise from the edge covering problems on graphs. In this paper, we extends most of the
results obtained by Liu and Fang [4] into fractional edge covering games.

This paper is organized as follows. Section 2 introduces the rigid fractional edge
covering game and the relaxed fractional edge covering game associated with a weighted
graph. Section 3 investigates properties of fractional edge covering functions. Section
4 gives results on the cores of fractional edge covering games which are extension of
results in [4], that is, characterizing the cores of those games, finding relationships be-
tween of them. Section 5 gives some remarks on balancedness of those games.

2. Definitions of fractional edge covering games

Throughout this paper, we assume that a graph means a simple graph with no isolated
vertices. An edge of G with endpoints u and v is denoted by uv. A weighted graph is a
graph G with an edge weight function ω : E(G)→ R+ \{0} (R+ is the set of nonnega-
tive real numbers). For a graph G, and S⊆V (G), we denote by G[S] the subgraph of G
induced by S, and by E(G[S]) the set of edges in G[S], and by Ẽ(G[S]) the set of edges
which have an end in S. Given a vertex v of G, the set of vertices that are adjacent to v
is denoted by NG(v).

Let [a,b] be the closed real interval for real numbers a,b with a≤ b. For a graph G,
a function g : E(G)→ [0,1] is a fractional edge covering function (or FEC function for
short) of G if for every vertex v ∈V (G), ∑

x∈NG(v)
g(xv)≥ 1. Note that since we consider

only graphs with no isolated vertices, each graph has a fractional edge covering function.
For a weighted graph G with an edge weight function ω , if a FEC function g of G
minimizes the total weight ∑

e∈E(G)

g(e)ω(e), then g is called a minimum FEC function

of G. The fractional edge covering problem (or FEC problem for short) of a weighted
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graph G with an edge weight function ω is to find the total weight ∑
e∈E(G)

g(e)ω(e) of a

minimum FEC function g of G.
The FEC problem of a weighted graph is one of edge-domination problems on

graphs which are widely studied in graph theory. The FEC problem has some prac-
tical applications: we assume that each vertex is a player, who wants to obtain some
kind of service through a FEC function. From the authority’s point of view, one wishes
to minimize the total cost for providing the service to every player. This is just the
fractional edge covering problem on a graph.

We introduce a rigid FEC game and its relaxed game by considering the cost al-
location problem arising from FEC problems on graphs. Let G be a weighted graph
with an edge weight function ω . For S ⊆ V (G) such that G[S] has no isolated vertex,
a function gS : E(G[S])→ [0,1] is called a rigid fractional covering function for S (or
rigid FEC function for S for short), if ∑

x∈NG[S](v)
gS(xv)≥ 1 for each v ∈ S. In addition, for

any S ⊆ V (G), a function g̃S : Ẽ(G[S])→ [0,1] is called a relaxed fractional covering
function for S (or relaxed FEC function for S for short), if ∑

x∈NG(v)
g̃S(xv) ≥ 1 for each

v ∈ S. By the assumption that G is a graph with no isolated vertex, it is true that G has
a relaxed FEC function for any S⊂V (G).

Now we introduce two games associated with a weighted graph in the following.

Definition 2.1. Given a weighted graph G with an edge weight function ω , (V,c) is
called the rigid fractional covering game (or rigid FEC game for short) associated with
G if V =V (G) and a function c : 2V (G)→ R∪{∞} is defined as follows:

i) c( /0) = 0;

ii) for /0 ( S⊆V (G), if G[S] has an isolated vertex then c(S) = ∞, and if G[S] has no
isolated vertex then

c(S) = min{ ∑
e∈E(G[S])

gS(e)ω(e) | gS is a rigid FEC function for S.}.

Definition 2.2. Given a weighted graph G with an edge weight function ω , (V, c̃) is
called the relaxed fractional edge covering game (or relaxed FEC game for short) asso-
ciated with G if V =V (G) and a function c̃ : 2V (G)→ R∪{∞} is defined as follows:

i) c̃( /0) = 0;

ii) for /0 ( S⊆V (G),

c̃(S) = min{ ∑
e∈Ẽ(G[S])

g̃S(e)ω(e) | g̃S is a relaxed FEC function for S.}.



4664 Hye Kyung Kim

Figure 1: A graph G and the elements of T (G)

If we restrict the codomain of rigid (resp. the relaxed) FEC functions to {0,1}, then
the rigid (resp. the relaxed) FEC game associated with G is equal to the rigid (resp. the
relaxed) EC game associated with G, which was introduced by Liu and Fang [4]. In
this paper, we show that the results obtained by Liu and Fang can be well extended into
fractional edge covering games.

3. A property of FEC function of a graph

In this section, we investigate a property of FEC function of a graph which will play an
important role in characterizing the core of a rigid FEC game in Section 4.

Given a graph G, the subgraph induced by edges incident to a vertex v of G is called
a star or v-star and we call v a center of the star. We denote by T (G) the set of all stars
of G (see Figure 1 for an illustration). For a vertex v of G, the set of all stars containing
the vertex v is denoted by Tv(G). For an edge e of G, the set of all stars containing the
edge e is denoted by Te(G).

The following theorem states a property of FEC functions of a graph.

Theorem 3.1. Let g be a minimum FEC function of a weighted graph G. Then there
exists a function α : T (G)→ [0,1] such that

(i) for each edge e of G, ∑
T∈Te(G)

α(T ) = g(e),

(ii) for each vertex v of G, ∑
T∈Tv(G)

α(T ) = 1.

We prove Theorem 3.1 in the rest of this section. The matrices considered in this sec-
tion are square matrices having nonnegative integer elements and its rows and columns
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are labeled by the vertices of a graph in a same order. If rows and columns of a matrix
A are labeled by the vertices of a graph G, then we say A is a matrix of G.

Given a graph G and a FEC function g of G, the g-adjacency matrix of G is a
symmetric matrix of G defined by

A = ∑
xy∈E(G)

g(xy)Exy,

where Exy is the (0,1)-matrix of G such that the (x,y)-entry and the (y,x)-entry are the
only entry having nonzero elements. Since g is a FEC function, for each v ∈V (G),

∑
x∈NG(v)

[A]vx ≥ 1. (3.1)

A (0,1)-matrix R of a graph G is called a v-star matrix of G if there exists a nonempty
set S⊆ NG(v) such that

R = ∑
u∈S

Evu.

A star matrix of a graph G is a v-star matrix of G for some v ∈ V (G). It is easy to see
that

if a star matrix R has at least two nonzero elements in row v,

then R cannot be w-star matrix for any w ∈V (G)\{v}. (∗)

Note that given a (0,1)-matrix R of G, R is a star matrix if and only if {uv | [R]uv 6= 0} ⊂
E(G) and the subgraph of G induced by the edges {uv | [R]uv 6= 0} is a star of G.

The following lemma is a simple observation but plays a key role in proving Theo-
rem 3.1.

Lemma 3.2. Let G be a graph, S be a subset of NG(v) with |S| ≥ 2 for some v ∈V (G).
Let A be a matrix of G defined by

A = ∑
u∈S

nuEvu,

where nu be a positive real number with nu ≤ 1. For a real number ` satisfying

max
u∈S

nu ≤ ` < ∑
u∈S

nu, (3.2)

A can be represented by a linear combination of all v-star matrices of G such that each
coefficient is a real number in [0,1] and the sum of coefficients is exactly `.

Proof. Let u∗ be a vertex in S such that nu∗ = max
u∈S

nu. Since |S| ≥ 2, S \ {u∗} 6= /0 and

there exists a real number ` satisfies (3.2). By subtracting nu∗ from each side of (3.2),
we have

0≤ `−nu∗ < ∑
u∈S\{u∗}

nu.
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Then there exist real numbers xu with 0≤ xu < nu for all u∈ S\{u∗} satisfying `−nu∗ =

∑
u∈S\{u∗}

xu.

Now let

B = A− ∑
u∈S\{u∗}

xuEvu. (3.3)

Then

B = A− ∑
u∈S\{u∗}

xuEvu

= ∑
u∈S

nuEvu− ∑
u∈S\{u∗}

xuEvu

= nu∗Evu∗+ ∑
u∈S\{u∗}

(nu− xu)Evu. (3.4)

Note that all coefficients of terms in (3.4) are positive real numbers, and let N be the
set of coefficients of terms in (3.4), that is, N = {nu− xu | u ∈ S \ {u∗}} ∪ {nu∗} =

{a1,a2, . . . ,ak} with 0 = a0 < a1 < a2 < · · ·< ak. Note that
k

∑
j=1

(a j−a j−1) = ak = nu∗ .

For each 1≤ j ≤ k, we define a matrix R j of G by

R j = ∑
u: [B]vu≥a j

Evu.

From (3.4), we know that the maximum value among the elements of the matrix B is
nu∗ and so u∗ ∈ {u | [B]vu ≥ a j} for each 1 ≤ j ≤ k. Therefore, for each 1 ≤ j ≤ k,
{u | [B]vu ≥ a j} 6= /0 and so R j is well-defined. It is easy to see that R j is a v-star matrix
for each 1≤ j ≤ k. Now we will show that

B =
k

∑
j=1

(a j−a j−1)R j. (3.5)

Take two vertices x,y of G. If {x,y} 6= {v,u} for each u ∈ S, then [B]xy = 0 by (3.4) and

so

[
k

∑
j=1

R j

]
xy

= 0 by the definition of R j.

Suppose that {x,y}= {v,u} for some u∈ S. Note that [B]vu ∈N and so [B]vu = ap for
some ap ∈ N. Then by the definition of R j, it holds that [(a j−a j−1)R j]xy = (a j−a j−1)

for all j ≤ p, and [R j]vu = 0 for all j > p. Then

[
k

∑
j=1

(a j−a j−1)R j

]
vu

= ∑
j≤p

(a j −

a j−1) = ap−a0 = ap and so

[
k

∑
j=1

R j

]
vu

= [B]vu. Therefore, (3.5) holds.
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By (3.3) and (3.5),

A =
k

∑
j=1

(a j−a j−1)R j + ∑
u∈S\{u∗}

xuEvu.

Thus, each matrix on the right hand side of the above equality is v-star matrix of G and
the sum of coefficient is

k

∑
j=1

(a j−a j−1)+ ∑
u∈S\{u∗}

xu = nu∗+(`−nu∗) = `.

Moreover, since 0 ≤ nu ≤ 1 for each u ∈ S, it follows that a j−a j−1 ∈ [0,1] for each j.
Hence, by adding terms 0 ·R (the zero matrix) for all v-star matrices R, we can conclude
that A is a linear combination of all v-star matrices of G such that each coefficient is a
real number in [0,1] the sum of coefficients is exactly `. We complete the proof. �

Lemma 3.3. Let g be a FEC function of a graph G, A be the g-adjacency matrix of G,
and Ω be a set of vertices defined by

Ω =

{
v ∈V (G) | ∑

u∈NG(v)
[A]uv > 1

}
.

If Ω is an empty set or the submatrix of A induced by Ω is a zero matrix, then there
exists a function α : T (G)→ [0,1] such that

(i) for each edge e of G, ∑
T∈Te(G)

α(T ) = g(e),

(ii) for each vertex v of G, ∑
T∈Tv(G)

α(T ) = 1.

Proof. We first consider the case where Ω = /0. Then by (3.1), ∑
x∈NG(u)

[A]xu = 1 for each

vertex u ∈V (G). We define a function α : T (G)→ [0,1] by

α(T ) =
{

g(e) if |E(T )|= 1 and E(T ) = {e}
0 otherwise .

For an edge e∈E(G), ∑
T∈Te(G)

α(T )= g(e) by the definition of α . For a vertex v∈V (G),

∑
T∈Tv(G)

α(T ) = ∑
x∈NG(u)

g(xu) = ∑
x∈NG(u)

[A]xu = 1.

Therefore, α satisfies (i) and (ii) when Ω = /0.
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Now we consider the case where Ω 6= /0. By assumption, the submatrix of A induced
by Ω is a zero matrix. Thus, for each edge xy with g(xy) > 0, we have {x,y} 6⊆ Ω and
so either |{x,y}∩Ω| = 1 or {x,y}∩Ω = /0. This implies {xy ∈ E(G) | g(xy) > 0} can
be partitioned into the two subsets P1 = {xy ∈ E(G) | g(xy) > 0, |{x,y}∩Ω| = 1} and
P2 = {xy ∈ E(G) | g(xy)> 0,{x,y}∩Ω = /0}. In fact,

P1 =
⋃

x∈Ω

{xy ∈ E(G) | g(xy)> 0}

where each union is a disjoint union. Therefore, A can be represented as follows:

A = ∑
x∈Ω

∑
xy : xy∈E(G)

g(xy)>0

g(xy)Exy + ∑
xy : xy∈E(G)

g(xy)>0
{x,y}∩Ω= /0

g(xy)Exy.

For the sake of convenience, let

A(x) = ∑
xy : xy∈E(G)

g(xy)>0

g(xy)Exy

for each x ∈Ω. Then

A = ∑
x∈Ω

A(x)+ ∑
xy : xy∈E(G)

g(xy)>0
{x,y}∩Ω= /0

g(xy)Exy. (3.6)

For each x∈Ω, A(x) can be represented by a linear combination of all x-star matrices
of G such that the sum of coefficients is exactly 1, and each coefficient is a real number
in [0,1]. To see why, take a vertex x ∈ Ω and let S = {y | xy ∈ E(G),g(xy) > 0}. Then
S⊆ NG(x) and

A(x) = ∑
u∈S

g(xu)Exu.

In addition, ∑
u∈S

g(xu) = ∑
u∈NG(v)

g(xu). Since x ∈ Ω, ∑
u∈S

g(xu) > 1. Since g(xu) ≤ 1 for

each u ∈ S, it holds that |S| ≥ 2. Moreover,

max
u∈S

g(xu)≤ 1 < ∑
u∈S

g(xu).

Then, by Lemma 3.2, A(x) can be represented by a linear combination of all x-star
matrices such that the sum of coefficients is exactly 1, and each coefficient is a real
number in [0,1]. Therefore, for each x ∈ Ω, there exist real numbers a(R,x) ∈ [0,1] for
all x-star matrices R such that

A(x) = ∑
R: x-star matrix

a(R,x)R and ∑
R: x-star matrix

a(R,x) = 1.
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Therefore, by (3.6),

A = ∑
x∈Ω

∑
R: x-star matrix

a(R,x)R+ ∑
xy : xy∈E(G)

g(xy)>0
{x,y}∩Ω= /0

g(xy)Exy. (3.7)

Note that each matrix in (3.7) is a star matrix of G. For each star matrix R of G, we
denote by T (R) a star of G which is the subgraph induced by {xy | [R]xy 6= 0}. We define
a function α : T (G)→ [0,1] by, for each star T ∈T (G),

α(T ) =


a(R,x) if T = T (R) for some x-star matrix R where x ∈Ω

g(xy) if T = Exy for some vertices x,y with {x,y}∩Ω = /0
0 otherwise.

Note that α is well-defined. By the definition of α , it is true that

∑
T∈Te(G)

α(T ) = (the sum of coefficients of matrices R in (3.7) s.t. T (R) ∈Te(G)),

∑
T∈Tv(G)

α(T ) = (the sum of coefficients of matrices R in (3.7) s.t. T (R) ∈Tv(G)).

We will show that α satisfies (i) and (ii). It is easy to see that for each edge uv, the sum
of coefficients of matrices R in (3.7) such that T (R) ∈ Te(G) is equal to [A]uv. Since
[A]uv = g(uv) by the definition of g-adjacency matrix, we have ∑

T∈Te(G)

α(T ) = g(uv),

and so (i) holds. Now it remains to show that for each vertex v ∈V (G), ∑
T∈Tv(G)

α(T ) =

1. To do so, take a vertex v ∈ V (G). If v ∈ Ω, then by the definition of α , it is easy to
check that

∑
T∈Tv(G)

α(T ) = ∑
R: v-star matrix

a(R,v) = 1.

Suppose that v 6∈Ω. Then ∑
u∈V (G)

[A]vu = 1. First, we will show that ∑
u∈V (G)

[R]vu ∈ {0,1}

for each star matrix R in (3.7). To reach a contradiction, suppose that ∑
u∈V (G)

[R]vu > 1

for some star matrix R in (3.7). Then by the property (∗) for a star matrix which we
previously observed right before stating Theorem 3.1, R is a v-star matrix of G and R 6=
Evw for any w ∈V (G). Therefore R must be one of star matrices in the first summation
in (3.7), which implies that R is a x-star matrix for some x ∈ Ω. Since v 6∈ Ω, we reach
a contradiction. Therefore, ∑

u∈V (G)

[R]vu ≤ 1. As R is a (0,1)-matrix, ∑
u∈V (G)

[R]vu ∈ {0,1}

for each star matrix R in (3.7). Therefore for a star matrix R in (3.7), T (R) ∈ Tv(G) if
∑

u∈V (G)

[R]vu = 1, and T (R) 6∈Tv(G) if ∑
u∈V (G)

[R]vu = 0. Then

∑
u∈V (G)

[A]uv = ∑
M: a summand

in (3.7)

( ∑
u∈V (G)

[M]vu) = ∑
R: a matrix in (3.7)

with T (R) ∈Tv(G)

α(T (R)).
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Therefore the sum of coefficients of matrices R in (3.7) such that T (R)∈Tv(G) is equal
to ∑

u∈V (G)

[A]vu. Since ∑
u∈V (G)

[A]vu = 1, we complete the proof. �

Lemma 3.4. Let g be a minimum FEC function of a weighted graph G, A be the g-
adjacency matrix of G, and Ω be a set of vertices defined by

Ω = {v ∈V (G) | ∑
u∈NG(v)

[A]uv > 1}.

Then Ω is an empty set or the submatrix of A induced by Ω is a zero matrix.

Proof. By contradiction. Suppose that Ω is not an empty set and that the submatrix of A
induced by Ω is not a zero matrix. Then there exist vertices u,v ∈Ω such that [A]uv 6= 0,
and so [A]uv = g(uv) > 0. Since ∑

x∈NG(v)
[A]xv > 1 and ∑

x∈NG(u)
[A]xu > 1, we can find a

positive real number r such that

r = min

{
∑

x∈NG(v)
[A]xv−1, ∑

x∈NG(u)
[A]xu−1,g(uv)

}
.

We define a function g′ : E(G)→ [0,1] by

g′(xy) =
{

g(xy)− r if xy = uv;
g(xy) otherwise.

As 0 < r ≤ g(uv), g′ is well-defined. Furthermore, g′ is a FEC function of G. To see
why, take a vertex x ∈V (G). If x ∈V (G)\{u,v}, we have ∑

y∈NG(x)
g(xy) = ∑

y∈V (G)

g′(xy),

and so
∑

y∈NG(x)
g′(xy)≥ 1.

If x ∈ {u,v} ⊆Ω, we have ∑
y∈NG(x)

g(xy)≥ 1+ r and so

∑
y∈NG(x)

g′(xy) = ∑
y∈NG(x)\{u,v}

g′(xy)+(g(uv)− r) = ∑
y∈NG(x)

g(xy)− r ≥ 1,

by the definition of r. Thus we conclude that ∑
y∈NG(x)

g′(xy)≥ 1 for every x ∈V (G), and

so g′ is a FEC function of G.
Let ω be an edge weight function of G. Note that ω is a positive real valued function

by our assumption. By the definition of g′, it is easy to check that ∑
e∈E(G)

g′(e)ω(e) =
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∑
e∈E(G)

g(e)ω(e) − ω(uv)r. Since ω(uv)r > 0, it holds that ∑
e∈E(G)

g′(e)ω(e) <

∑
e∈E(G)

g(e)ω(e), which contradicts the minimality of g. Hence we complete the proof.

�

Proof of Theorem 3.1. It immediately follows from Lemma 3.3 and Lemma 3.4. �

4. Characterization of the cores

Throughout this section, we assume that G is a weighted graph with an edge weight
function ω where the vertex set of G is V = {v1,v2, . . . ,vn}. Given z = (z1, . . . ,zn) ∈Rn

and S⊆V , we let
z(S) = ∑

i:vi∈S
zi.

Recall that given a game (V,c), the core of (V,c) is defined by

C (V,c) = {z ∈ Rn | z(V ) = c(V ) and ∀S⊆V, z(S)≤ c(S)},

and a game is balanced if the core is not empty. This section investigates the cores of
rigid FEC games and relaxed FEC games.

We will present characterization results of the cores for both rigid and relaxed FEC
games. Theorem 4.1 and Theorem 4.3 are characterizations for the cores of the rigid
and the relaxed FEC games, respectively. First, we see a characterization result of the
cores for rigid FEC games. For E ′ ⊆ E, we let ω(E ′) = ∑

e∈E ′
ω(e).

Theorem 4.1. Let (V,c) be the rigid k-EC game associated with a weighted graph G
whose edge weight function is ω . Then z ∈ C (V,c) if and only if it holds that

(a) z(V ) = c(V )

(b) for any T ∈T (G), z(V (T ))≤ ω(E(T )).

The following is a characterization of a core element of a rigid EC game given by
Liu and Fang [4]. It is easy to see that Theorem 4.2 is well extended to Theorem 4.1.

Theorem 4.2. [4] Let (V,c) be the rigid EC game associated with a weighted graph G
whose edge weight function is ω . Then z ∈ C (V,c) if and only if it holds that

(a)′ z(V ) = c(V )

(b)′ for any T ∈T (G), z(V (T ))≤ ω(E(T )).

Now we prove Theorem 4.1.
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Proof of Theorem 4.1. The ‘only if’ part is easy. Let z be an element of C (V,c). Then
by the definition of the core, (a) follows immediately. To show (b), take any T ∈T (G).
Then for V (T ) = S, z(S) ≤ c(S) by definition of the core. We define a gS : E(G[S])→

[0,1] as gS(e) =
{

1 if e ∈ E(T )
0 otherwise . Then it is easy to check that gS is a rigid FEC

function for S. Therefore c(S) ≤ ∑
e∈E(G[S])

gS(e)ω(e) = ∑
e∈E(T )

ω(e) = ω(E(T )), and so

(b) holds.
Now we will show the ‘if’ part. Suppose that z satisfies (a) and (b). It is sufficient

to show that z(S) ≤ c(S) for any S ⊂ V . Take S ⊂ V . If G[S] has an isolated vertex,
c(S) = ∞ and so z(S) ≤ ∞ = c(S) holds. Now we consider the case that G[S] has no
isolated vertex. Then there is a minimum rigid FEC function for S gS : EG(S)→ [0,1].
Let T ∗ = {T ∈T (G) |V (T )⊂ S}, T ∗

v :=Tv(G)∩T ∗, and T ∗
e :=Te(G)∩T ∗. Note

that T ∗ = T (G[S]), T ∗
v = Tv(G[S]), and T ∗

e = Te(G[S]). By Theorem 3.1, there is a
function α : T ∗→ [0,1] satisfying:

i) for each edge e ∈ E(G[S]), ∑
T∈T ∗e

α(T ) = gS(e),

ii) for each vertex v ∈ S, ∑
T∈T ∗v

α(T ) = 1.

Therefore

z(S) = ∑
vi∈S

zi = ∑
vi∈S

zi ∑
T∈T ∗vi

α(T ) = ∑
T∈T ∗

z(V (T ))α(T ) (4.8)

and

c(S) = ∑
e∈E(G[S])

ω(e)gS(e) = ∑
e∈E(G[S])

ω(e) ∑
T∈T ∗e

α(T ) = ∑
T∈T ∗

ω(E(T ))α(T ). (4.9)

On the other hand, by the hypothesis (b), note that for all T ∈T ∗,

z(V (T ))≤ ω(E(T )). (4.10)

Then

z(S) = ∑
T∈T ∗

z(V (T ))α(T )≤ ∑
T∈T ∗

ω(E(T ))α(T ) = c(S),

where first equality holds by (4.8), second inequalities hold by (4.10) and the last holds
by (4.9). Hence z(S)≤ c(S). �

Now we give a characterization of a core element of a relaxed FEC game.

Theorem 4.3. Let (V, c̃) be the relaxed FEC game associated with a weighted graph G
whose edge weight function is ω . Then z ∈ C (V, c̃) if and only if it holds that
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(a) z(V ) = c̃(V )

(b) z ∈ Rn
+

(c) for any edge viv j, zi + z j ≤ ω(viv j).

Proof. We will show the ‘only if’ part first. Let z be an element of C (V, c̃). By the
definition of C (V,c) (a) holds. Since c̃(S) ≤ c̃(T ) for every S ⊆ T ⊆ V , zi = z(V )−
z(V \{vi})≥ c̃(V )− c̃(V \{vi})≥ 0 for every vi ∈V . From this observation, (b) holds
immediately. To show (c), take any edge e∗ = viv j. Then for S = {vi,v j}, zi+ z j ≤ c̃(S).
Let g̃S : Ẽ(G[S])→ [0,1] be a relaxed FEC function that has value 1 at edge e∗ and value
0 elsewhere. Then c̃(S)≤ ∑

e∈Ẽ(G[S])

g̃S(e)ω(e) = ω(viv j). Thus zi+ z j ≤ c̃(S)≤ω(viv j).

To show the ‘if’ part, suppose that z satisfies (a), (b) and (c). It is sufficient to show
that z(S) ≤ c̃(S) for any S ⊂ V . Take a subset S ⊂ V . Then there is a relaxed FEC
function g̃S : Ẽ(G[S])→ [0,1] such that c̃(S) = ∑

e∈Ẽ(G[S])

g̃S(e)ω(e) and ∑
x∈NG(v)

g̃S(vx)≥

1 for all v ∈ S. Note that z ∈ Rn
+ and so zi ≥ 0 for any vi ∈ V . Therefore zi ≤

zi

(
∑

x∈NG(vi)

g̃S(xvi)

)
for any vi ∈V . Then

z(S) = ∑
vi∈S

zi ≤ ∑
vi∈S

zi

(
∑

x∈NG(vi)

g̃S(xvi)

)
= ∑

vi∈S
∑

x∈NG(vi)

zig̃S(xvi)

= ∑
viv j∈Ẽ(G[S])

(zi + z j)g̃S(viv j).

By the hypothesis (c), (zi + z j)≤ ω(viv j) for each edge viv j ∈ Ẽ(G[S]). It implies that

z(S)≤ ∑
viv j∈Ẽ(G[S])

(zi + z j)g̃S(viv j)≤ ∑
e∈Ẽ(G[S])

ω(e)g̃S(e) = c̃(S),

hence z(S)≤ c̃(S). �

Let (V,c) be a rigid FEC game and (V, c̃) be a relaxed FEC game, both of which
associate with a weighted graph G whose edge weight function is ω . For S⊂V , if gS is
a rigid FEC function for S, then

g̃S(e) =
{

gS(e) e ∈ E(G[S])
0 otherwise

is a relaxed FEC function for S. By definition,

∑
e∈Ẽ(G[S])

g̃S(e)ω(e) = ∑
e∈E(G[S])

gS(e)ω(e)
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and so c̃(S) ≤ c(S). A rigid FEC function for the grand coalition V is a relaxed FEC
function for V , and vise versa. Therefore c̃(V ) = c(V ). Now take z ∈ C (V, c̃). Then
z(V ) = c̃(V ) = c(V ) and, for S ⊂ V , z(S) ≤ c̃(S) ≤ c(S). Thus z ∈ C (V,c). Moreover,
by Theorem 4.3, C (V, c̃) ⊂ Rn

+ and therefore z ∈ C (V,c)∩Rn
+. We have shown that

C (V, c̃)⊂ C (V,c)∩Rn
+. On the other hand, if z ∈ C (V,c)∩Rn

+, then z satisfies (a), (b),
and (c) of Theorem 4.3 and so z ∈ C (V, c̃). Thus C (V,c)∩Rn

+ ⊂ C (V, c̃). Hence, the
core of a rigid FEC game is the nonnegative part of the core of its relaxed game.

Theorem 4.4. Let (V,c) be a rigid FEC game and (V, c̃) be a relaxed FEC game, both
of which associate with a weighted graph G. Then C (V, c̃) = C (V,c)∩Rn

+.

5. Concluding Remark

In this paper, we introduced two games, a rigid fractional edge covering game and its
relaxed game, as generalizations of a rigid edge covering game and its relaxed game
studied by Liu and Fang [4]. Also, we give characterizations of the cores of both games,
which are extensions of results in [4].

Let G be a weighted graph with an edge weight function ω . Let M be the incidence
matrix of G, that is, a (0,1)-matrix whose rows are labeled as the vertices of G and
columns are labeled as the edges of G such that the entry in row v and column e is 1 if
and only if the vertex v is an end of e. Note that each of the edge weight function ω and a
FEC function for G can be considered as a vector of size 1×|E(G)|. Let 1 be the vector
whose all entries are 1. Then a vector x of size 1×|E(G)| is a minimum FEC function
for G if and only if x is an optimal solution of the following linear programming:

(P) minimize ωx
subject to Mx≥ 1, x ∈ [0,1]|E(G)|

The (LP) in the following is a relaxation of (P), and (DLP) is its LP-dual problem:

(LP) minimize ωx
subject to Mx≥ 1, x ∈ R|E(G)|

+

(DLP) maximize y(k1)
subject to yM ≤ ω, y ∈ R|V (G)|

+

The optimal value of (P) (resp. (LP) and (DLP)) is denoted by opt(P) (resp. opt(LP) and
opt(DLP)). It can be easily checked that z is the core of the relaxed FEC game associate
with G if and only if z is an optimal solution to (DLP). To see why, suppose that z is in
the core of the relaxed FEC game, Theorem 4.3 implies that z is a feasible solution to
(DLP) and z(V )≤ opt(LP). Then z(V )≥ opt(LP) = opt(DLP)≥ z(V ). Therefore (DLP)
has an optimal solution z. Conversely, suppose that z is an optimal solution to (DLP),
then z(V ) = opt(DLP) = opt(LP) = c̃(V ). Since z is a feasible solution to (DLP), z≥ 0
and zi+ z j ≤ ω(viv j) for any viv j ∈ E. Thus z is in the core of the relaxed FEC game by
Theorem 4.3.
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Since (DLP) always has an optimal solution, the core of the relaxed FEC game
associated with a weighted graph is always non empty. Thus the relaxed FEC game
associated with a weighted graph is always balanced and finding an element of the core
can be carried out in polynomial time.
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