
Global Journal of Pure and Applied Mathematics. 

ISSN 0973-1768 Volume 12, Number 4 (2016), pp. 3809-3829 

© Research India Publications 

http://www.ripublication.com/gjpam.htm 

 

 

Rational Block Method for the Numerical Solution of 

First Order Initial Value Problem II: A-Stability and 

L-Stability 
 

 

Teh Yuan Ying* 

School of Quantitative Sciences, UUM College of Arts and Sciences,  
Univertiti Utara Malaysia, 06010 UUM Sintok, Kedah Darul Aman, Malaysia. 

 

Zurni Omar 

School of Quantitative Sciences, UUM College of Arts and Sciences,  
Univertiti Utara Malaysia, 06010 UUM Sintok, Kedah Darul Aman, Malaysia. 

 

Kamarun Hizam Mansor 

School of Quantitative Sciences, UUM College of Arts and Sciences,  
Univertiti Utara Malaysia, 06010 UUM Sintok, Kedah Darul Aman, Malaysia. 

 
 

 

Abstract 

 

In this study, an A-stable 2-point explicit rational block method and a L-stable 

2-point explicit rational block method are developed for the numerical solution 

of first order initial value problems. Local truncation error analyses showed 

that the A-stable 2-point explicit rational block method possesses second order 

of accuracy, while the L-stable 2-point explicit rational block method 

possesses first order of accuracy. The absolute stability analyses confirmed the 

absolute stability characteristics of the proposed methods. Several test 

problems are solved using the new methods and two existing rational methods 

via the variable step-size approach. Numerical results generated by the 

proposed explicit rational block method are promising in terms of numerical 

accuracy and computational cost. 

 

 

1. INTRODUCTION 
Rational block methods (RBMs) are block multistep methods that are based on 

rational approximants. Like conventional block multistep methods, RBMs can be 

considered as a set of simultaneously applied rational multistep methods to obtain 
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several numerical approximations within each integration step. The concept of RBMs 

is introduced to overcome the stability drawbacks and at the same time, retain the 

advantages of conventional block multistep methods, which being less expensive in 

terms of functions evaluations. For excellence surveys and various perspectives of 

conventional block multistep methods, see, for example, Sommeijer et al. [1], 

Watanabe [2], Ibrahim et al. [3, 4], Chollom et al. [5], Majid et al. [6, 7], Mehrkanoon 

et al. [8], Akinfenwa et al. [9], Ehigie et al. [10], Ibijola et al. [11] and Majid and 

Suleiman [12]. 

The aim of this current study is to develop RBMs with tighter requirements of 

absolute stability. These requirements are the A-stability and the L-stability. It is well 

known that A-stability and L-stability are both demanding requirements, particularly 

for conventional linear multistep method [13]. Although a RBM possesses similar 

structure of a multistep method, it is easier to establish A-stability and L-stability in a 

RBM due to its nonlinearity formed by the rational approximant therein. For 

excellence surveys and various perspectives on how A-stability and L-stability can be 

achieved through rational approximants, one can refer to, for examples, Lambert [14], 

Lambert and Shaw [15], Luke et al. [16], Fatunla [17, 18], van Niekerk [19, 20], 

Ikhile [21, 22, 23], Ramos [24], Okosun and Ademiluyi [25, 26], Teh et al. [27, 28], 

Yaacob et al. [29], and Teh and Yaacob [30, 31]. 

When developing a RBM, we have the freedom to decide the structure of the 

underlying rational approximant, either the degree of numerator greater than the 

degree of denominator, the degree of denominator greater than the degree of 

numerator, or both numerator and denominator in equal degree. By adopting the 

concepts of A-acceptable and L-acceptable for one-step Runge-Kutta method to 

RBMs [13], we found out that an A-stable RBM can be developed by considering a 

rational approximant with both numerator and denominator in equal degree, whereas a 

L-stable RBM can be developed if the underlying rational approximant has the degree 

of denominator greater than the degree of numerator. 

In Section 2 and Section 3, we demonstrate the developments of an A-stable 2-point 

explicit RBM and a L-stable 2-point explicit RBM, respectively. We also demonstrate 

the calculations of principal local truncation error terms for each of the developed 2-

point RBM. The absolute stability analyses are included to verify the absolute 

stability characteristics for each of the developed RBM. Section 4 talks about the 

variable step-size strategy suited for the developed RBMs. In Section 5, numerical 

comparisons are made between the developed RBMs and some existing rational 

methods, and dicussions are carried out based on the numerical findings. Finally, 

some useful conclusions are drawn. 

 

 

2. DERIVATION OF A-STABLE 2-POINT EXPLICIT RATIONAL BLOCK 

METHOD 

The A-stable 2-point explicit rational block method, or in brief as 2-point ERBM-A, is 

formulated to solve the following first order initial value problem given by 

   ,y f x y  ,  y a  , (1) 
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where :f    and  ,f x y  is assumed to satisfy all the required conditions 

such that problem (1) possesses a unique solution. Suppose that the interval of 

numerical integration is  ,x a b   and is divided into a series of blocks with each 

block containing two points as shown in Figure 1. 

 

 
Figure 1: Two 2-point Consecutive Blocks. 

 

 

From Figure 1, we observe that k -th block contains three points nx , 1nx   and 2nx  , 

and each of these points is separated equidistantly by a constant step-size h . The next 

 1k  -th block also contains three points. In the k -th block, we want to use the 

values ny  at nx  to compute the approximation values of 1ny   and 2ny   

simultaneously. In the  1k  -th block, the previously computed value of 2ny   is used 

to generate the approximated values of 3ny   and 4ny  . The same computational 

procedure is repeated to compute the solutions for the next few blocks until the end-

point i.e. x b  is reached. The evaluation information from the previous step in a 

block can be used for other steps of the same block. 

Along the x-axis, we consider the points nx , 1nx   and 2nx   to be given by 

  
0nx x nh  , (2) 

   1 0 1nx x n h    , (3) 

and 

   2 0 2nx x n h    , (4) 

 

where h is the step-size. Let us assume that the approximate solution of (1) is locally 

represented in the range  1,n nx x   by the rational approximant 

   0 1

0

a a xR x
b x





, (5) 

where 0a , 1a  and 0b  are undetermined coefficients. We note that the numerator and 

denominator of rational approximant (5) are both degree 1 (i.e. numerator and 

denominator in equal degree). This rational approximant in equation (5) is required to 

h h h h 

     

-th block -th block 
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pass through the points  ,n nx y  and  1 1,n nx y  , and moreover, must assume at these 

points the derivatives given by  ,y f x y   and  ,y f x y  . Altogether, there are 

four equations to be satisfied i.e. 

   n nR x y , (6) 

   1 1n nR x y  , (7) 

   n nR x y  , (8) 

and 

   n nR x y  , (9) 

where  ,n n n ny f f x y    and  ,n n n ny f f x y    . On using MATHEMATICA 8.0, 

the elimination of the three undetermined coefficients 0a , 1a  and 0b  from equations 

(6) – (9) yields the one-step rational method 

  
 

2

1

2

2

n
n n

n n

h y
y y

y hy


 

 
. (10) 

 

We note that equation (10) is exactly the one-step second order rational method 

proposed by Ramos [24]. Equation (10) is the formula to approximate 1ny   by using 

the information at the previous point  ,n nx y . 

 

To approximate 2ny  , we have to assume that the approximate solution of (1) is 

locally represented in the range  2,n nx x   by the same rational approximant given in 

equation (5). It is crucial to retain the same rational approximant in the same block. 

Now, we required the rational approximant (5) to pass through the points  ,n nx y , 

 1 1,n nx y   and  2 2,n nx y  , and moreover, must assume at these points the derivative 

given by  ,y f x y  . There are five equations to be satisfied i.e. 

   n nR x y , (11) 

   1 1n nR x y  , (12) 

   2 2n nR x y  , (13) 

   n nR x y  , (14) 

and 

   1 1n nR x y 
  , (15) 

where  ,n n n ny f f x y    and  1 1 1 1,n n n ny f f x y   
   . On using MATHEMATICA 

8.0, the elimination of the four undetermined coefficients 0a , 1a , 0b  and ny  from 

equations (11) – (15) yields the following two-step rational method, 
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 

 
1 1

2 1

1 12

n n n
n n

n n n

hy y y
y y

y y hy
 

 

 

 
 

 
. (16) 

 

We note that equation (16) is exactly the two-step second order rational method 

proposed by Lambert [32]. Equation (16) is the formula to approximate 2ny   by using 

the information at the previous points  ,n nx y  and  1 1,n nx y  . Hence, the 2-point 

ERBM-A based on the rational approximant (5) consists of two formulae i.e. formulae 

(10) and (16). 

 

The implementation of the 2-point ERBM-A is as follows: with ny  is known, 

compute the approximate solution 1ny   using formula (10); and then compute the 

approximate solution 2ny   using formula (16) with the value of 1ny   obtained from 

formula (10). 

 

2.1 Local Truncation Errors and Order of Consistency of 2-point ERBM-A 

To obtain the order of consistency of the 2-point ERBM-A, we would need to 

investigate the order of consistency of formulae (10) and (16) individually, which can 

be found by establishing the local truncation errors for both (10) and (16). Since 

formulae (10) and (16) are used in the same block to solve for the approximate 

solutions at 1nx   and 2nx  , we wish to have both formulae possess the same order of 

consistency. For formula (10), we can associate the following nonlinear operator 

defined by 

       
 

   

2
2

;
2

hy x
L y x h y x h y x

y x hy x


        
,  (17) 

 

where  y x  is an arbitrary function, continuously differentiable on  ,a b . From 

equation (17), on expanding  y x h  in Taylor series about x, we obtain 

   
 

 

 
 

2

3 4; .
4 6

y x y x
L y x h h O h

y x

  
         
 

 (18) 

 

Equation (18) indicates that formula (10) has second order of consistency, and the 

local truncation error (LTE) for formula (10) can be written as 

  
   

 
 

2

3 4

10
LTE ;

4 6

n n
n

n

y yL y x h h O h
y

  
         
 

, (19) 

where  y x  is now taken to be the theoretical solution of problem (1). 
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For formula (16), the associate nonlinear operator is defined as follows 

     
      
      

; 2 ,
2

hy x h y x h y x
L y x h y x h y x h

y x h y x hy x h

   
           

 (20) 

where  y x  is an arbitrary function, continuously differentiable on  ,a b . From 

equation (20), on expanding  y x h ,  2y x h  and  y x h   in Taylor series 

about x, we obtain 

   
 

 

 
 

2

3 4;
2 3

y x y x
L y x h h O h

y x

  
         
 

. (21) 

 

Equation (21) indicates that formula (16) has second order of consistency, and the 

LTE for formula (16) can be written as 

   

 
 

2

3 4

16
LTE

2 3

n n

n

y yh O h
y

  
    
 
 

, (22) 

where  y x  is now taken to be the theoretical solution of problem (1). 

 

From the local truncation errors given in equations (19) and (22), we can verify that 

both formulae (10) and (16) possess second order of consistency. This also indicates 

that the 2-point ERBM-A is effectively of order 2. 

 

2.2 Absolute Stability Analysis of 2-point ERBM-A 

To investigate the linear stability condition for formulae (10) and (16) in the same 

block, we need to combine both formulae and apply the Dahquist’s test equation 

  y y  ,   0y a y ,  Re 0  , (23) 

to both formulae. With 1 1n ny y 
  , n ny y   and 

2

n ny y  , we can obtain the 

following difference equation 

  

2

2

2

2
n n

hy y
h





 
  

 
. (24) 

 

On setting h z  , 
2

2ny    and 
0 1ny    in equation (24), then the stability 

polynomial for the 2-point ERBM-A is 

  

2

2 2
0

2

z
z


 

  
 

.  (25) 

 

Here,   can be interpreted as the roots of stability polynomial (25). By taking 

iz x y   in the roots of equation (25), we have plotted the region of absolute stability 

of the 2-point ERBM-A in Figure 2. 
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Figure 2: Absolute stability region of the 2-point ERBM-A. 

 

The shaded region in Figure 2 is the region of absolute stability of the 2-point ERBM-

A. Hence, this shaded region can also be viewed as the ‘combined’ region of absolute 

stability of formulae (10) and (16). The shaded region is the place where the absolute 

value of each root of equation (25) is less than or equal to 1. From Figure 2, we can 

see that the region of absolute stability contains the whole left-hand half plane which 

shows that the 2-point ERBM-A is A-stable. 

 

 

3. DERIVATION OF L-STABLE 2-POINT EXPLICIT RATIONAL BLOCK 

METHOD 

The L-stable 2-point explicit rational block method, or in brief as 2-point ERBM-L, is 

formulated to solve problem (1). The formulation of 2-point ERBM-L is identical to 

the formulation of 2-point ERBM-A, which based on Figure 1 and also the 

assumptions from equations (2) – (4). 

Let us assume that the approximate solution of (1) is locally represented in the range 

 1,n nx x   by the rational approximant 

    0

0

aR x
b x




, (26) 

where 0a  and 0b  are undetermined coefficients. We note that, from the rational 

approximant in (26), the degree of the denominator is 1 while the degree of the 

numerator is 0 (i.e. degree of denominator greater than the degree of numerator). This 

rational approximant in equation (26) is required to pass through the points  ,n nx y  
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and  1 1,n nx y  , and moreover, must assume at these points the derivative given by 

 ,y f x y  . Altogether, there are three equations to be satisfied i.e. 

   n nR x y , (27) 

   1 1n nR x y  , (28) 

and 

   n nR x y  , (29) 

where  ,n n n ny f f x y   . On using MATHEMATICA 8.0, the elimination of the two 

undetermined coefficients 0a  and 0b  from equations (27) – (29) yields the one-step 

rational method 

  
 

2

1

n
n

n n

y
y

y hy 


. (30) 

 

We note that equation (30) is exactly the one-step first order rational method 

presented in Fatunla [17]. Equation (30) is the formula to approximate 
1ny 
 by using 

the information at the previous point  ,n nx y . 

 

To approximate 2ny  , we have to assume that the approximate solution of (1) is 

locally represented in the range  2,n nx x   by the same rational approximant given in 

equation (26). It is crucial to retain the same rational approximant in the same block. 

Now, we required the rational approximant (26) to pass through the points  ,n nx y , 

 1 1,n nx y   and  2 2,n nx y  , and moreover, must assume at these points the derivative 

given by  ,y f x y  . There are four equations to be satisfied i.e. 

 

   n nR x y , (31) 

   1 1n nR x y  , (32) 

   2 2n nR x y  , (33) 

and 

   n nR x y  , (34) 

 

where  ,n n n ny f f x y   . On using MATHEMATICA 8.0, the elimination of the two 

undetermined coefficients 0a  and 0b  from equations (31) – (34) yields the following 

two-step rational method, 

  
 

2

1

2

1 4

n n n
n

n n

y hy y
y

y hy










. (35) 
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To the best of our knowledge, equation (35) is not seen in the literature review before. 

Equation (35) is the formula to approximate 2ny   by using the information at the 

previous points  ,n nx y  and  1 1,n nx y  . Hence, the 2-point ERBM-L based on the 

rational approximant (26) consists of two formulae i.e. formulae (30) and (25). 

The implementation of the 2-point ERBM-L is similar to the implementation of the 2-

point ERBM-A: with ny  is known, compute the approximate solution 1ny   using 

formula (30); and then compute the approximate solution 2ny   using formula (35) 

with the value of 1ny   obtained from formula (30). 

 

3.1 Local Truncation Errors and Order of Consistency of 2-point ERBM-L 

To obtain the order of consistency of the 2-point ERBM-L, we would need to 

investigate the order of consistency of formulae (30) and (35) individually, which can 

be found by establishing the local truncation errors for both (30) and (35). Since 

formulae (30) and (35) are used in the same block to solve for the approximate 

solutions at 1nx   and 2nx  , we wish to have both formulae possess the same order of 

consistency. For formula (30), we can associate the following nonlinear operator 

defined by 

     
 

   

2

;
y x

L y x h y x h
y x hy x

      
, (36) 

 

where  y x  is an arbitrary function, continuously differentiable on  ,a b . From 

equation (36), on expanding  y x h  in Taylor series about x, we obtain 

   
 

 

 
 

2

2 3; .
2

y x y x
L y x h h O h

y x

  
         
 

 (37) 

 

Equation (37) indicates that formula (30) has first order of consistency, and the LTE 

for formula (30) can be written as 

  
   

 
 

2

2 3

30
LTE ;

2

n n
n

n

y yL y x h h O h
y

  
         
 

, (38) 

where  y x  is now taken to be the theoretical solution of problem (1). 

 

For formula (35), the associate nonlinear operator is defined as follows 

     
     

   

2

; 2 ,
4

y x hy x y x h
L y x h y x h

y x h hy x
 

       
 (39) 

where  y x  is an arbitrary function, continuously differentiable on  ,a b . From 

equation (39), on expanding  y x h  and  2y x h  in Taylor series about x, we 

obtain 
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   
 

 

 
 

2

2 3
5 5

;
2

y x y x
L y x h h O h

y x

  
         
 

. (40) 

 

Equation (40) indicates that formula (35) has first order of consistency, and the LTE 

for formula (35) can be written as 

   

 
 

2

2 3

35

5 5
LTE

2

n n

n

y yh O h
y

  
    
 
 

, (41) 

where  y x  is now taken to be the theoretical solution of problem (1). 

 

From the local truncation errors given in equations (38) and (41), we can verify that 

both formulae (30) and (35) possess first order of consistency. This also indicates that 

the 2-point ERBM-L is effectively of order 1. 

 

3.2 Absolute Stability Analysis for 2-point ERBM-L 

To investigate the linear stability condition for formulae (30) and (35) in the same 

block, we need to combine both formulae and apply the Dahquist’s test equation (23) 

to both formulae. With n ny y  , we can obtain the following difference equation 

  2

1

1 2
n ny y

h 


. (42) 

 

On setting h z  , 
2

2ny    and 
0 1ny    in equation (42), then the stability 

polynomial for the 2-point ERBM-L is 

  
2 1

0
1 2z

  


. (43) 

 

Here,   can be interpreted as the roots of stability polynomial (43). By taking 

iz x y   in the roots of equation (43), we have plotted the region of absolute stability 

of the 2-point ERBM-L in Figure 3. 
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Figure 3: Absolute stability region of the 2-point ERBM-L. 

 

 

The shaded region in Figure 3 is the region of absolute stability of the 2-point ERBM-

L. Hence, this shaded region can also be viewed as the ‘combined’ region of absolute 

stability of formulae (30) and (35). The shaded region is the place where the absolute 

value of each root of equation (43) is less than or equal to 1. From Figure 3, we can 

see that the region of absolute stability contains the whole left-hand half plane which 

suggests that the 2-point ERBM-L is A-stable. In addition, the absolute value of each 

root of equation (43) approaches zero as  Re z  . This shows that 2-point 

ERBM-L is L-stable. 

 

 

4. VARIABLE STEP-SIZE STRATEGY FOR 2-POINT ERBM-A AND 2-

POINT ERBM-L 

Suppose that we have solved numerically the initial value problem (1) using the 2-

point ERBM-A (or 2-point ERBM-L) up to a point nx , and have obtained a value ny  

as an approximation of  ny x , which is the theoretical solution of problem (1). 

For every integration step, there is always a step-size, say sh  available to compute 

two approximations to the solution of problem (1), namely 
 

1

s
ny   using formula (10) 

(or (30)), and 
 

2

s
ny   using formula (16) (or (35)), where s represents the (current) s-th 

iteration. After that, integrate twice by halving the step-size sh  i.e. 2sh , yields the 

values of 
 

1
ˆ

s
ny   using formula (10) (or (30)), and 

 
2

ˆ
s

ny   using formula (16) (or (35)). 

Then an estimate of the error for the less precise result is 
   

2 2
ˆ

s s
n nerr y y 


  . It is 

important to note that the estimate error is always perform on the approximate 
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solution obtain by formula (16) (or (35)), not on the approximate solution obtain by 

formula (10) (or (30)). This error estimation is used to control the error of a block. We 

want this error estimation to satisfy 

 

     
2 2

ˆ
s s

n ny y TOL 


  , (44) 

 

where TOL is the desired tolerance prescribed by the user. If the inequality (44) is 

satisfied, then the computed step is accepted and this also means that 
 

1

s
ny   is 

accepted as 1ny   and 
 

2

s
ny   is accepted as 2ny  . The value 2ny   is then used to start 

the computation of the next block. The current sh  is now used to advance to the next 

block. 

 

If the inequality (44) is not satisfied by the current sh , i.e. 

     
2 2

ˆ
s s

n ny y TOL 


  , (45) 

then the computed values of 
 

1

s
ny  , 

 
2

s
ny   and the current sh  are rejected. Following 

this, we need to start another iteration, say  1s  -th iteration, with a new step-size, 

say 1sh  . The step-size 1sh   can be calculated using the following formulae: 

  1s sh h r   , (46) 

and 

  

1

1

min max 0.5,0.9 ,1.0
pTOLr

err


  
         

  

. (47) 

 

From equation (47), we note that 2p   for 2-point ERBM-A, and 1p   for 2-point 

ERBM-L, where p is the order of the underlying rational block method. At this point, 

1sh   is not used to advance to the next block, but remain in the current block to obtain: 

 1

1

s
ny

  and 
 1

2

s
ny

  via the step-size 1sh  , and 
 1

1
ˆ

s
ny

  and 
 1

2
ˆ

s
ny

  by halving the 

step-size 1sh   i.e. 1 2sh  . Then, the validation processes take place again using the 

inequalities 

 

  
   1 1

2 2
ˆ

s s
n ny y TOL 

 


  , 

or 

  
   1 1

2 2
ˆ

s s
n ny y TOL 

 


  . 

 



Rational Block Method for the Numerical Solution of First Order Initial 3821 

The iterating process to recalculate the values of 1ny   and 2ny   in the current block is 

repeated, every time with a new adjusted step-size using equations (46) and (47) until 

the error estimation is less than the prescribed tolerance. 

 

To prevent the step-size from exceeding the right boundary of the integration interval 

 ,a b , every time when a step-size sh  is calculated at any point of x , we must check 

whether 2 sx h  still lie in the interval  ,a b  i.e. 

  2 sx h b  . (48) 

 

If (48) is satisfied, then the computation continues without any interruption. However, 

if 2 sx h  is found to coincide with or greater than the right boundary b i.e. 

  2 sx h b  , (49) 

then current step-size sh  is immediately rejected. The rejected current step-size sh  is 

then replaced by a final step-size, say bh  which can be obtained using the formula 

  
2

b
b xh 

 . (50) 

 

Then, the last integration is performed at the last block to obtain the last two 

numerical approximations using the new step-size bh  obtained from (50). We note 

that the sh  in equations (48) and (49) has to be multiplied by 2, whereas b x  has to 

be divided by 2 to obtain bh . This is due to the nature of the 2-point ERBMs for able 

to obtain two approximate solutions i.e. each approximate solution for a step-size sh . 

 

 

5. NUMERICAL EXPERIMENTS AND COMPARISONS 

In this section, we solved Problem 1 – Problem 4 with the variable step-size strategy 

described in Section 4, using the 2-point ERBM-A, 2-point ERBM-L, and existing 

rational methods from Fatunla [17], and Ramos [24]. We denote: 

a. TOL as the user prescribed tolerance TOL, 

b. METHOD as the various rational methods used in comparison, 

c. SSTEP as the total number of successful steps within the interval  ,a b , 

d. FSTEP as the total number of rejected steps within the interval  ,a b , and 

e. MAXE as the maximum absolute relative error defined by   
0 SSTEP

max n nn
y x y

 
 , 

where  ny x  and ny  represent the theoretical solution and numerical solution of a 

test problem at point nx , respectively. 
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Problem 1 

   2 4y x y x x    ,  0 3y  ,  0,0.5x . 

The theoretical solution is   24 1 2xy x e x   . 

 

Problem 2 [17] 

  2002000 9x x xy x e e xe       ,  0 10y  ,  0,1x . 

The theoretical solution is   20010 10 10x x xy x e xe e      . 

 

Problem 3 [4] 

     1 1 2198 199y x y x y x   ,  1 0 1y  ,  0,10x ; 

     2 1 2398 399y x y x y x    ,  2 0 1y   ,  0,10x ; 

The theoretical solutions are  1

xy x e  and  2

xy x e  . 

 

Problem 4 [33] 

     101 100 0y x y x y x    ,  0 1.01y  ,  0 2y   ,  0,10x . 

 

The theoretical solution is   1000.01 x xy x e e   . Problem 4 can be reduced to a 

system of first order differential equations, i.e. 

   1 2y x y x  ,  1 0 1.01y  ,  0,10x ; 

     2 1 2100 101y x y x y x    ,  2 0 2y   ,  0,10x . 

The theoretical solutions are   100

1 0.01 x xy x e e    and   100

2

x xy x e e    . 

 

Table 1 until Table 5 showed the numerical comparisons of various second order 

rational methods (including 2-point ERBM-A), while Table 6 until Table 10 showed 

the numerical comparisons of various first order rational methods (including 2-point 

ERBM-L), all obtained using the variable step-size strategy. We also provide the 

initial step-size  0h  for each problem being solved. 

 

Table 1: Comparisons of various second order rational methods in solving Problem 1 

 0 0.1h   

TOL METHOD SSTEP FSTEP MAXE 

210  
Ramos [24] 5 0 1.44998(-02) 

2-point ERBM-A 3 1 1.21645(-02) 

310  
Ramos [24] 20 8 1.33876(-03) 

2-point ERBM-A 13 5 1.32444(-03) 

410  
Ramos [24] 67 13 1.33675(-04) 

2-point ERBM-A 127 9 1.33301(-04) 
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From Table 1, both second order rational methods are found to have comparable 

accuracy for the three prescribed tolerance 210 , 310  and 410 . However, 2-point 

ERBM-A seems to require smaller number of successful steps compared to the second 

order rational method of Ramos [24], except for the tolerance 410 . 

 

Table 2: Comparisons of various second order rational methods in solving Problem 2 

 0 0.0001h   

 

TOL METHOD SSTEP FSTEP MAXE 

210  
Ramos [24] 10001 0 3.72253(-04) 

2-point ERBM-A 5001 0 3.78696(-04) 

310  
Ramos [24] 10001 0 3.72253(-04) 

2-point ERBM-A 5001 0 3.78696(-04) 

 

The initial step-size of Problem 2 is set to 0 0.0001h   so that stability and 

convergence of numerical solution generated by all second order rational methods are 

guaranteed under specific prescribed tolerance. With this initial step-size, we 

observed from Table 2 that, the second order rational method of Ramos [24] required 

10001 successful steps within the interval  0,1 ; meanwhile the 2-point ERBM-A only 

needs 5001 successful steps for the prescribed tolerances 210  and 310 . Hence, the 

generated maximum absolute relative errors for every prescribed tolerance are found 

to be identical. We can see that the 2-point ERBM-A is cheaper in computational cost 

compared to the second order rational method of Ramos [24]. 

 

Table 3: Comparisons of various second order rational methods in solving Problem 3 

  1y x   0 0.1h   

 

TOL METHOD SSTEP FSTEP MAXE 

210  
Ramos [24] 607 3 9.11258(-03) 

2-point ERBM-A 517 6 1.23849(-02) 

310  
Ramos [24] 926 4 2.35036(-04) 

2-point ERBM-A 646 6 2.60973(-04) 

410
 

Ramos [24] 996 11 1.32011(-04) 

2-point ERBM-A 796 8 1.23095(-04) 
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Table 4: Comparisons of various second order rational methods in solving Problem 3 

  2y x   0 0.1h   

 

TOL METHOD SSTEP FSTEP MAXE 

210  

Ramos [24] 607 3 9.26506(-03) 

2-point ERBM-A 517 6 1.93711(-02) 

310  

Ramos [24] 926 4 2.34970(-04) 

2-point ERBM-A 646 6 3.42722(-04) 

410
 

Ramos [24] 996 11 1.31996(-04) 

2-point ERBM-A 796 8 1.34045(-04) 

 

From Table 3 and Table 4, and when the tolerance is 210 , we have observed that the 

second order rational method of Ramos [24] is more accurate than the 2-point ERBM-

A in computing the components  1y x  and  2y x . Both methods are found to 

possess comparable accuracy when the prescribed tolerances are 310  and 
410
. 

However, for all three prescribed tolerances, the 2-point ERBM-A is cheaper in 

computational cost. 

 

Table 5: Comparisons of various second order rational methods in solving Problem 4 

 0 0.1h   

 

TOL METHOD SSTEP FSTEP MAXE 

210  

Ramos [24] 1650 5 4.76520(-04) 

2-point ERBM-A 774 7 6.40045(-04) 

310  

Ramos [24] 5983 9 5.24244(-05) 

2-point ERBM-A 2554 7 6.37900(-05) 

410
 

Ramos [24] 20166 13 5.22558(-06) 

2-point ERBM-A 9578 11 5.61566(-06) 

 

From Table 5, both rational methods are found to have comparable accuracy for the 

three prescribed tolerance 210 , 310  and 
410
. However, 2-point ERBM-A seems to 

require smaller number of successful steps compared to the second order rational 

method of Ramos [24]. 
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Table 6: Comparisons of various first order rational methods in solving Problem 1 

 0 0.1h   

TOL METHOD SSTEP FSTEP MAXE 

110
 

Fatunla [17] 5 0 3.02063(-02) 

2-point ERBM-L 2 0 6.15770(-02) 

210
 

Fatunla [17] 12 6 1.99322(-02) 

2-point ERBM-L 12 6 1.99163(-02) 

 

From Table 6, both first order rational methods are found to have comparable 

accuracy for the two prescribed tolerances 
110
 and 

210
. Both first order methods 

used the same number of successful steps when the tolerance is 
210
. Although there 

is a slight difference between the number of successful steps used for both methods 

when the tolerance is 
110
, but the difference is less obvious and not significant. 

 

Table 7: Comparisons of various first order rational methods in solving Problem 2 

 0 0.0001h   

TOL METHOD SSTEP FSTEP MAXE 

110
 

Fatunla [17] 10001 0 8.19894(-02) 

2-point ERBM-L 5001 0 1.55306(-01) 

 

From Table 7, the first order rational method of Fatunla [17] required 10001 

successful steps within the interval  0,1 ; meanwhile the 2-point ERBM-L only needs 

5001 successful steps for the prescribed tolerance 110 . We can see that the 2-point 

ERBM-L is cheaper in computational cost compared to the first order rational method 

of Fatunla [17]. 

 

Table 8: Comparisons of various first order rational methods in solving Problem 3 

  1y x   0 0.1h   

TOL METHOD SSTEP FSTEP MAXE 

110
 

Fatunla [17] 1035 8 1.19285(-01) 

2-point ERBM-L 800 8 7.84739(-02) 

210
 

Fatunla [17] 1365 7 1.71785(-02) 

2-point ERBM-L 975 21 2.07879(-02) 
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Table 9: Comparisons of various first order rational methods in solving Problem 3 

  2y x   0 0.1h   

TOL METHOD SSTEP FSTEP MAXE 

110
 

Fatunla [17] 1035 8 1.24326(-01) 

2-point ERBM-L 800 8 7.99934(-02) 

210
 

Fatunla [17] 1365 7 1.71785(-02) 

2-point ERBM-L 975 21 2.07879(-02) 

 

From Table 8 and Table 9, and when the tolerance is 
110
, we have observed that the 

2-point ERBM-L is more accurate than the first order rational method of Fatunla [17] 

in computing the components  1y x  and  2y x . Both methods are found to possess 

comparable accuracy when the prescribed tolerance is 
210
. However, for both 

prescribed tolerances, the 2-point ERBM-L is cheaper in computational cost. 

 

Table 10: Comparisons of various first order rational methods in solving Problem 4 

 0 0.1h   

TOL METHOD SSTEP FSTEP MAXE 

110
 

Fatunla [17] 551 3 1.37723(-02) 

2-point ERBM-L 534 5 1.22657(-02) 

210
 

Fatunla [17] 4631 10 2.57741(-03) 

2-point ERBM-L 4631 11 2.57741(-03) 

 

From Table 10, both first order rational methods are found to have comparable 

accuracy for the two prescribed tolerances 
110
 and 

210
. Both first order methods 

used the same number of successful steps when the tolerance is 
210
. Although there 

is a slight difference between the number of successful steps used for both methods 

when the tolerance is 
110
, but the difference is less obvious and not significant. 

 

 

CONCLUSIONS 

The aim of this paper is to introduce the approaches used to develop rational block 

methods (RBMs) which possess A-stability and L-stability. In order to illustrate the 

approaches used, we have reported an A-stable 2-point explicit rational block method 

(2-point ERBM-A) and a L-stable 2-point explicit rational block method (2-point 

ERBM-L). Both proposed rational block methods are able to approximate two 

successive solutions at the points 1nx   and 2nx   defined in the same block (see Figure 

1), within every single integration step. Every 2-point ERBM also contains two 

rational formulae, and both formulae are found to possess the same order of accuracy. 

The 2-point ERBM-A has second order of accuracy, while the 2-point ERBM-L has 

first order of accuracy. Figure 2 and Figure 3 showed the regions of absolute stability 
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for 2-point ERBM-A and 2-point ERBM-L, respectively. Numerical experiments 

showed that at most of the time, the proposed 2-point ERBMs generated converging 

numerical solution with comparable accuracy. In general, the proposed 2-point 

ERBMs are cheaper in computational cost due to fairly low number of successful 

steps. 
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