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Abstract 

 

In this study, the concept of block methods based on rational approximants is 

introduced for the numerical solution of first order initial value problems. 

These numerical methods are also called rational block methods. The main 

reason to consider rational block methods is to improve the numerical 

accuracy and absolute stability property of existing block methods that are 

based on polynomial approximants. For this pilot study, a 2-point explicit 

rational block method is developed. Local truncation error showed that the 2-

point explicit rational block method possesses third order of accuracy. The 

absolute stability analysis showed that this new method has a finite region of 

absolute stability which shows that it is not A-stable. Several test problems are 

solved using the new method and three existing rational methods via constant 

step-size and variable step-size approaches. Numerical results generated by the 

2-point explicit rational block method are promising in terms of numerical 

accuracy and computational cost. Finally, future issues on the developments of 

rational block methods are discussed. 
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1. INTRODUCTION 
Numerical solutions for ordinary differential equations (ODEs) have great importance 

in scientific computation, as they are widely used to model the real world problems. 

Numerical solutions are desired to be as accurate as possible, which normally 

achieved by considering numerical methods with high order of consistency. However, 

computational cost would normally increase when numerical methods with greater 

order of consistency are applied. In view of this, there were many efforts being done 

in the past to reduce the computational cost but retain the desired accuracy. One of 

these many efforts being considered is the block methods. A block method can be 

considered as a set of simultaneously applied multistep methods to obtain several 

numerical approximations within each integration step [1]. Block methods are less 

expensive in terms of function evaluations of given order, and have the advantage of 

being self-starting [2]. While the issue of computational expenses is addressed, the 

stability requirements of block methods become more restricting when the order of 

consistency of the block methods increases, which make the numerical solution of 

stiff problem impossible for larger step-sizes. For excellence surveys and various 

perspectives of block methods, see, for example, Sommeijer et al. [1], Watanabe [3], 

Ibrahim et al. [4, 5], Chollom et al. [6], Majid et al. [7, 8], Mehrkanoon et al. [9], 

Akinfenwa et al. [10], Ehigie et al. [11], Ibijola et al. [12] and Majid and Suleiman 

[13]. 

Despite the shortcoming of block methods in terms of stability analysis, they are very 

useful tools in terms of solvability. Firstly, block methods can be easily modified and 

extended to solve higher order initial value problems directly, as reported in Majid et 

al. [7, 8], Ehigie et al. [11], Badmus and Yahaya [14] and Olabode [15]. Secondly, 

block methods can be easily implemented on a parallel machine, as reported in 

Sommeijer et al. [1], Mehrkanoon et al. [9] and Chartier [16]. Thus, the potential of 

block methods is obvious regardless of their stability drawbacks. In view of this, the 

research problem we are going to investigate is: “how can we develop block methods 

which possess strong stability requirements but cheaper computational costs?” Our 

readings have found out that there exist some unconventional numerical methods 

which possess strong stability conditions but yet explicit in nature. These 

unconventional methods are known as rational methods because they are numerical 

methods based on rational functions. Unfortunately, these explicit rational methods 

cannot generate several numerical approximations within each integration step like 

block methods. For excellence surveys and various perspectives of rational methods, 

see, for examples, Lambert [2], Lambert and Shaw [17], Luke et al. [18], Fatunla [19, 

20], van Niekerk [21, 22], Ikhile [23, 24, 25], Ramos [26], Okosun and Ademiluyi 

[27, 28], Teh et al. [29, 30], Yaacob et al. [31], and Teh and Yaacob [32, 33]. By 

comparing the pros and cons of rational methods and block methods, we come out 

with the idea to search for block methods that are based on rational functions, or so 

called rational block methods (RBMs). 

The main aim of this paper is to inroduce the concept and formulation idea of RBM 

through the development and implementation of a simple 2-point explicit RBM. The 

development of the said method is carried out in Section 2. After that, we demonstrate 

the calculation of principal local truncation error term and establish the absolute 
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stability condition for the developed RBM in Section 3 and Section 4, respectively. In 

Section 5, the developed RBM and a few selected existing rational methods are tested 

in two settings: constant step-size, and variable step-size. Numerical comparisons are 

made and dicussed based on the numerical findings. Finally, some useful conclusions 

are drawn. 

 

 

2. DERIVATION OF 2-POINT EXPLICIT BLOCK RATIONAL METHOD 

The 2-point explicit rational block method, or in brief as 2-point ERBM, is formulated 

to solve the following first order initial value problem given by 

   ,y f x y  ,  y a  , (1) 

where :f    and  ,f x y  is assumed to satisfy all the required conditions 

such that problem (1) possesses a unique solution. Suppose that the interval of 

numerical integration is  ,x a b   and is divided into a series of blocks with each 

block containing two points as shown in Figure 1.  

 

 
 

Figure 1: Two 2-point Consecutive Blocks. 

 

From Figure 1, we observe that k -th block contains three points nx , 1nx   and 2nx  , 

and each of these points is separated equidistantly by a constant step-size h . The next 

 1k  -th block also contains three points. In the k -th block, we want to use the 

values ny  at nx  to compute the approximation values of 1ny   and 2ny   

simultaneously. In the  1k  -th block, the previously computed value of 2ny   is used 

to generate the approximated values of 3ny   and 4ny  . The same computational 

procedure is repeated to compute the solutions for the next few blocks until the end-

point i.e. x b  is reached. The evaluation information from the previous step in a 

block can be used for other steps of the same block. The explanation provides here is 

nothing new and could be found in Majid et al. [8]. 

 

Along the x-axis, we consider the points nx , 1nx   and 2nx   to be given by 

  
0nx x nh  , (2) 

h h h h 

     

-th block -th block 
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  1 0 1nx x n h    ,  (3) 

and 

  2 0 2nx x n h    , (4) 

where h is the step-size. Let us assume that the approximate solution of (1) is locally 

represented in the range  1,n nx x   by the rational approximant 

  
2

0 1 2

0

a a x a xR x
b x

 



, (5) 

where 0a , 1a , 2a  and 0b  are undetermined coefficients. This rational approximant in 

equation (5) is required to pass through the points  ,n nx y  and  1 1,n nx y  , and 

moreover, must assume at these points the derivatives given by  ,y f x y  , 

 ,y f x y   and  ,y f x y  . Altogether, there are five equations to be satisfied 

i.e. 

   n nR x y ,  (6) 

   1 1n nR x y  ,  (7) 

   n nR x y  ,  (8) 

   n nR x y  ,  (9) 

and 

   n nR x y  ,  (10) 

where  ,n n n ny f f x y   ,  ,n n n ny f f x y     and  ,n n n ny f f x y    . On using 

MATHEMATICA 8.0, the elimination of the four undetermined coefficients 0a , 1a , 2a  

and 0b  from equations (6) – (10) yields the one-step rational method 

 

 
2

2

1

3

2 3

n
n n n

n n

yhy y hy
y hy


  

 
.  (11) 

 

We note that equation (11) is exactly the one-step third order rational method 

proposed by Lambert and Shaw [17]. Equation (11) is the formula to approximate 

1ny   by using the information at the previous point  ,n nx y . 

 

To approximate 2ny  , we have to assume that the approximate solution of (1) is 

locally represented in the range  2,n nx x   by the same rational approximant given in 

equation (5). It is crucial to retain the same rational approximant in the same block. 

Now, we required the rational approximant (5) to pass through the points  ,n nx y , 

 1 1,n nx y   and  2 2,n nx y  , and moreover, must assume at these points the derivative 
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given by  ,y f x y  . There are also five equations to be satisfied i.e. 

  n nR x y , (12) 

  1 1n nR x y  ,  (13) 

  2 2n nR x y  ,  (14) 

  n nR x y  ,  (15) 

and 

  1 1n nR x y 
  ,  (16) 

 

where  ,n n n ny f f x y    and  1 1 1 1,n n n ny f f x y   
   . On using MATHEMATICA 

8.0, the elimination of the four undetermined coefficients 0a , 1a , 2a  and 0b  from 

equations (12) – (16) yields the following two-step rational method, 

 

 
 

   

2
2

1

2 1 1

1 1

2 4
3 4 2

3 3 3 2

n n
n n n n n

n n n n

y yh hy y y y y
y y h y y



  

 

 
     

   
. (17) 

 

We note that equation (17) is exactly the two-step third order rational method 

proposed by Lambert and Shaw [17]. Equation (17) is the formula to approximate 

2ny   by using the information at the previous points  ,n nx y  and  1 1,n nx y  . Hence, 

the 2-point ERBM based on the rational approximant (5) consists of two formulae i.e. 

formulae (11) and (17). 

 

The implementation of the 2-point ERBM is rather simple: with ny  is known, 

compute the approximate solution 1ny   using formula (11); and then compute the 

approximate solution 2ny   using formula (17) with the value of 1ny   obtained from 

formula (11). 

 

 

3. LOCAL TRUNCATION ERRORS AND ORDER OF CONSISTENCY 

To obtain the order of consistency of the 2-point ERBM, we would need to 

investigate the order of consistency of formulae (11) and (17) individually, which can 

be found by establishing the local truncation errors for both (11) and (17). Since 

formulae (11) and (17) are used in the same block to solve for the approximate 

solutions at 1nx   and 2nx  , we wish to have both formulae possess the same order of 

consistency. For formula (11), we can associate the following nonlinear operator 

defined by 

        
 

   

2
2 3

;
2 3

y xhL y x h y x h y x hy x
y x hy x


         

, (18) 

where  y x  is an arbitrary function, continuously differentiable on  ,a b . From 
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equation (18), on expanding  y x h  in Taylor series about x, we obtain 

  
     

 
 

24

4 5; .
24 18

y x y x
L y x h h O h

y x

 
        
 

 (19) 

 

Equation (19) indicates that formula (11) has third order of consistency, and the local 

truncation error (LTE) for formula (11) can be written as 

 
   

    
 

2
3

4

4 5

11
LTE ;

24 18

nn
n

n

yyL y x h h O h
y

 
 

        
 

,  (20) 

where  y x  is now taken to be the theoretical solution of problem (1). 

 

For formula (17), the associate nonlinear operator is defined as follows 

            

    
         

2
2

2
; 3 2 4 2

3

4
,

3 3 2

hL y x h y x h y x h y x y x y x h

y x y x hh
y x h y x h y x h y x

           

  


     

 (21) 

 

where  y x  is an arbitrary function, continuously differentiable on  ,a b . From 

equation (21), on expanding  y x h ,  2y x h  and  y x h   in Taylor series 

about x, we obtain 

 

 
     

 
 

24

4 52
;

2 3

y x y x
L y x h h O h

y x

 
        
 

.  (22) 

 

Equation (22) indicates that formula (17) has third order of consistency, and the LTE 

for formula (17) can be written as 

  

   
 

24

4 5

17

2
LTE

2 3

nn

n

yyh O h
y

 
   
 
 

, (23) 

where  y x  is now taken to be the theoretical solution of problem (1). 

From the local truncation errors given in equations (20) and (23), we can see that both 

formulae (11) and (17) possess third order of consistency. This also indicates that the 

2-point ERBM is effectively of order 3. 

 

 

4. ABSOLUTE STABILITY ANALYSIS 

To investigate the linear stability condition for formulae (11) and (17) in the same 

block, we need to combine both formulae and apply the Dahquist’s test equation 
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 y y  ,   0y a y ,  Re 0  , 

to both formulae. With 1 1n ny y 
  , n ny y  , 

2

n ny y  , and 
3

n ny y , we can 

obtain the following difference equation 

  
 

2 2 3 3

2 2

9 12 7 2

3
n n

h h hy y
h

  




  



. (24) 

 

On setting h z  , 
2

2ny    and 
0 1ny    in equation (24), then the stability 

polynomial for the 2-point ERBM is 

 
 

2 3
2

2

9 12 7 2
0

3

z z z
z


  

 


. (25) 

Here,   can be interpreted as the roots of stability polynomial (25). By taking 

iz x y   in the roots of equation (25), we have plotted the region of absolute stability 

of the 2-point ERBM in Figure 2. 

 

 

 
 

Figure 2: Absolute stability region of the 2-point ERBM. 

 

The shaded region in Figure 2 is the region of absolute stability of the 2-point ERBM. 

Hence, this shaded region can also be viewed as the ‘combined’ region of absolute 

stability of formulae (11) and (17). The shaded region is the place where the absolute 
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value of each root of equation (25) is less than or equal to 1. From Figure 2, we can 

see that the region of absolute stability does not contain the whole left-hand half plane 

which shows that the 2-point ERBM is not A-stable. 

 

 

5. NUMERICAL EXPERIMENTS AND COMPARISONS 

Through several test problems, the 2-point ERBM and a few selected existing rational 

methods are tested in two settings: constant step-size, and variable step-size. The 

constant step-size approach is pretty straightforward, where the interval of integration 

 ,a b  is divided into a number of subintervals  1,n nx x   of equal length h, and the 

numerical solutions at these nodal points are obtained by numerical methods. We first 

describe the variable step-size strategy for conventional one-step and multistep 

methods, and then we see how this strategy is suited for the 2-point ERBM. 

 

 

5.1 Variable Step-size Algorithm for Conventional One-step or Multistep 

Methods 

Suppose that we have solved numerically the initial value problem (1) using a k-step 

method, up to a point 1n kx    and have obtained a value 1n ky    as an approximation of 

 1n ky x   , which is the theoretical solution of problem (1). For every integration step, 

there is always a step-size, say sh  available to compute two approximations to the 

solution of problem (1), namely 
 s

n ky   and 
  ˆ
s

n ky   where s represents the (current) s-

th iteration. First, the value 
 s

n ky   is obtained with step-size sh . After that, integrate 

twice by halving the step-size sh  i.e. 2sh , yields the value of 
  ˆ
s

n ky  . Then an 

estimate of the error for the less precise result is 
   ˆ
s s

n k n kerr y y 


  . We want 

this error estimation to satisfy 

 

  
   ˆ
s s

n k n ky y TOL 


  ,  (26) 

 

where TOL is the desired tolerance prescribed by the user. If the inequality (26) is 

satisfied, then the computed step is accepted and this also means that 
 s

n ky   is 

accepted as n ky  , and will be used to compute 1n ky   . The current sh  is now used to 

advance to the next integration step to find 1n ky   . 

 

If the inequality (26) is not satisfied by the current sh , i.e. 

 

  
   ˆ
s s

n k n ky y TOL 


  , (27) 

then the computed value of 
 s

n ky   and the current sh  are rejected. Following this, we 
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need to start another iteration, say  1s  -th iteration, with a new step-size, say 1sh  . 

The step-size 1sh   can be calculated as follows 

  1s sh h r   ,  (28) 

where 

  

1

1

min max 0.5,0.9 ,1.0
pTOLr

err


  
         

  

.  (29) 

 

At this point, 1sh   is not used to advance to the next integration step, but remain in the 

current integration step to recalculate two approximate solutions, say 
 1s

n ky

  and 

 1
ˆ

s
n ky

 . We note that 
 1s

n ky

  is obtained with step-size 1sh  . On integrating twice by 

halving the step-size 1sh   i.e. 1 2sh  , yields the value of 
 1

ˆ
s

n ky

 . Then, the validation 

processes take place again using the inequalities 

 

  
   1 1

ˆ
s s

n k n ky y TOL 

 


  , 

or 

 

  
   1 1

ˆ
s s

n k n ky y TOL 

 


  . 

 

The iterating process to recalculate the current n ky   is repeated, every time with a new 

adjusted step-size using equations (28) and (29) until the error estimation is less than 

the prescribed toleration. 

 

Let’s briefly explain equation (29). From equation (29), p is the order of the 

underlying k-step method, and  
1

1pTOL err   was multiplied by 0.9, where 0.9 is 

known as the safety factor. The safety factor was introduced to increase the possibility 

that the error will be accepted next time as the new step-size is also accepted [34, 35]. 

Furthermore, to prevent the new step-size from increasing or decreasing too fast, the 

step-size ratio was usually forced to lie between two bounds such as 0.5 and 1.0 [34, 

35]. 

 

While applying the variable step-size strategy, there is another crucial element that we 

need to take good care of. Since step-size will be varied throughout the computation, 

there will be at one point where the step-size exceeded the right boundary of the 

integration interval  ,a b . In order to track this kind of situation, every time when a 

step-size sh  is calculated at any point of x, we must check whether sx h  still lies in 

the interval  ,a b  i.e. 
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  sx h b  .  (30) 

 

If (30) is satisfied, then the computation continues without any interruption. However, 

if sx h  is found to coincide with or greater than the right boundary b i.e. 

  sx h b  ,  (31) 

then the current step-size sh  is immediately rejected. The rejected current step-size sh  

is then replaced by a final step-size, say bh  which can be obtained using the formula 

  bh b x  . (32) 

 

Then, the last integration is performed to obtain the numerical approximation at the 

point x b , say by , using the new step-size bh  obtained from (32). 

 

5.2 Variable Step-size Algorithm for 2-point ERBM 

The variable step-size algorithm for 2-point ERBM is very much resembles the 

variable step-size algorithm for conventional one-step and multistep methods 

presented in Section 5.1. Suppose that we have solved numerically the initial value 

problem (1) using the 2-point ERBM up to a point nx  and have obtained a value ny  as 

an approximation of  ny x , which is the theoretical solution of problem (1). 

 

For every integration step, there is always a step-size, say sh  available to compute two 

approximations to the solution of problem (1), namely 
 

1

s
ny   using formula (11) and 

 
2

s
ny   using formula (17) where s represents the (current) s-th iteration. After that, 

integrate twice by halving the step-size sh  i.e. 2sh , yields the values of 
 

1
ˆ

s
ny   using 

formula (11) and 
 

2
ˆ

s
ny   using formula (17). Then an estimate of the error for the less 

precise result is 
   

2 2
ˆ

s s
n nerr y y 


  . It is important to note that the estimate error 

is always performed on the approximate solution obtained by formula (17), not on the 

approximate solution obtain by formula (11). This error estimation is used to control 

the error of a block. We want this error estimation to satisfy 

  
   

2 2
ˆ

s s
n ny y TOL 


  , (33) 

 

where TOL is the desired tolerance prescribed by the user. If the inequality (33) is 

satisfied, then the computed step is accepted and this also means that 
 

1

s
ny   is 

accepted as 1ny   and 
 

2

s
ny   is accepted as 2ny  . The value 2ny   is then used to start 

the computation of the next block. The current sh  is now used to advance to the next 

block. 

If the inequality (33) is not satisfied by the current sh , i.e. 
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   

2 2
ˆ

s s
n ny y TOL 


  ,  (34) 

 

then the computed values of 
 

1

s
ny  , 

 
2

s
ny   and the current sh  are rejected. Following 

this, we need to start another iteration, say  1s  -th iteration, with a new step-size, 

say 1sh  . The step-size 1sh   can be calculated using formulae (28) and (29). From 

equation (29), we note that 3p   is the order of the 2-point ERBM. At this point, 1sh   

is not used to advance to the next block, but remain in the current block to obtain: 
 1

1

s
ny

  and 
 1

2

s
ny

  via the step-size 1sh  , and 
 1

1
ˆ

s
ny

  and 
 1

2
ˆ

s
ny

  by halving the 

step-size 1sh   i.e. 1 2sh  . Then, the validation processes take place again using the 

inequalities 

  
   1 1

2 2
ˆ

s s
n ny y TOL 

 


  , 

or 

  
   1 1

2 2
ˆ

s s
n ny y TOL 

 


  . 

 

The iterating process to recalculate the values of 1ny   and 2ny   in the current block is 

repeated, every time with a new adjusted step-size using equations (28) and (29) until 

the error estimation is less than the prescribed toleration. 

 

To prevent the step-size from exceeding the right boundary of the integration interval 

 ,a b , every time when a step-size sh  is calculated at any point of x, we must check 

whether 2 sx h  still lie in the interval  ,a b  i.e. 

  2 sx h b  .  (35) 

 

If (35) is satisfied, then the computation continues without any interruption. However, 

if 2 sx h  is found to coincide with or greater than the right boundary b i.e. 

  2 sx h b  , (36) 

then current step-size sh  is immediately rejected. The rejected current step-size sh  is 

then replaced by a final step-size, say bh  which can be obtained using the formula 

  
2

b
b xh 

 . (37) 

Then, the last integration is performed at the last block to obtain the last two 

numerical approximations using the new step-size bh  obtained from (37). We note 

that the sh  in equations (35) and (36) has to be multiplied by 2, whereas b x  has to 

be divided by 2 to obtain bh . This is due to the nature of the 2-point ERBM for able to 

obtain two approximate solutions i.e. each approximate solution for a step-size sh . 
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6. NUMERICAL TESTS AND RESULTS 

In this section, we solved Problem 1 – Problem 4 with the constant step-size approach 

and with the variable step-size strategy described in Section 5.2, using the 2-point 

ERBM (as in formulae (11) and (17)), and existing third order rational methods from 

van Niekerk [21], van Niekerk [22], and Ramos [26]. For the case of constant step-

size, it is sufficient to present the maximum absolute relative errors over the 

integration interval  ,a b  given by   
0
max n nn N

y x y
 

  where N is the number of 

subintervals. We note that  ny x  and ny  represent the theoretical solution and 

numerical solution of a test problem at point nx , respectively. 

 

However, for the case of variable step-size, it is less informative if we only present 

the maximum absolute relative errors. It is because there are other parameters such as 

the tolerance Tol which will affect the total number of successful steps within the 

interval  ,a b . We denote: 

a. TOL as the user prescribed tolerance TOL, 

b. METHOD as the various third order rational methods used in comparison, 

c. SSTEP as the total number of successful steps within the interval  ,a b , 

d. FSTEP as the total number of rejected steps with in the interval  ,a b , and 

e. MAXE as the maximum absolute relative error defined by   
0 SSTEP

max n nn
y x y

 
 . 

 

Problem 1 

    2 4y x y x x    ,  0 3y  ,  0,0.5x . 

 The theoretical solution is   24 1 2xy x e x   . 

 

Problem 2 [19] 

   2002000 9x x xy x e e xe       ,  0 10y  ,  0,1x . 

 The theoretical solution is   20010 10 10x x xy x e xe e      . 

 

Problem 3 [5] 

      1 1 2198 199y x y x y x   ,  1 0 1y  ,  0,10x ; 

      2 1 2398 399y x y x y x    ,  2 0 1y   ,  0,10x ; 

 

The theoretical solutions are  1

xy x e  and  2

xy x e  . 

 

Problem 4 [36] 

      101 100 0y x y x y x    ,  0 1.01y  ,  0 2y   ,  0,10x . 
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The theoretical solution is   1000.01 x xy x e e   . Problem 4 can be reduced to a 

system of first order differential equations, i.e. 

    1 2y x y x  ,  1 0 1.01y  ,  0,10x ; 

      2 1 2100 101y x y x y x    ,  2 0 2y   ,  0,10x . 

 

The theoretical solutions are   100

1 0.01 x xy x e e    and   100

2

x xy x e e    . 

 

 

6.1 Constant Step-size Approach 

Table 1 until Table 5 showed the maximum absolute relative errors of various third 

order methods which obtained using the constant step-size. 

 

Table 1: Maximum absolute relative errors of various third order methods 

(Problem 1) 

N van Niekerk [21] van Niekerk [22] Ramos [26] 2-point ERBM 

16 3.25864(-04) 5.07503(-06) 5.84945(-05) 8.09971(-07) 

32 2.93414(-05) 6.28976(-07) 7.85013(-06) 5.17853(-08) 

64 3.83339(-06) 7.82908(-08) 1.01742(-06) 3.27370(-09) 

 

Table 2: Maximum absolute relative errors of various third order methods  

(Problem 2) 

N van Niekerk [21] van Niekerk [22] Ramos [26] 2-point ERBM 

10 1.51502(+00) 7.08987(+01) 4.71235(+00) 7.73073(+01) 

100 3.57558(-01) 7.48249(-01) 6.24419(-02) 6.46710(-01) 

1000 1.44188(-03) 1.06282(-03) 1.34363(-03) 1.92485(-04) 

10000 1.89317(-06) 1.10728(-06) 1.44295(-05) 2.19011(-08) 

 

 

Table 3: Maximum absolute relative errors of various third order methods   1y x  

(Problem 3) 

N van Niekerk [21] van Niekerk [22] Ramos [26] 2-point ERBM 

160 1.71953(-01) 2.39414(+82) 1.70066(-01) 2.02493(-07) 

320 1.11802(+03) 2.83659(+06) 1.24639(-02) 1.29463(-08) 

640 1.27418(-04) 2.00390(-04) 7.47140(-03) 8.18426(-10) 
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Table 4: Maximum absolute relative errors of various third order methods   2y x  

(Problem 3) 

N van Niekerk [21] van Niekerk [22] Ramos [26] 2-point ERBM 

160 1.82388(-01) 4.78828(+82) 1.74387(-01) 2.02493(-07) 

320 1.70960(+03) 5.67318(+06) 1.81547(-02) 1.29463(-08) 

640 1.27417(-04) 2.00920(-04) 7.51943(-03) 8.18426(-10) 

 

Table 5: Maximum absolute relative errors of various third order methods 

(Problem 4) 

N van Niekerk [21] van Niekerk [22] Ramos [26] 2-point ERBM 

1280 1.67276(-04) 2.91323(-05) 2.15408(-05) 4.06612(-05) 

2560 1.56050(-05) 3.12721(-06) 3.18139(-06) 2.35650(-06) 

5120 1.24983(-06) 3.67925(-07) 4.38761(-07) 1.68714(-07) 

 

Results from Table 1 until Table 5 indicate that 2-point ERBM is able to generate 

converging approximate solutions as the number of integration steps increases. 2-

point ERBM is stable in solving very stiff problem such as Problem 2, and mildly stiff 

problems such as Problem 3 and Problem 4, as observed from Table 2 until Table 5. 

The 2-point ERBM is also seem to be more accurate in solving Problem 1, Problem 2 

and Problem 3; and found to have comparable accuracy with the existing methods in 

solving Problem 4. 

 

In short, for constant step-size approach, N also represents the number of integration 

steps, which is true for the existing third order rational methods of van Niekerk [21], 

van Niekerk [22] and Ramos [26]. As for the 2-point ERBM, the number of 

integration steps is actually 2N . Hence, the computational cost for the 2-point 

ERBM is very much cheaper compared to the existing rational methods. 

 

There are a few unusual observations that draw our attentions. From Table 2, the 

rational method by van Niekerk [21] and 2-point ERBM do not return satisfying 

results for 100N  , as if these methods cannot approximate Problem 2 accurately for 

step-size 0.1h  . As Problem 2 is a very stiff problem, step-size that is less than 0.1, 

is required so that a numerical method can approximate accurately the solutions that 

are varying rapidly with x. 

 

For Problem 3, the solutions generated by the rational method of van Niekerk [22] are 

unstable for 160N   and 320N  . Smaller step-size is required to satisfy the step-

size restriction set by the rational method of van Niekerk [22]. The result generated by 

the third order rational method of van Niekerk [21] for 320N  , is an unexpected 
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one, and the cause to this is yet to be identified. 

6.2 Variable Step-size Approach 

Table 6 until Table 10 showed the numerical comparisons of various third order 

rational methods which obtained using the variable step-size strategy. We also 

provide the initial step-size  0h  for each problem being solved. 

 

Table 6: Comparisons of various third order rational methods in solving Problem 1 

 0 0.1h   

TOL METHOD SSTEP FSTEP MAXE 

210  

van Niekerk [21] 5 0 4.88854(-03) 

van Niekerk [22] 5 0 1.72972(-04) 

Ramos [26] 5 0 1.43693(-03) 

2-point ERBM 3 0 7.69877(-05) 

410  

van Niekerk [21] 49 18 1.16717(-04) 

van Niekerk [22] 6 2 1.10009(-04) 

Ramos [26] 13 9 1.15537(-04) 

2-point ERBM 3 0 7.69877(-05) 

610  

van Niekerk [21] 332 28 1.14899(-06) 

van Niekerk [22] 33 8 1.13273(-06) 

Ramos [26] 64 15 1.14626(-06) 

2-point ERBM 8 4 5.16657(-06) 

 

 

From Table 6, all existing third order rational methods require 5 successful steps 

within the interval  0,0.5  when the prescribed tolerance is 210 . However, 2-point 

ERBM turned out to have better accuracy and smaller number of successful steps 

compared to other existing third order rational methods in solving Problem 1. When 

the prescribed tolerance is decreased to 410 , there is a great increase in the number of 

successful steps for the third order method of van Niekerk [21] and a slight increase in 

the number of successful steps for the third order method of Ramos [26]. On the other 

hand, the number of successful steps for the methods of van Niekerk [22] and 2-point 

ERBM remain (or almost) unchanged. In the case when the prescribed tolerance is 
410 , 2-point ERBM also turned out to have better accuracy compared to other 

existing third order rational methods. When the prescribed tolerance is 610 , all third 

order methods are found to have comparable accuracy but with different number of 

successful steps within  0,0.5 . We can see that 2-point ERBM is the cheapest in 

computational cost, followed by van Niekerk [22], Ramos [26], and lastly van 

Niekerk [21]. 
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Table 7: Comparisons of various third order rational methods in solving Problem 2 

 0 0.0001h   

 

TOL METHOD SSTEP FSTEP MAXE 

210  

van Niekerk [21] 10001 0 1.89317(-06) 

van Niekerk [22] 10001 0 1.10728(-06) 

Ramos [26] 10001 0 1.44295(-05) 

2-point ERBM 5001 0 2.19011(-08) 

410  

van Niekerk [21] 10001 0 1.89317(-06) 

van Niekerk [22] 10001 0 1.10728(-06) 

Ramos [26] 10001 0 1.44295(-05) 

2-point ERBM 5001 0 2.19011 (-08) 

610  

van Niekerk [21] - - - 

van Niekerk [22] 10001 0 1.10728(-06) 

Ramos [26] - - - 

2-point ERBM 5001 0 2.19011 (-08) 

 

 

The initial step-size of Problem 2 is set to 0 0.0001h   so that stability and 

convergence of numerical solution generated by all third order rational methods are 

guaranteed under specific prescribed tolerance. With this initial step-size, we 

observed from Table 7 that, all existing third order rational methods required 10001 

successful steps within the interval  0,1 ; meanwhile the 2-point ERBM only needs 

5001 successful steps for all three prescribed tolerances i.e. 210 , 410  and 610 . 

Hence, the generated maximum absolute relative errors for every prescribed tolerance 

are found to be identical. We can see that the 2-point ERBM is the cheapest in 

computational cost and is able to generate more accurate results compared to other 

existing third order rational methods. We wish to point out that: third order method of 

van Niekerk [21] failed to converge, while third order method of Ramos [26] suffered 

too many step-size rejections when the accepted error estimate is set to be bounded by 
610 . Therefore, there are a few things that need to be considered when solving non-

autonomous stiff problem using rational methods with variable step-size i.e., careful 

selection of initial step-size and looser prescribed tolerance if high accuracy is 

unnecessary. 
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Table 8: Comparisons of various third order rational methods in solving Problem 3 

  1y x   0 0.1h   

TOL METHOD SSTEP FSTEP MAXE 

210  

van Niekerk [21] 324 5 4.73073(-03) 

van Niekerk [22] 347 5 3.04129(-03) 

Ramos [26] 675 5 4.82570(-03) 

2-point ERBM 282 5 8.57747(-03) 

410  

van Niekerk [21] - - - 

van Niekerk [22] - - - 

Ramos [26] 831 5 4.22516(-05) 

2-point ERBM - - - 

610  

van Niekerk [21] 1079 16 1.13313(-06) 

van Niekerk [22] 1108 9 1.14692(-06) 

Ramos [26] 842 5 4.46487(-07) 

2-point ERBM 1926 6 4.87328(-06) 

 

Table 9: Comparisons of various third order rational methods in solving Problem 3 

  2y x   0 0.1h   

TOL METHOD SSTEP FSTEP MAXE 

210  

van Niekerk [21] 324 5 7.86713(-03) 

van Niekerk [22] 347 5 8.74745(-03) 

Ramos [26] 675 5 4.83053(-03) 

2-point ERBM 282 5 1.32171(-02) 

410  

van Niekerk [21] - - - 

van Niekerk [22] - - - 

Ramos [26] 831 5 9.12470(-05) 

2-point ERBM - - - 

610  

van Niekerk [21] 1079 16 1.13210(-06) 

van Niekerk [22] 1108 9 1.14692(-06) 

Ramos [26] 842 5 9.11908(-07) 

2-point ERBM 1926 6 9.33509(-06) 

 

 
Problem 3 is a mildly stiff problem. From Table 8 and Table 9, and when the 

tolerance is 210 , we have observed that all third order methods are comparable in 

accuracy in computing the components  1y x  and  2y x , except for 2-point ERBM. 

We can see that 2-point ERBM is the cheapest in computational cost, followed by van 

Niekerk [21], van Niekerk [22], and lastly Ramos [26]. When the tolerance is 

decreased to 
410
, we observed that only the third order rational method by Ramos 

[26] returned the results for both components. The remaining third order rational 

methods suffer from pro-long integration process due to very excessive small step-
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sizes. Finally, when the prescribed tolerance is set to 610 , we can see that the third 

order rational method by Ramos [26] is the cheapest in computational cost and is able 

to generate more accurate results compared to other existing third order rational 

methods, in computing both component  1y x  and  2y x . Surprisingly, the 2-point 

ERBM requires the most integration step in order to achieve the accuracy comparable 

to van Niekerk [21] and van Niekerk [22]. 

 

Table 10: Comparisons of various third order rational methods in solving Problem 4 

 0 0.1h   

TOL METHOD SSTEP FSTEP MAXE 

210  

van Niekerk [21] 1611 5 7.79836(-05) 

van Niekerk [22] 958 4 7.88256(-05) 

Ramos [26] 521 3 3.66823(-04) 

2-point ERBM 555 4 7.41100(-05) 

410  

van Niekerk [21] 10667 8 1.06762(-07) 

van Niekerk [22] 4334 7 1.03121(-06) 

Ramos [26] 1893 5 7.35386(-06) 

2-point ERBM 1601 5 1.01853(-06) 

610  

van Niekerk [21] 80389 14 5.74256(-09) 

van Niekerk [22] 21856 12 1.07760(-08) 

Ramos [26] 9781 10 1.13378(-07) 

2-point ERBM 4817 8 2.20735(-08) 

 

Problem 4 is a mildly stiff system arises from the reduction of a second order initial 

value problem to a system of coupled first order differential equations. From Table 

10, when the prescribed tolerance is 210 , we can see that the computational cost of 

the 2-point ERBM and the third order rational method of Ramos [26] is relatively 

lower compare to the computational cost of the third order rational methods of van 

Niekerk [21] and van Niekerk [22]. The 2-point ERBM generated result with an 

accuracy of 410  with much more lower computational cost. When the tolerance is 

decreased to 410 , the 2-point ERBM or the third order rational method by Ramos 

[26] is cheaper in computational cost if an accuracy of 610  is desired. Alternatively, 

one can choose the third order method of van Niekerk [21] if an accuracy of 710  is 

preferable with 10667 successful steps. However, we would not recommend the third 

order method of van Niekerk [21] due to its large number of successful steps, unless 

higher accuracy is desired. Finally, when the prescribed tolerance is further decreased 

to 610 , it seems to have a few options based on our point of view. For example, if 

computational cost is our main concern, then the 2-point ERBM could be a good 

choice. If our only concern is the accuracy, then the third order rational method by 

van Niekerk [21] could be our choice. 
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CONCLUSIONS 

The aims of this paper are two folds: i) to introduce the idea of block methods that are 

based on rational functions, and ii) to provide the rationale that motivates the concepts 

and developments of rational block methods (RBMs). In order to illustrate the concept 

of RBM, a 2-point explicit rational block method (2-point ERBM) is introduced in 

this paper. The 2-point ERBM is able to approximate two successive solutions at the 

points 1nx   and 2nx   defined in the same block (see Figure 1), within every single 

integration step. The 2-point ERBM also contained two rational formulae, and both 

formulae are found to possess third order of accuracy. Figure 2 showed that the 2-

point ERBM has a finite region of absolute stability and concluded that it is not A-

stable. Numerical experiments showed that the 2-point ERBM generated converging 

numerical solutions. In most of the test problems, the 2-point ERBM generated 

numerical solutions with better accuracy and cheaper computational cost in both 

constant step-size and variable step-size approaches. 

Finally, this is the pilot study of RBM, and many more RBMs will be developed in 

the near future. From the rational approximant in (5), we can see that the degree of the 

numerator is greater than the degree of the denominator. We believed that this kind of 

selection yields method with finite region of absolute stability. In order to develop A-

stable RBM, we should consider a rational approximant with both numerator and 

denominator in equal degree. Of course, L-stable RBM may be developed if the 

underlying rational approximant has the degree of denominator greater than the 

degree of numerator. All of these directions constitute a vast research dimensions to 

be explored in the near future. 
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