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Abstract
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1. Introduction

Reconstruction of a 3D object from two perspective images is a significant task in Pho-
togrammetry, Computer Vision, Robotics and related fields. Epipolar geometry has been
a main tool for its solution in the last two decades. Epipolar geometry describes the geo-
metrical relationship between two perspective views of one and the same 3D scene. This
3D reconstruction problem can be solved using triangulation, if the perspective images
are obtained by cameras with known intrinsic and extrinsic parameters. This method
based on the projection matrices is presented in [1] and [4]. A generalization is given
in [5]. The connection between the corresponding points on the two images can be ex-
pressed in terms of homogeneous coordinates. In case of known intrinsic parameters and
unknown extrinsic parameters, this connection is represented by the essential matrix see
[2] and [11]. More generally, the fundamental 3 × 3-matrix F is the algebraic represen-
tation of epipolar geometry. If Mi ∈ πi (i = 1, 2) are projections of the point M ∈ E

3

in the projection planes πi, i = 1, 2, and if their homogeneous coordinates (written as
3 × 1-vectors) related to corresponding plane coordinate systems are pi , i = 1, 2, then

(p2)
T Fp1 = 0.

The matrix F has a rank 2, in particular det(F) = 0. There are several methods for
computing the fundamental matrix. The 8-point algorithm is described in [1], [4], [14].
A new eight-point algorithm is presented in [15]. The fundamental matrix is computed
by parametrization in [1], [4], [13], [14], and by the use of the projection matrices in [1],
[4], [14]. Another compact algorithm for computing the fundamental matrix is presented
in [6].

Techniques based on projective geometry are widely used in epipolar geometry.
There exists a homographyy (a projective transformation) between projection planes
defined by another plane. This homographyy is studied in [1], [3] and [4] by the use
of the extended Euclidean space which can be considered as a projective closure of the
Euclidean 3-space (see also [9]).

In this paper, we investigate projective transformations of the first projection plane
into itself that are generated by an arbitrary plane and epipolar geometry. First, we
describe the set of fixed points of any such a transformation. Second, we find a matrix
representation of the same projective transformations. Important particular cases are
also discussed. The paper is organized as follows. The next two section are devoted
to the basic facts and some properties of perspective projection and epipolar geometry.
In Section 4, it is given a constructive definition for a projective transformation of the
first projection plane obtained by a plane not passing through projection centers. In
addition, the main theorem for fixed points is proved. The last section contains matrix
representations of considered transformations.
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2. Central projection

A central (or perspective) projection �1 of the Euclidean 3-space E
3 is determined by a

projection (or image) plane π1 ⊂ E
3 and a projection center C ′ ∈ E

3 \ {π1}.
If M ∈ E

3 is an arbitrary point different from C ′, and if C ′ ∨ M denotes the line
passing through C ′ and M , then the intersecting point

M1 = (C ′ ∨ M)
⋂

π1

is the central projection of M , i.e. M1 = �1(M) (see Fig. 1). The extended Euclidean
space contains all points, lines and planes of E

3 as well as the set of points at infinity, the
set of lines at infinity and the unique plane at infinity π∞ (see [9]). The central projection
is also well defined for an arbitrary point at infinity. Obviously, M1 is a point at infinity
if and only if the joining line C ′ ∨M is parallel to π1. Moreover, M1 = M if and only if
M ∈ π1. In the same way, the point C ′ and an arbitrary line l ⊂ E

3 not passing through
C ′ (or respectively, an arbitrary line u at infinity) determine a unique plane denoted by
C ′ ∨ l. Then, the central projection of l (or respectively, u ) is the intersection line
l1 = (C ′ ∨ l)

⋂
π1 (or u1 = (C ′ ∨ u)

⋂
π1), i,e, �1(l) = l1 (or �1(u) = u1).

Figure 1: Central projection

Let us consider a Cartesian coordinate system {C ′; X ′, Y ′, Z ′} in E
3 with an origin

placed at the center C ′ and coordinate axes X ′, Y ′, Z ′ such that X ′ and Y ′ are parallel
to the projection plane π1. This coordinate system is known as a camera frame, and the
Z ′-axis is the principle ray of the camera. The pedal point H of C ′ with respect to π1
is called a principal point, and the distance

∣∣C ′H
∣∣ = d1 between C ′ and π1 is the focal

length (Fig. 1). In the image plane π1 there is an associated Cartesian coordinate system
{O1; x1, y1} called the image frame. Its origin O1 is placed at the point H and the axes
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x1 ‖ X ′ and y1 ‖ Y ′ have the same directions as X ′ and Y ′, respectively. Assume that
a four-dimensional column vector m ′ = (m′

1, m
′
2, m

′
3, m

′
4)

T represents homogeneous

coordinates of an arbitrary point M ∈ {E3 \C ′}
⋃

π∞ with respect to {C ′; X ′, Y ′, Z ′}
and a column 3×1 vector m1 = (m11, m12, m13)

T represents homogeneous coordinates
of the point M1 = �1(M) with respect to {O1; x1, y1}. Then there exists a projection
3 × 4 matrix P1 such that

m1 = k1P1m ′, (1)

where k1 is a non-zero real factor. Under the above assumptions, the projection matrix
possesses the simplest form, i.e.

P1 =

 d1 0 0 0

0 d1 0 0
0 0 1 0


 . (2)

Recall that, if M ∈ {E3 \ C ′}, then m′
4 �= 0, and if M ∈ π∞ is a point at infinity, then

m′
4 = 0 and |m′

1| + |m′
2| + |m′

3| �= 0. Similarly,
|m11| + |m12| + |m13| �= 0 and m13 = 0 if and only if the projection M1 is a point at
infinity.

Let a, b and c be three real constants, and let α ⊂ {E3
⋃

π∞} be a plane with an

equation in homogeneous coordinates am′
1 + bm′

2 + cm′
3 − m′

4 = 0 regarding to the
camera frame. Then, C ′ �∈ α and the restriction

ϕ1 = �1|α : α −→ π1

is a perspectivity with a center C ′. This perspectivity is represented by (1) and (2). The
4 × 3 matrix

Pα =




1

d1
0 0

0
1

d1
0

0 0 1
a

d1

b

d1
c




(3)

is a generalized inverse matrix of P1, because P1 Pα P1 = P1 (see [8]). Moreover, if
the point N1 ∈ π1 has homogeneous coordinates written as a three-dimensional column
vector n1 = (n11, n12, n13)

T with respect to {O1; x1, y1}, then the four-dimensional
column vector

Pα n1 = n′ = (n′
1, n

′
2, n

′
3, n

′
4)

T (4)

represents homogeneous coordinates of the intersecting point

N = α
⋂ (

C ′ ∨ N1
)
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with respect to {C ′; X ′, Y ′, Z ′}. Hence, the reverse perspectivity with a center C ′

ϕ−1
1 : π1 −→ α

is fully determined by (3) and (4).
The central projection �1, the perspectivity ϕ1 and the reverse perspectivity ϕ−1

1 can
be also expressed in terms of the camera frame {C ′; X ′, Y ′, Z ′}. Suppose that m ′ =
(m′

1, m
′
2, m

′
3, m

′
4)

T and m′
1 = (m′

11, m
′
12, m

′
13, m

′
14)

T are column vectors representing

homogeneous coordinates of the points M ∈ {E3 \ C ′}
⋃

π∞ and M1 = �1(M)

with respect to the camera frame. Then, m′
1 = (d m′

1, d m′
2, d m′

3, m
′
3)

T and the four-
dimensional vectors m ′ and m′

1 are related by

m′
1 = k′

1P ′
1 m ′, (5)

where k′
1 is a non-zero real factor and

P ′
1 =




d1 0 0 0
0 d1 0 0
0 0 d1 0
0 0 1 0


 (6)

is an extended projection 4×4 matrix. If M ∈ α, then homogeneous coordinates of M1 =
ϕ1(M) = �1(M) with respect to the camera frame are determined by (5) and (6). Con-
sider a point N1 ∈ π1 whose homogeneous coordinates with respect to {C ′; X ′, Y ′, Z ′}
can be written as a four-dimensional column vector n′

1 = (n′
11, n

′
12, d1 n′

13, n
′
13)

T . If

Pα
′ = 1

d1




1 0 0 0
0 1 0 0
0 0 1 0
a b c 0


 (7)

is a generalized inverse of the matrix P ′
1 obtained by the plane α, i.e. P ′

1P ′
αP ′

1 = P ′
1,

then the four-dimensional column vector

Pα
′ n′

1 = n′ = (n′
1, n

′
2, n

′
3, n

′
4)

T

= 1

d1

(
n′

11, n
′
12, d1 n′

13, a n′
11 + b n′

12 + d1 c n′
13

)T (8)

represents homogeneous coordinates of the intersecting point

N = α
⋂ (

C ′ ∨ N1
)

with respect to {C ′; X ′, Y ′, Z ′}. Hence, Pα
′ can be considered as an extended projection

matrix (related to the camera frame) of the central projection �α with a projection center
C ′ and a projection plane α. Moreover, the reverse perspectivity with a center C ′

ϕ−1
1 = �α|π1 : π1 −→ α

is completely determined by (7) and (8) in terms of the camera frame.
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3. Epipolar Geometry

In this section, we give a brief overview of the epipolar geometry which will be used
in the next sections. Let �1 and �2 be two central projections determined by the pairs
(π 1, C

′) and (π2, C
′′), respectively, and let C ′ �= C ′′. We denote by d1 the distance

from the point C ′ to the plane π1 and by d2 the distance from the point C ′′ to the plane
π2.

If M ∈ {E3 \ {C ′ ∨ C ′′}}
⋃

π∞ is an arbitrary point, and if M1 = �1 (M), M2 =
�2 (M) are its central projections, then (M1, M2) is a pair of corresponding points
associated to M (see Fig. 2). Similarly, if l ⊂ E

3
⋃

π∞ is a straight line not passing

through either of the projection centers and if l1 = (C ′ ∨ l)
⋂

π1, l2 = (C ′′ ∨ l)
⋂

π2

are its central projections, then (l1, l2) is a pair of corresponding lines associated to the
line l.

The joining line C ′ ∨ C ′′ is called a baseline. The intersection points E1 = (C ′ ∨
C ′′)

⋂
π1 and E2 = (C ′ ∨C ′′)

⋂
π2 are known as epipolar points or epipoles. In this

paper we consider the case when each of the projection planes π1 and π2 is different from
the plane at infinity, and neither C ′ nor C ′′ is a point at infinity. An epipolar plane is
any plane containing the baseline. Epipolar lines are the intersection lines of an epipolar
plane with the projection planes.

Figure 2: Epipolar geometry.
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3.1. Coordinates of a space point

Let us consider the camera framesF ′
cam = {C′; X′, Y ′, Z ′} andF ′′

cam = {C ′′; X′′, Y ′′, Z′′}
which are related to the central projections �1 and �2, respectively. The Cartesian co-
ordinates of the projection centers C ′ and C ′′ with respect to the first camera frame

Fcam
′ are (0, 0, 0) and (t1, t2, t3). In other words, t = −−−→

C ′C ′′ = (t1, t2, t3)
T is the rep-

resentation of the translation vector with respect to the first camera frame. Analogously,
the unit vectors i ′, j ′, k ′ along the axes of the first camera frame and the unit vectors
i ′′, j ′′, k ′′ along the axes of the second camera frame can be related to the first camera
frame as follows: i ′ = (1, 0, 0)T , j ′ = (0, 1, 0)T , k ′ = (0, 0, 1)T , i ′′ = (r11, r21, r31)

T ,
j ′′ = (r12, r22, r32)

T , k ′′ = (r13, r23, r33)
T . Hence, the space rotation that transforms the

positively oriented orthonormal triad {i ′, j ′, k ′} into the positively oriented orthonormal
triad {i ′′, j ′′, k ′′} is presented by the rotation matrix

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33




with respect to the first camera frame. In fact, Ri ′ = i ′′, Rj ′ = j ′′ and Rk ′ = k ′′. It
can be noted that any rotation matrix is characterized by RT = R−1 and det(R) = 1.

Suppose that a column vector m ′ = (m′
1, m

′
2, m

′
3, m

′
4)

T represents homogeneous

coordinates of the point M ∈ {E3 \ {C ′ ∨ C ′′}}
⋃

π∞ with respect to the first camera

frame Fcam
′, and a column vector m ′′ = (m′′

1, m
′′
2, m

′′
3, m

′′
4)

T represents homogeneous
coordinates of the same point M with respect to the second camera frame Fcam

′′. Then,
m ′ and m ′′ are related by

m ′ = k′Am ′′ (9)

where k′ is a non-zero real factor and the square matrix

A =
[

R t
o 1

]
=




r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

0 0 0 1




is nonsingular, since det (A) = 1. Its inverse matrix is

A−1 =
[

RT − RT t
o 1

]
=




r11 r21 r31 −i ′′ · t
r12 r22 r32 −j ′′ · t
r13 r23 r33 −k ′′ · t

0 0 0 1


 ,

where i ′′ · t denotes a vector dot product. Thus there is another relation between m ′ and
m ′′ which can be written in the following matrix form

m
′′ = k′′ A−1m ′, (10)

where k′′ is a non-zero real factor.
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3.2. Coordinates of projection points

Let us consider a first image frame F1
im = {O1; x1, y1} and a second image frame

F2
im = {O2; x2, y2} which are related to the central projections �1 and �2, respectively.

As in the previous section homogeneous coordinates of the first projection point M1 =
�1(M) are denoted by m1 = (m11, m12, m13)

T with respect to F1
im and by

m′
1 = (m′

11, m
′
12, m

′
13, m

′
14)

T = (m′
11, m

′
12, d1m

′
13, m

′
13)

T

with respect to the first camera frame Fcam
′. Then, the relation between m1 and m′

1 is
expressed by

m1
′ = k′

1




1 0 0
0 1 0
0 0 d1

0 0 1


 m1, (11)

where k′
1 �= 0 is a constant, or equivalently, by

m1 = k1


 d1 0 0 0

0 d1 0 0
0 0 1 0


 m1

′, (12)

where k1 �= 0 is a constant. Moreover, the relation between the coordinate vector
m ′ from the previous subsection and m1 is expressed by (1) and (2), Similarly, ho-
mogeneous coordinates of the second projection point M2 = �2(M) are denoted by
m2 = (m21, m22, m23)

T with respect to F2
im and by

m′′
2 = (m′′

21, m
′′
22, m

′′
23, m

′′
24)

T = (m′′
21, m

′′
22, d2m

′′
24, m

′′
24)

T

with respect to the second camera frame

Fcam
′′ = {C ′′; X ′′, Y ′′, Z ′′}.

Then, the relation between m2 and m′′
2 is expressed by

m2
′′ = k′′

2




1 0 0
0 1 0
0 0 d2

0 0 1


 m2,

where k′′
2 �= 0 is a constant, or equivalently, by

m2 = k2


 d2 0 0 0

0 d2 0 0
0 0 1 0


 m2

′′,

where k2 �= 0 is a constant.
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4. Induced Planar Homologies

Let α ⊂ E
3
⋃

π∞ be a plane not passing through the projection centers C ′ and C ′′.
Then, there exist two perspectivities which are determined by �1 , �2 and α. The first
perspectivity with a center C ′

ϕ−1
1 : π1 −→ α

is described in Section 2, and it is determined by (7) and (8) with respect to the first
camera frame. The second perspectivity with a center C ′′

ϕ2 = �2|α : α −→ π2

has a simple matrix representation in terms of the second camera frame

m′′
2 = k′′

2 P ′′
2 m ′′, P ′′

2 =




d2 0 0 0
0 d2 0 0
0 0 d2 0
0 0 1 0


 , k′′

2 �= 0 (13)

where m ′′ and m′′
2 are column 4 × 1-vectors of homogeneous coordinates of the points

M ∈ α and M2 = ϕ2(M) = �2(M) ∈ π2, respectively, and P ′′
2 is the extended

projection matrix of �2 with respect to the second camera frame. Notice that (13) is
similar to (5) and (6). Let us consider the restriction

ϕ3 = �1|π2 : π2 −→ π1

which is also a perspectivity with center C ′. It is clear that ϕ3 can be expressed by (5)
and (6) with respect to the first camera frame.

The composition
ψ = ϕ3 ◦ ϕ2 ◦ ϕ−1

1 (14)

is a projective transformation of the first projection plane π1 into itself. This trans-
formation connected to the plane α can be also defined in direct constructive way. If
M1 ∈ π1 is an arbitrary point, then there exist uniquely determined intersection points
M = (C ′ ∨ M1)

⋂
α, M2 = (C ′′ ∨ M)

⋂
π2 and M21 = (C ′ ∨ M2)

⋂
π1. Thus,

ψ(M1) = M21 (see Fig. 2).
The planar projective transformations are classified by the sets of their fixed points

in [7] and [10]. First, we will describe all fixed points of ψ .

Theorem 4.1. Let α ⊂ {E3
⋃

π∞} be a plane not passing through the projection centers

C ′ and C ′′, and let g be the intersecting line of the planes α and π2. Then, the projective
transformation

ψ : π1 −→ π1

given by (14) has a pencil of fixed lines passing through the epipolar point E1 and a
line of fixed points g1 = ϕ3(g) = (S ′ ∨ g)

⋂
π1. Moreover, it is fulfilled either ψ has
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no other fixed point and the points M1 ∈ π1 \ {E1

⋃
g1}, M21 = ψ(M1) and E1 are

collinear, or ψ has only fixed points.

Proof. If Eα = (E1 ∨ E2)
⋂

α, then

ψ(E1) = ϕ3 ◦ ϕ2 ◦ ϕ−1
1 (E1) = ϕ3 ◦ ϕ2(Eα) = ϕ3(E2) = E1.

In other words the epipolar point E1 is a fixed point of the projective transformation ψ .
Suppose that a1 is an arbitrary epipolar line in π1, i.e. E1 ∈ a1 ⊂ π1 and consider the
intersecting lines bα = α

⋂ (
C ′ ∨ a1

)
and c2 = π2

⋂
(C ′′ ∨ a1). Then, we have

ψ(a1) = ϕ3 ◦ ϕ2 ◦ ϕ−1
1 (a1) = ϕ3 ◦ ϕ2(bα) = ϕ3(c2) = a1.

Hence, all epipolar lines in π1 form a pencil of fixed lines of ψ . According to the
terminology of projective geometry the projective transformation ψ is either a planar
homology with vertex E1, or an elation with vertex E1. Similarly, we can verify that any
point G1 ∈ g1 is a fixed point of ψ . In fact, if Gα = (C ′ ∨ G1)

⋂
α ∈ g, then

ψ(G1) = ϕ3 ◦ ϕ2 ◦ ϕ−1
1 (G1) = ϕ3 ◦ ϕ2(Gα) = ϕ3(Gα) = G1.

This means that g1 is either an axis of a planar homology ψ or an axis of an elation. The
last statement follows from the fact that ψ preserves the incidence as a product of three
perspectivities. �

If the plane α does not pass through the point E2, i.e. E2 �∈ g, then E1 �∈ g1 and the
projective transformation ψ is called a planar homology (see [4], [10] and [12]). This
case is plotted in Fig. 3. If the plane α contains the point E2, i.e. E2 ∈ g, then E1 ∈ g1
and the projective transformation ψ is called a special plane homology (see [10]) or more
often an elation (see, for instance, [4]). In the particular case α ≡ π2 the the projective
transformation ψ is the identity.

Now, we can name the considered transformations.

Definition 4.2. For any plane α ⊂ {E3
⋃

π∞} not containing C ′ and C ′′, the projective
transformation ψ : π1 −→ π1 defined by (14) is called an induced planar homology
of the first projection plane.

The induced planar homology is an affine transformation of π1, if the line at infinity
of the plane π1 is a fixed line of ψ . Let us consider two important particular cases.

Corollary 4.3. Let β be a plane containing C ′ and parallel to π1, and let β
⋂

π2 = f .

Suppose that α �= π2 is a plane passing through f and not containing C ′ and C ′′.
Then, the induced planar homology ψ defined by (14) is an affine transformation of π1.
Moreover:
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Figure 3: The vertex and the axis of the planar homology

(a) if the epipolar point E1 is not a point at infinity, or equivalently, the base line
(C ′ ∨ C ′′) is not parallel to π1, this affine transformation is a homothety with a
center E1,

(b) if E1 is a point at infinity
(
(C ′ ∨ C ′′) ‖ π1

)
, the affine transformation ψ is a

translation.

Proof. If u1 ⊂ π1 is the line at infinity, then

ψ(u1) = ϕ3 ◦ ϕ2 ◦ ϕ−1
1 (u1) = ϕ3 ◦ ϕ2(f ) = ϕ3(f ) = u1,

and for any point at infinity U1 ∈ u1 the conditions (C ′ ∨ U1)
⋂

α = F1 ∈ f and

ψ(U1) = ϕ3 ◦ ϕ2 ◦ ϕ−1
1 (U1) = ϕ3 ◦ ϕ2(F1) = ϕ3(F1) = U1

are fulfilled. This means that the line at infinity of π1 is the line of fixed points of ψ .
Hence, ψ is an affine transformation. If E1 �∈ u1, then the epipolar point E1 is an
isolated fixed point of ψ . Therefore, in this case, the induced planar homology ψ of the
extended Euclidean plane π1 is a homothety with center E1. Similarly, if E1 ∈ u1, then
the induced planar homology ψ (whose vertex E1 is a point at infinity and whose axis
u1 is the line at infinity) is a translation. �
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5. A Matrix Representation of Induced Planar Homologies

Any projective transformation can be expressed by one matrix equality in terms of ho-
mogeneous coordinates. In this section, we derive such an equality for arbitrary induced
planar homology.

Theorem 5.1. Let α ⊂ {E3
⋃

π∞} be a plane given by the equation in homogeneous

coordinates ax′
1 + bx′

2 + cx′
3 − x′

4 = 0 with respect to the first camera frame, and let
at1 + bt2 + ct3 �= 1. Then,
(i) the induced planar homology ψ : π1 −→ π1 defined by (14) possesses a representa-
tion with respect to the first camera frame Fcam

′

m21
′ = k′

21




t1q1d1 + d1d2 t1 q2 d1 t1 q3 d1 0
t2 q1 d1 t2q2d1 + d1d2 t2 q3 d1 0
t3 q1 d1 t3 q2 d1 t3q3d1 + d1d2 0
t3 q1 t3 q2 t3 q3 + d2 0


 m1

′, (15)

where
m1

′ = [
m′

11, m
′
12, d1m

′
13, m

′
13

]T
and

m21
′ = [

m′
211, m

′
212, m

′
213, m

′
214

]T
are homogeneous coordinates of M1 ∈ π1 and M21 = ψ(M1) related to Fcam

′,

q1 = r13 − a(t · k′′) − a d2,

q2 = r23 − b(t · k′′) − b d2,

q3 = r33 − c(t · k′′) − c d2,

k′
21 �= 0.

(ii) the induced planar homology ψ has a representation with respect to the first image
frame F1

im

m21 = k21




t1q1d1 + d1d2 t1 q2 d1 t1 q3 d2
1

t2 q1 d1 t2q2d1 + d1d2 t2 q3 d2
1

t3 q1 t3 q2 t3q3d1 + d1d2


 m1, (16)

where k21 �= 0, m1 = [m11, m12, m13]T and m21 = [m211, m212, m213]T are homoge-
neous coordinates of M1 ∈ π1 and M21 = ψ(M1) ∈ π1 related to F1

im.

Proof. In terms of homogeneous coordinates, the planar homology ψ is a linear transfor-
mation. Therefore, considering homogeneous coordinates of points on π1 with respect to
the space coordinate system Fcam

′ we can find a 4×4-matrix B such that m21
′ = B m1

′.
Since ψ is a composition of three perspectivities, the matrix B is a product of three
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extended projection matrices related to the first camera frame. More precisely, we can
write

m21
′ = k′

21P1
′ P2

′ Pα
′ m1

′ (17)

where P1
′ is determined by (6), Pα

′ is expressed by (7), and P2
′ is the extended projection

matrix of �2 with respect to Fcam
′. Using (9), (10) and (13) we compute

P2
′ = A P2

′′ A−1 =




t1r13 + d2 t1r23 t1r33 −t1(t · k′′ + d2)

t2r13 t2r23 + d2 t2r33 −t2(t · k′′ + d2)

t3r13 t3r23 t3r33 + d2 −t3(t · k′′ + d2)

r13 r23 r33 −t · k′′


 .

Replacing the obtained expressions for P1
′, Pα

′ and P2
′ in (17) we get (15). From (11),

(12) and (17) it follows that

m21 =

 d1 0 0 0

0 d1 0 0
0 0 1 0


 P1

′ P2
′ Pα

′




1 0 0
0 1 0
0 0 d1

0 0 1


 m1.

Then, the matrix equality (16) is an immediate consequence of the matrix equality (15).
�

We may combine the Corollary 4.3 with Theorem 5.1.

Corollary 5.2. Let the plane α coincides with the plane at infinity π∞, and let the
projection planes π1 and π2 are parallel. Then, the induced planar homology ψ of π1 is
an affine transformation that has a representation with respect to the first image frame
F1

im

m21 = k21


 d2 01 t1 d1

0 d2 t2 d1

0 0 t3 + d2


 m1, (18)

where k21 �= 0, (t1, t2, t3) �= (0, 0, 0) are Cartesian coordinates of C ′′ related to Fcam
′,

and d2 + t3 �= 0. If t3 �= 0, then ψ is the homothety whose center E1 has homogeneous

coordinates (d1 t1, d1 t2, t3)
T related to F1

im, and whose ratio is r = d2

d2 + t3
. If t3 = 0,

then |t1| + |t2| �= 0 and ψ is the translation determined by the two-dimensional vector

v =
(

t1 d1

d2
,
t2 d1

d2

)

related to F1
im.

Proof. Since the camera frames Fcam
′ and Fcam

′′ have one and the same orientation
and π1 ‖ π2, d2 + t3 = 0 ⇐⇒ C ′ ∈ π2. This implies that d2 + t3 �= 0, r13 = 0,
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r23 = 0, r33 = 1. From α ≡ π∞ it follows that a = 0, b = 0 and c = 0. Then,
q1 = 0, q2 = 0, q3 = r33 = 1. Substituting these values in (16) we get (18). Thus,
ψ is an affine transformation and ψ(U1) = U1 for any point U1 ∈ u1 = π1

⋂
π∞. If

t3 �= 0, then the epipolar point E1 = (C ′ ∨ C ′′)
⋂

π1 with homogeneous coordinates

(d1 t1, d1 t2, t3)
T related to F1

im is not a point at infinity and ψ(E1) = E1. This means

that ψ is a homothety whose center E1 has Cartesian coordinates

(
d1t1

t3
,
d1t2

t3

)
with

respect to F1
im. By (18), if the point M1 ∈ π1 has Cartesian coordinates(

d1t1

t3
+ 1

t3
,
d1t2

t3

)
,

then its image M21 = ψ(M1) has Cartesian coordinates(
d1t1

t3
+ d2

t3(d2 + t3)
,
d1t2

t3

)
.

Hence −−−→
E1M1 =

(
1

t3
, 0

)
,

−−−−→
E1M21 =

(
d2

t3(d2 + t3)
, 0

)
= r

−−−→
E1M1

and r = d2

d2 + t3
. If t3 = 0, then (t1, t2) �= (0, 0) and (18) becomes a matrix representa-

tion of the translation of π1 defined by the nonzero vector(
t1 d1

d2
,
t2 d1

d2

)
.

�
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