Measure zero stability problem for Jensen type functional equations

Chang-Kwon Choi

Department of Mathematics, Chonbuk National University, Jeonju 561-756, Republic of Korea.

Bogeun Lee

Department of Mathematics, Chonbuk National University, Jeonju 561-756, Republic of Korea.

Abstract

In this paper, using the Baire category theorem we investigate the Hyers-Ulam stability problem of Jensen type functional equations on a set of Lebesgue measure zero. As a consequence, we obtain an asymptotic behavior of the equations.

AMS subject classification: 39B22.

Keywords: Hyers-Ulam stability, Jensen equation, Jensen type functional equation, restricted domain.

1. Results

Throughout the paper, we denote by \mathbb{R} , X and Y be the set of real numbers, a real normed space and a real Banach space, respectively, d>0 and $\epsilon\geq 0$ be fixed. A mapping $f:X\to Y$ is called *the Jensen type functional equations* if f satisfies the equations

$$f(x+y) + f(x-y) - 2f(x) = 0, (1.1)$$

$$f(x+y) - f(x-y) - 2f(y) = 0 (1.2)$$

for all $x, y \in X$. A mapping $f: X \to Y$ is called an additive mapping if f satisfies f(x+y)-f(x)-f(y)=0 for all $x, y \in X$. The stability problems for functional equations have been originated by Ulam in 1940 (see [31]). One of the first assertions to be obtained is the following result, essentially due to Hyers [17] that gives an answer to the question of Ulam.

Theorem 1.1. Let $\epsilon > 0$ be fixed. Suppose that $f: X \to Y$ satisfies the functional inequality

$$||f(x+y) - f(x) - f(y)|| \le \epsilon$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \to Y$ satisfying

$$||f(x) - A(x)|| \le \epsilon$$

for all $x \in X$.

The terminology *domain* means a subset of $X \times X$. Let $f: X \to Y$, d > 0 and $\epsilon \ge 0$. Among the numerous results on Ulam-Hyers stability theorem for functional equations (e.g. [17], [19], [20], [24], [26], [27], [30]) there are various interesting results which deal with the stability of functional equations in restricted domains ([2], [3], [5], [7], [13], [15], [21], [24]). In particular, J. Chung, D. Kim and J. M. Rassias prove the Ulam-Hyers stability of the Jensen type functional equation (1.1) and (1.2), i.e., the stability of the inequalities

$$||f(x+y) + f(x-y) - 2f(x)|| \le \epsilon,$$
 (1.3)

$$||f(x+y) - f(x-y) - 2f(y)|| \le \epsilon$$
 (1.4)

for all $x, y \in X$ with $||x|| + ||y|| \ge d$.

Theorem 1.2. Suppose that $f: X \to Y$ satisfies the functional inequality (1.3) for all $x, y \in X$ with $||x|| + ||y|| \ge d$. Then there exists a unique additive mapping $A: X \to Y$ such that

$$||f(x) - A(x) - f(0)|| \le \frac{5}{2}\epsilon$$

for all $x \in X$.

Theorem 1.3. Suppose that $f: X \to Y$ satisfies the functional inequality (1.4) for all $x, y \in X$ with $||x|| + ||y|| \ge d$ and

$$||f(x) + f(-x)|| \le 3\epsilon$$

for all $x, y \in X$ with $||x|| + ||y|| \ge d$. Then there exists a unique additive mapping $A: X \to Y$ such that

$$||f(x) - A(x)|| \le \frac{33}{2}\epsilon$$

for all $x \in X$.

It is very natural to ask if the restricted domain $\Omega_d := \{(x, y) : ||x|| + ||y|| \ge d\}$ in Theorem 1.2 and 1.3 can be replaced by a smaller subset $\Gamma_d \subset \Omega_d$ (e.g. a subset of measure 0 in a measure space X)(see [13] for the quadratic functional equation).

In this paper we consider the Ulam-Hyers stability of the Jensen type functional equations (1.1) and (1.2) in restricted domains $\Omega \subset X \times X$ satisfying the condition (C₁) and (C₂): For given $(x, y) \in X$, there exists a $t \in X$ such that

(C₁)
$$\{(x+y, -x+y+t), (x, -x+t), (y, y+t), (0, t)\} \subset \Omega,$$

(C₂)
$$\{(-x+y+t, x+y), (y+t, y), (-x+t, x)\} \subset \Omega,$$

respectively.

From now on we assume that Ω satisfies the condition (C_1) and (C_2) . As main results we prove the following.

Theorem 1.4. Suppose that $f: X \to Y$ satisfies the inequality

$$||f(x+y) + f(x-y) - 2f(x)|| < \epsilon$$
 (1.5)

for all $(x, y) \in \Omega$. Then there exists a unique additive mapping $A: X \to Y$ such that

$$||f(x) - A(x) - f(0)|| \le 2\epsilon$$
 (1.6)

for all $x \in X$.

Theorem 1.5. Suppose that $f: X \to Y$ satisfies the inequality

$$||f(x+y) - f(x-y) - 2f(y)|| \le \epsilon \tag{1.7}$$

for all $(x, y) \in \Omega$. Then there exists a unique additive mapping $A: X \to Y$ such that

$$||f(x) - A(x)|| \le \frac{3}{2}\epsilon \tag{1.8}$$

for all $x \in X$.

Note that the set $\{(x, y) \in X \times X : ||x|| + ||y|| \ge d\}$ satisfies the condition (C_1) and (C_2) . In particular, if $X = \mathbb{R}$ we prove the following.

Theorem 1.6. Let $X = \mathbb{R}$ and $B \subset \mathbb{R}$. Assume that $B^c := \mathbb{R} \setminus B$ is of the first category. Then there is a rotation Γ of $B^2 := B \times B$ such that for any $d \geq 0$ the set $\Gamma_d := \Gamma \cap \{(x, y) \in \mathbb{R}^2 : |x| + |y| \geq d\}$ satisfies the condition (C_1) and (C_2) .

As a consequence of Theorem 1.6 we find a set Γ_d of $R_d := \{(x, y) \in \mathbb{R}^2 : |x| + |y| \ge d\}$ of 2-dimensional Lebesgue zero satisfying the condition (C_1) and (C_2) , we obtain an asymptotic behavior of $f : \mathbb{R} \to Y$ satisfying

$$||f(x+y) + f(x-y) - 2f(x)|| \to 0,$$
 (1.9)

and that of $f: \mathbb{R} \to Y$

$$||f(x+y) - f(x-y) - 2f(y)|| \to 0,$$
 (1.10)

as $|x| + |y| \to \infty$ only for (x, y) in a set of Lebesgue measure zero in \mathbb{R} .

Theorem 1.7. Suppose that $f : \mathbb{R} \to Y$ satisfies the condition (1.9). Then f(x) - f(0) is an unique additive mapping.

Theorem 1.8. Suppose that $f : \mathbb{R} \to Y$ satisfies the condition (1.10). Then f(x) is an unique additive mapping.

2. Proofs

Proof of Theorem 1.4. Replacing (x, y) by (x + y, x + y + t), (x, y) by (x, -x + t), (x, y) by (y, y + t) and (x, y) by (0, t) in (1.5), respectively. Then we have

$$||f(2y+t) + f(2x-t) - 2f(x+y)|| \le \epsilon \tag{2.11}$$

$$||f(t) + f(2x - t) - 2f(x)|| \le \epsilon$$
 (2.12)

$$||f(-t) + f(2y+t) - 2f(y)|| \le \epsilon \tag{2.13}$$

$$||f(t) + f(-t) - 2f(0)|| \le \epsilon \tag{2.14}$$

for all $x, y, t \in X$. Ω satisfies the condition (C_1) , it follows from (1.5) that for given $x, y \in X$, there exist $t \in X$ such that $(2.1) \sim (2.4)$. Then we have the following inequality

$$||2f(x+y) - 2f(x) - 2f(y) + 2f(0)||$$

$$= ||2f(x+y) - f(2y+t) + f(2y+t) - f(2x-t) + f(2x-t) - 2f(x) + f(t) - f(t) - 2f(y) - f(-t) + f(-t) + 2f(0)||$$

$$\leq ||f(2y+t) + f(2x-t) - 2f(x+y)|| + ||f(t) + f(2x-t) - 2f(x)||$$

$$||f(-t) + f(2y+t) - 2f(y)|| + ||f(t) + f(-t) - 2f(0)|| \leq 4\epsilon$$

for all $x, y, t \in X$. Dividing (2.5) by 2 we have

$$||f(x+y) - f(x) - f(y) + f(0)|| < 2\epsilon$$
(2.16)

for all $x, y \in X$. By theorem 1.1, there exist additive mapping $A: X \to Y$ such that

$$||f(x) - A(x) - f(0)|| < 2\epsilon$$
 (2.17)

for all $x \in X$. This completes the proof.

Proof of Theorem 1.5. Replacing (x, y) by (-x + y + t, x + y), (x, y) by (-x + t, x) and (x, y) by (y + t, y) in (1.6), respectively. Then we have

$$||f(2y+t) - f(-2x+t) - 2f(x+y)|| \le \epsilon \tag{2.18}$$

$$||f(t) - f(-2x + t) - 2f(x)|| \le \epsilon \tag{2.19}$$

$$||f(2y+t) - f(t) - 2f(y)|| \le \epsilon$$
 (2.20)

for all $x, y, t \in X$. Ω satisfies the condition (C_2) , it follows from (1.6) that for given $x, y \in X$, there exist $t \in X$ such that (2.8) \sim (2.10). Then we have the following inequality

$$||2f(x+y) - 2f(x) - 2f(y) + 2f(0)||$$

$$= ||2f(x+y) - f(2y+t) + f(2y+t) - f(-2x+t) + f(2x+t)$$

$$- 2f(x) + f(t) - f(t) - 2f(y) + 2f(0)||$$

$$\leq ||f(2y+t) - f(-2x+t) - 2f(x+y)|| + ||f(t) - f(-2x+t) - 2f(x)||$$

$$||f(2y+t) - f(t) - 2f(y)|| \leq 3\epsilon$$
(2.21)

for all $x, y, t \in X$. Dividing (2.11) by 2 we have

$$||f(x+y) - f(x) - f(y)|| \le \frac{3}{2}\epsilon$$
 (2.22)

for all $x, y \in X$. By theorem 1.1, there exist additive mapping $A: X \to Y$ such that

$$||f(x) - A(x)|| \le \frac{3}{2}\epsilon \tag{2.23}$$

for all $x \in X$. This completes the proof.

Definition 2.1. A subset K of a topological space E is said to be of the first category if K is a countable union of nowhere dense subsets of E, and otherwise it is said to be of the second category.

Theorem 2.2. (Baire category theorem) Every nonempty open subset of a compact Hausdorff space or a complete metric space is of the second category.

For the proof of the following Lemma 2.3 we refer the reader to [9, Lemma 2.3].

Lemma 2.3. Let B be a subset of \mathbb{R} such that $B^c := \mathbb{R} \setminus B$ is of the first category. Then, for any countable subsets $U \subset \mathbb{R}$, $V \subset \mathbb{R} \setminus \{0\}$ and M > 0, there exists $t \geq M$ such that

$$U + tV = \{u + tv : u \in U, v \in V\} \subset B. \tag{2.24}$$

Lemma 2.4. Let

$$R = \left(\begin{array}{cc} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right)$$

and let $\Gamma = R^{-1}(B \times B)$ be the rotation of $B \times B$ by R^{-1} . Then $\Gamma_d := \Gamma \cap \{(z_1, z_2) \in \mathbb{R}^2 : |z_1| + |z_2| \ge d\}$ satisfies the condition (C₁) and (C₂).

Proof. Let

$$P(x, y, t) = \{(x + y, -x + y + t), (x, -x + t), (y, y + t), (0, t)\}$$
 (2.25)

for all $x, y, t \in \mathbb{R}$. Then Γ_d satisfies (C_1) if and only if for given $x, y \in \mathbb{R}$, there exists $t \in \mathbb{R}$ such that

$$R(P(x, y, t)) \subset B \times B$$
 (2.26)

and

$$P(x, y, t) \subset \{(z_1, z_2) \in \mathbb{R}^2 : |z_1| + |z_2| \ge d\}.$$
 (2.27)

The inclusion (2.16) is equivalent to

$$W_1(x, y, t) := \bigcup_{\substack{(z_1, z_2) \in P(x, y, t)}} \left\{ \frac{\sqrt{3}}{2} z_1 - \frac{1}{2} z_2, \ \frac{1}{2} z_1 + \frac{\sqrt{3}}{2} z_2 \right\}.$$
 (2.28)

It is easy to see that

$$W_1(x, y, t) = U + tV (2.29)$$

where

$$U = \left\{ 0, \frac{\sqrt{3} + 1}{2}x, -\frac{\sqrt{3} - 1}{2}x, \frac{\sqrt{3} - 1}{2}y, \frac{\sqrt{3} + 1}{2}y, \frac{\sqrt{3} + 1}{2}x + \frac{\sqrt{3} - 1}{2}y, -\frac{\sqrt{3} - 1}{2}x + \frac{\sqrt{3} + 1}{2}y \right\},$$

$$V = \left\{ -\frac{1}{2}, \frac{\sqrt{3}}{2} \right\}.$$

By (2.17) and Lemma 2.3, for given $x, y \in \mathbb{R}$ and M > 0 there exists $t \ge M$ such that

$$W_1(x, y, t) \subset B. \tag{2.30}$$

Now, for given x, y and $d \ge 0$ if we choose M > 0 such that

$$M \ge d + |x| + |y|,\tag{2.31}$$

then we have

$$P(x, y, t) \subset \{(z_1, z_2) \in \mathbb{R}^2 : |z_1| + |z_2| \ge d\}$$
 (2.32)

for all $t \ge M$. Thus, it follows from (2.20) and (2.22) that Γ_d satisfies (C₁). Similarly, let

$$Q(x, y, t) = \{(-x + y + t, x + y), (y + t, y), (-x + t, x)\}$$
 (2.33)

for all $x, y, t \in \mathbb{R}$. Then Γ_d satisfies (C₂) if and only if for given $x, y \in \mathbb{R}$, there exists $t \in \mathbb{R}$ such that

$$R(Q(x, y, t)) \subset B \times B \tag{2.34}$$

and

$$Q(x, y, t) \subset \{(z_1, z_2) \in \mathbb{R}^2 : |z_1| + |z_2| \ge d\}. \tag{2.35}$$

The inclusion (2.16) is equivalent to

$$W_2(x, y, t) := \bigcup_{\substack{(z_1, z_2) \in Q(x, y, t)}} \left\{ \frac{\sqrt{3}}{2} z_1 - \frac{1}{2} z_2, \ \frac{1}{2} z_1 + \frac{\sqrt{3}}{2} z_2 \right\} = U + tV \subset B, \ (2.36)$$

for some $t \in \mathbb{R}$, where

$$U = \left\{ -\frac{\sqrt{3}+1}{2}x, \frac{\sqrt{3}-1}{2}x, \frac{\sqrt{3}-1}{2}y, \frac{\sqrt{3}+1}{2}y, -\frac{\sqrt{3}+1}{2}x + \frac{\sqrt{3}-1}{2}y, \frac{\sqrt{3}-1}{2}x + \frac{\sqrt{3}+1}{2}y \right\},$$

$$V = \left\{ \frac{1}{2}, \frac{\sqrt{3}}{2} \right\}.$$

It follows from (2.26) that Γ_d satisfies (C₂). This completes the proof.

Remark 2.5. Similarly, appropriate rotation of 2n-product B^{2n} of B satisfies the condition (C_1) and (C_2) which has 2n-dimensional Lebesgue measure 0.

Remark 2.6. The set \mathbb{R} of real numbers can be partitioned as

$$\mathbb{R} = B \cup (\mathbb{R} \setminus B)$$

where *B* is of Lebesgue measure zero and $\mathbb{R} \setminus B$ is of the first category [22, Theorem 1.6]. Thus, in view of Theorem 1.6 we can find a subset $\Gamma_d \subset \{(x, y) \in \mathbb{R}^2 : |x| + |y| \ge d\}$ of Lebesgue measure zero satisfying (C_1) and (C_2) .

Now, we obtain the following results.

Theorem 2.7. Suppose that $f: \mathbb{R} \to Y$ satisfies the inequality

$$||f(x+y) + f(x-y) - 2f(x)|| \le \epsilon$$

for all $(x, y) \in \Gamma_d$. Then there exists a unique additive mapping $A : \mathbb{R} \to Y$ such that

$$||f(x) - A(x) - f(0)|| \le 2\epsilon$$

for all $x \in \mathbb{R}$.

Theorem 2.8. Suppose that $f: \mathbb{R} \to Y$ satisfies the inequality

$$|| f(x + y) - f(x - y) - 2 f(y) || < \epsilon$$

for all $(x, y) \in \Gamma_d$. Then there exists a unique additive mapping $A : \mathbb{R} \to Y$ such that

$$||f(x) - A(x)|| \le \frac{3}{2}\epsilon$$

for all $x \in \mathbb{R}$.

Proof of Theorem 1.7 and Theorem 1.8. The condition (1.9) implies that for each $n \in \mathbb{N}$, there exists $d_n > 0$ such that

$$||f(x+y) + f(x-y) - 2f(x)|| \le \frac{1}{n}$$
(2.37)

for all $(x, y) \in \Gamma_{d_n}$. By Theorem 1.4, there exists a unique additive mapping $A_n : \mathbb{R} \to Y$ such that

$$||f(x) - A_n(x) - f(0)|| \le \frac{2}{n}$$
 (2.38)

for all $x \in \mathbb{R}$. Replacing n by positive integers m, k in (2.28) and using the triangle inequality with the results we have

$$||A_m(x) - A_k(x)|| \le \frac{2}{m} + \frac{2}{k} \le 4$$
 (2.39)

for all $x \in \mathbb{R}$. From the additivity of A_m , A_k , it follows that $A_m = A_k$ for all $m, k \in \mathbb{N}$. Letting $n \to \infty$ in (2.28) we get the result. The proof of Theorem 1.8 is very similar as that of Theorem 1.7. This completes the proof.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64–66.
- [2] B. Batko, Stability of an alternative functional equation, J. Math. Anal. Appl. 339 (2008), 303–311.
- [3] A. Bahyrycz and J. Brzdęk, On solutions of the d'Alembert equation on a restricted domain, Aequat. Math. 85 (2013), 169–183.
- [4] D. G. Bourgin, Multiplicative transformations, Proc. Nat. Academy Sci. of U.S.A., 36(1950), 564–570.
- [5] J. Brzdęk, On a method of proving the Hyers-Ulam stability of functional equations on restricted domain, The Australian Journal of Mathematical Analysis and Applications 6(2009), 1–10. 71 (2009), 4396–4404.
- [6] J. Brzdęk, On the quotient stability of a family of functional equations, Nonlinear Analysis TMA 71 (2009), 4396–4404.
- [7] J. Brzdęk, J. Sikorska, A conditional exponential functional equation and its stability, Nonlinear Analysis TMA 72 (2010), 2929–2934.
- [8] D. G. Bourgin, Class of transformations and bordering transformations, Bull. Amer. Math. Soc. 57(1951), 223–237.
- [9] J. Chung, On the Drygas functional equation in restricted domains, Aequat. Math. DOI 10.1007/s00010-015-0388-5.

- [10] J. Chung and C-K. Choi, Asymptotic behaviors of alternative Jensen functional equations-revisited, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 19, Number 4 (November 2012), Pages 409-421
- [11] J. Chung, D. Kim and J.M. Rassias, Stability of Jensen-type functional equations on restricted domains in a group and their asymptotic behaviors, Journal of Applied Mathematics, Volume 2012, Article ID 691981.
- [12] J. Chung and J. M. Rassias, On a measure zero stability problem of a cyclic functional equation, Bulletin of the Australian Mathematical Society. Vol. 93, pp 272–282, April 2016
- [13] J. Chung and J. M. Rassias, Quadratic functional equations in a set of Lebesque measure zero, J. Math. Anal. Appl. 419(2014), 1065–1075
- [14] M. Fochi, An alternative functional equation on restricted domain, Aequat. Math. 70 (2005), 2010–212.
- [15] R. Ger and J. Sikorska, On the Cauchy equation on spheres, Ann. Math. Sil. 11 (1997) 89–99.
- [16] A. Gilányi, Hyers-Ulam stability of monomial functional equations on a general domain, Proc. Natl. Acad. Sci. USA Vol. 96, pp. 10588–10590, September 1999.
- [17] D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA 27(1941), 222–224.
- [18] S. M. Jung, Hyers-Ulam stability of Jensen's equation and its application, Proc. Amer. Math.Soc. 126(1998), 3137–3143.
- [19] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analisis, Springer, New-York, 2011.
- [20] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998) 126⣓137.
- [21] M. Kuczma, Functional Equations on restricted domains, Aequat. Math. 18(1978) 1–34.
- [22] J.C. Oxtoby, Measure and Category, Springer, New-York, 1980.
- [23] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl. 281 (2002), 747–762.
- [24] J. M. Rassias and M. J. Rassias, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. math. 129(2005) 545–558.
- [25] J. M. Rassias and M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. 281(2003), 516–524.
- [26] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl. 276(2002), 747–762.
- [27] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297–300.

- [28] J. Sikorska, On two conditional Pexider functinal equations and their stabilities, Nonlinear Analysis TMA 70 (2009), 2673–2684.
- [29] F. Skof, Sull'approssimazione delle applicazioni localmente δ —additive, Atii Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117(1983), 377–389
- [30] F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113–129.
- [31] S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.