Measure zero stability problem for Jensen type functional equations

Chang-Kwon Choi
Department of Mathematics, Chonbuk National University, Jeonju 561-756, Republic of Korea.
\section*{Bogeun Lee}
Department of Mathematics, Chonbuk National University, Jeonju 561-756, Republic of Korea.

Abstract

In this paper, using the Baire category theorem we investigate the Hyers-Ulam stability problem of Jensen type functional equations on a set of Lebesgue measure zero. As a consequence, we obtain an asymptotic behavior of the equations.

AMS subject classification: 39B22.
Keywords: Hyers-Ulam stability, Jensen equation, Jensen type functional equation, restricted domain.

1. Results

Throughout the paper, we denote by \mathbb{R}, X and Y be the set of real numbers, a real normed space and a real Banach space, respectively, $d>0$ and $\epsilon \geq 0$ be fixed. A mapping $f: X \rightarrow Y$ is called the Jensen type functional equations if f satisfies the equations

$$
\begin{align*}
& f(x+y)+f(x-y)-2 f(x)=0, \tag{1.1}\\
& f(x+y)-f(x-y)-2 f(y)=0 \tag{1.2}
\end{align*}
$$

for all $x, y \in X$. A mapping $f: X \rightarrow Y$ is called an additive mapping if f satisfies $f(x+y)-f(x)-f(y)=0$ for all $x, y \in X$. The stability problems for functional equations have been originated by Ulam in 1940 (see [31]). One of the first assertions to be obtained is the following result, essentially due to Hyers [17] that gives an answer to the question of Ulam.

Theorem 1.1. Let $\epsilon>0$ be fixed. Suppose that $f: X \rightarrow Y$ satisfies the functional inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ satisfying

$$
\|f(x)-A(x)\| \leq \epsilon
$$

for all $x \in X$.
The terminology domain means a subset of $X \times X$. Let $f: X \rightarrow Y, d>0$ and $\epsilon \geq 0$. Among the numerous results on Ulam-Hyers stability theorem for functional equations (e.g. [17], [19], [20], [24], [26], [27], [30]) there are various interesting results which deal with the stability of functional equations in restricted domains ([2], [3], [5], [7], [13], [15], [21], [24]). In particular, J. Chung, D. Kim and J. M. Rassias prove the Ulam-Hyers stability of the Jensen type functional equation (1.1) and (1.2), i.e., the stability of the inequalities

$$
\begin{align*}
& \|f(x+y)+f(x-y)-2 f(x)\| \leq \epsilon, \tag{1.3}\\
& \|f(x+y)-f(x-y)-2 f(y)\| \leq \epsilon \tag{1.4}
\end{align*}
$$

for all $x, y \in X$ with $\|x\|+\|y\| \geq d$.
Theorem 1.2. Suppose that $f: X \rightarrow Y$ satisfies the functional inequality (1.3) for all $x, y \in X$ with $\|x\|+\|y\| \geq d$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-A(x)-f(0)\| \leq \frac{5}{2} \epsilon
$$

for all $x \in X$.
Theorem 1.3. Suppose that $f: X \rightarrow Y$ satisfies the functional inequality (1.4) for all $x, y \in X$ with $\|x\|+\|y\| \geq d$ and

$$
\|f(x)+f(-x)\| \leq 3 \epsilon
$$

for all $x, y \in X$ with $\|x\|+\|y\| \geq d$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-A(x)\| \leq \frac{33}{2} \epsilon
$$

for all $x \in X$.

It is very natural to ask if the restricted domain $\Omega_{d}:=\{(x, y):\|x\|+\|y\| \geq d\}$ in Theorem 1.2 and 1.3 can be replaced by a smaller subset $\Gamma_{d} \subset \Omega_{d}$ (e.g. a subset of measure 0 in a measure space X)(see [13] for the quadratic functional equation).

In this paper we consider the Ulam-Hyers stability of the Jensen type functional equations (1.1) and (1.2) in restricted domains $\Omega \subset X \times X$ satisfying the condition (C_{1}) and $\left(\mathrm{C}_{2}\right)$: For given $(x, y) \in X$, there exists a $t \in X$ such that

$$
\begin{array}{ll}
\left(\mathrm{C}_{1}\right) & \{(x+y,-x+y+t),(x,-x+t),(y, y+t),(0, t)\} \subset \Omega, \\
\left(\mathrm{C}_{2}\right) & \{(-x+y+t, x+y),(y+t, y),(-x+t, x)\} \subset \Omega,
\end{array}
$$

respectively.
From now on we assume that Ω satisfies the condition $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$. As main results we prove the following.

Theorem 1.4. Suppose that $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)\| \leq \epsilon \tag{1.5}
\end{equation*}
$$

for all $(x, y) \in \Omega$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)-f(0)\| \leq 2 \epsilon \tag{1.6}
\end{equation*}
$$

for all $x \in X$.
Theorem 1.5. Suppose that $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)-f(x-y)-2 f(y)\| \leq \epsilon \tag{1.7}
\end{equation*}
$$

for all $(x, y) \in \Omega$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{3}{2} \epsilon \tag{1.8}
\end{equation*}
$$

for all $x \in X$.
Note that the set $\{(x, y) \in X \times X:\|x\|+\|y\| \geq d\}$ satisfies the condition $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$. In particular, if $X=\mathbb{R}$ we prove the following.

Theorem 1.6. Let $X=\mathbb{R}$ and $B \subset \mathbb{R}$. Assume that $B^{c}:=\mathbb{R} \backslash B$ is of the first category. Then there is a rotation Γ of $B^{2}:=B \times B$ such that for any $d \geq 0$ the set $\Gamma_{d}:=\Gamma \cap\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \geq d\right\}$ satisfies the condition $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$.

As a consequence of Theorem 1.6 we find a set Γ_{d} of $R_{d}:=\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \geq\right.$ $d\}$ of 2-dimensional Lebesgue zero satisfying the condition $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$, we obtain an asymptotic behavior of $f: \mathbb{R} \rightarrow Y$ satisfying

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)\| \rightarrow 0 \tag{1.9}
\end{equation*}
$$

and that of $f: \mathbb{R} \rightarrow Y$

$$
\begin{equation*}
\|f(x+y)-f(x-y)-2 f(y)\| \rightarrow 0, \tag{1.10}
\end{equation*}
$$

as $|x|+|y| \rightarrow \infty$ only for (x, y) in a set of Lebesgue measure zero in \mathbb{R}.
Theorem 1.7. Suppose that $f: \mathbb{R} \rightarrow Y$ satisfies the condition (1.9). Then $f(x)-f(0)$ is an unique additive mapping.

Theorem 1.8. Suppose that $f: \mathbb{R} \rightarrow Y$ satisfies the condition (1.10). Then $f(x)$ is an unique additive mapping.

2. Proofs

Proof of Theorem 1.4. Replacing (x, y) by $(x+y, x+y+t),(x, y)$ by $(x,-x+t)$, (x, y) by $(y, y+t)$ and (x, y) by $(0, t)$ in (1.5), respectively. Then we have

$$
\begin{align*}
& \|f(2 y+t)+f(2 x-t)-2 f(x+y)\| \leq \epsilon \tag{2.11}\\
& \|f(t)+f(2 x-t)-2 f(x)\| \leq \epsilon \tag{2.12}\\
& \|f(-t)+f(2 y+t)-2 f(y)\| \leq \epsilon \tag{2.13}\\
& \|f(t)+f(-t)-2 f(0)\| \leq \epsilon \tag{2.14}
\end{align*}
$$

for all $x, y, t \in X . \Omega$ satisfies the condition $\left(\mathrm{C}_{1}\right)$, it follows from (1.5) that for given $x, y \in X$, there exist $t \in X$ such that (2.1) $\sim(2.4)$. Then we have the following inequality

$$
\begin{align*}
& \|2 f(x+y)-2 f(x)-2 f(y)+2 f(0)\| \tag{2.15}\\
& =\| 2 f(x+y)-f(2 y+t)+f(2 y+t)-f(2 x-t)+f(2 x-t) \\
& \quad-2 f(x)+f(t)-f(t)-2 f(y)-f(-t)+f(-t)+2 f(0) \| \\
& \leq\|f(2 y+t)+f(2 x-t)-2 f(x+y)\|+\|f(t)+f(2 x-t)-2 f(x)\| \\
& \quad\|f(-t)+f(2 y+t)-2 f(y)\|+\|f(t)+f(-t)-2 f(0)\| \leq 4 \epsilon
\end{align*}
$$

for all $x, y, t \in X$. Dividing (2.5) by 2 we have

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)+f(0)\| \leq 2 \epsilon \tag{2.16}
\end{equation*}
$$

for all $x, y \in X$. By theorem 1.1, there exist additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)-f(0)\| \leq 2 \epsilon \tag{2.17}
\end{equation*}
$$

for all $x \in X$. This completes the proof.
Proof of Theorem 1.5. Replacing (x, y) by $(-x+y+t, x+y),(x, y)$ by $(-x+t, x)$ and (x, y) by $(y+t, y)$ in (1.6), respectively. Then we have

$$
\begin{align*}
& \|f(2 y+t)-f(-2 x+t)-2 f(x+y)\| \leq \epsilon \tag{2.18}\\
& \|f(t)-f(-2 x+t)-2 f(x)\| \leq \epsilon \tag{2.19}\\
& \|f(2 y+t)-f(t)-2 f(y)\| \leq \epsilon \tag{2.20}
\end{align*}
$$

for all $x, y, t \in X . \Omega$ satisfies the condition $\left(\mathrm{C}_{2}\right)$, it follows from (1.6) that for given $x, y \in X$, there exist $t \in X$ such that (2.8) $\sim(2.10)$. Then we have the following inequality

$$
\begin{align*}
& \|2 f(x+y)-2 f(x)-2 f(y)+2 f(0)\| \tag{2.21}\\
& =\| 2 f(x+y)-f(2 y+t)+f(2 y+t)-f(-2 x+t)+f(2 x+t) \\
& \quad-2 f(x)+f(t)-f(t)-2 f(y))+2 f(0) \| \\
& \leq \| f(2 y+t)-f(-2 x+t)-2 f(x+y))\|+\| f(t)-f(-2 x+t)-2 f(x) \| \\
& \quad \| f(2 y+t)-f(t)-2 f(y)) \| \leq 3 \epsilon
\end{align*}
$$

for all $x, y, t \in X$. Dividing (2.11) by 2 we have

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \frac{3}{2} \epsilon \tag{2.22}
\end{equation*}
$$

for all $x, y \in X$. By theorem 1.1, there exist additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{3}{2} \epsilon \tag{2.23}
\end{equation*}
$$

for all $x \in X$. This completes the proof.
Definition 2.1. A subset K of a topological space E is said to be of the first category if K is a countable union of nowhere dense subsets of E, and otherwise it is said to be of the second category.

Theorem 2.2. (Baire category theorem) Every nonempty open subset of a compact Hausdorff space or a complete metric space is of the second category.

For the proof of the following Lemma 2.3 we refer the reader to [9, Lemma 2.3].
Lemma 2.3. Let B be a subset of \mathbb{R} such that $B^{c}:=\mathbb{R} \backslash B$ is of the first category. Then, for any countable subsets $U \subset \mathbb{R}, V \subset \mathbb{R} \backslash\{0\}$ and $M>0$, there exists $t \geq M$ such that

$$
\begin{equation*}
U+t V=\{u+t v: u \in U, v \in V\} \subset B \tag{2.24}
\end{equation*}
$$

Lemma 2.4. Let

$$
R=\left(\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)
$$

and let $\Gamma=R^{-1}(B \times B)$ be the rotation of $B \times B$ by R^{-1}. Then $\Gamma_{d}:=\Gamma \cap\left\{\left(z_{1}, z_{2}\right) \in\right.$ $\left.\mathbb{R}^{2}:\left|z_{1}\right|+\left|z_{2}\right| \geq d\right\}$ satisfies the condition $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$.

Proof. Let

$$
\begin{equation*}
P(x, y, t)=\{(x+y,-x+y+t),(x,-x+t),(y, y+t),(0, t)\} \tag{2.25}
\end{equation*}
$$

for all $x, y, t \in \mathbb{R}$. Then Γ_{d} satisfies $\left(\mathrm{C}_{1}\right)$ if and only if for given $x, y \in \mathbb{R}$, there exists $t \in \mathbb{R}$ such that

$$
\begin{equation*}
R(P(x, y, t)) \subset B \times B \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
P(x, y, t) \subset\left\{\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}:\left|z_{1}\right|+\left|z_{2}\right| \geq d\right\} \tag{2.27}
\end{equation*}
$$

The inclusion (2.16) is equivalent to

$$
\begin{equation*}
W_{1}(x, y, t):=\bigcup_{\left(z_{1}, z_{2}\right) \in P(x, y, t)}\left\{\frac{\sqrt{3}}{2} z_{1}-\frac{1}{2} z_{2}, \frac{1}{2} z_{1}+\frac{\sqrt{3}}{2} z_{2}\right\} . \tag{2.28}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
W_{1}(x, y, t)=U+t V \tag{2.29}
\end{equation*}
$$

where

$$
\begin{aligned}
U= & \left\{0, \frac{\sqrt{3}+1}{2} x,-\frac{\sqrt{3}-1}{2} x, \frac{\sqrt{3}-1}{2} y, \frac{\sqrt{3}+1}{2} y, \frac{\sqrt{3}+1}{2} x\right. \\
& \left.+\frac{\sqrt{3}-1}{2} y,-\frac{\sqrt{3}-1}{2} x+\frac{\sqrt{3}+1}{2} y\right\}, \\
V= & \left\{-\frac{1}{2}, \frac{\sqrt{3}}{2}\right\} .
\end{aligned}
$$

By (2.17) and Lemma 2.3, for given $x, y \in \mathbb{R}$ and $M>0$ there exists $t \geq M$ such that

$$
\begin{equation*}
W_{1}(x, y, t) \subset B . \tag{2.30}
\end{equation*}
$$

Now, for given x, y and $d \geq 0$ if we choose $M>0$ such that

$$
\begin{equation*}
M \geq d+|x|+|y|, \tag{2.31}
\end{equation*}
$$

then we have

$$
\begin{equation*}
P(x, y, t) \subset\left\{\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}:\left|z_{1}\right|+\left|z_{2}\right| \geq d\right\} \tag{2.32}
\end{equation*}
$$

for all $t \geq M$. Thus, it follows from (2.20) and (2.22) that Γ_{d} satisfies $\left(\mathrm{C}_{1}\right)$. Similarly, let

$$
\begin{equation*}
Q(x, y, t)=\{(-x+y+t, x+y),(y+t, y),(-x+t, x)\} \tag{2.33}
\end{equation*}
$$

for all $x, y, t \in \mathbb{R}$. Then Γ_{d} satisfies $\left(\mathrm{C}_{2}\right)$ if and only if for given $x, y \in \mathbb{R}$, there exists $t \in \mathbb{R}$ such that

$$
\begin{equation*}
R(Q(x, y, t)) \subset B \times B \tag{2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(x, y, t) \subset\left\{\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}:\left|z_{1}\right|+\left|z_{2}\right| \geq d\right\} \tag{2.35}
\end{equation*}
$$

The inclusion (2.16) is equivalent to

$$
\begin{equation*}
W_{2}(x, y, t):=\bigcup_{\left(z_{1}, z_{2}\right) \in Q(x, y, t)}\left\{\frac{\sqrt{3}}{2} z_{1}-\frac{1}{2} z_{2}, \frac{1}{2} z_{1}+\frac{\sqrt{3}}{2} z_{2}\right\}=U+t V \subset B \tag{2.36}
\end{equation*}
$$

for some $t \in \mathbb{R}$, where

$$
\begin{aligned}
U= & \left\{-\frac{\sqrt{3}+1}{2} x, \frac{\sqrt{3}-1}{2} x, \frac{\sqrt{3}-1}{2} y, \frac{\sqrt{3}+1}{2} y,-\frac{\sqrt{3}+1}{2} x\right. \\
& \left.+\frac{\sqrt{3}-1}{2} y, \frac{\sqrt{3}-1}{2} x+\frac{\sqrt{3}+1}{2} y\right\}, \\
V= & \left\{\frac{1}{2}, \frac{\sqrt{3}}{2}\right\} .
\end{aligned}
$$

It follows from (2.26) that Γ_{d} satisfies $\left(\mathrm{C}_{2}\right)$. This completes the proof.
Remark 2.5. Similarly, appropriate rotation of $2 n$-product $B^{2 n}$ of B satisfies the condition $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$ which has $2 n$-dimensional Lebesgue measure 0 .

Remark 2.6. The set \mathbb{R} of real numbers can be partitioned as

$$
\mathbb{R}=B \cup(\mathbb{R} \backslash B)
$$

where B is of Lebesgue measure zero and $\mathbb{R} \backslash B$ is of the first category [22, Theorem 1.6]. Thus, in view of Theorem 1.6 we can find a subset $\Gamma_{d} \subset\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \geq d\right\}$ of Lebesgue measure zero satisfying $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$.

Now, we obtain the following results.
Theorem 2.7. Suppose that $f: \mathbb{R} \rightarrow Y$ satisfies the inequality

$$
\|f(x+y)+f(x-y)-2 f(x)\| \leq \epsilon
$$

for all $(x, y) \in \Gamma_{d}$. Then there exists a unique additive mapping $A: \mathbb{R} \rightarrow Y$ such that

$$
\|f(x)-A(x)-f(0)\| \leq 2 \epsilon
$$

for all $x \in \mathbb{R}$.
Theorem 2.8. Suppose that $f: \mathbb{R} \rightarrow Y$ satisfies the inequality

$$
\|f(x+y)-f(x-y)-2 f(y)\| \leq \epsilon
$$

for all $(x, y) \in \Gamma_{d}$. Then there exists a unique additive mapping $A: \mathbb{R} \rightarrow Y$ such that

$$
\|f(x)-A(x)\| \leq \frac{3}{2} \epsilon
$$

for all $x \in \mathbb{R}$.
Proof of Theorem 1.7 and Theorem 1.8. The condition (1.9) implies that for each $n \in \mathbb{N}$, there exists $d_{n}>0$ such that

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)\| \leq \frac{1}{n} \tag{2.37}
\end{equation*}
$$

for all $(x, y) \in \Gamma_{d_{n}}$. By Theorem 1.4, there exists a unique additive mapping $A_{n}: \mathbb{R} \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f(x)-A_{n}(x)-f(0)\right\| \leq \frac{2}{n} \tag{2.38}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Replacing n by positive integers m, k in (2.28) and using the triangle inequality with the results we have

$$
\begin{equation*}
\left\|A_{m}(x)-A_{k}(x)\right\| \leq \frac{2}{m}+\frac{2}{k} \leq 4 \tag{2.39}
\end{equation*}
$$

for all $x \in \mathbb{R}$. From the additivity of A_{m}, A_{k}, it follows that $A_{m}=A_{k}$ for all $m, k \in \mathbb{N}$. Letting $n \rightarrow \infty$ in (2.28) we get the result. The proof of Theorem 1.8 is very similar as that of Theorem 1.7. This completes the proof.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[2] B. Batko, Stability of an alternative functional equation, J. Math. Anal. Appl. 339 (2008), 303-311.
[3] A. Bahyrycz and J. Brzdȩk, On solutions of the d'Alembert equation on a restricted domain, Aequat. Math. 85 (2013), 169-183.
[4] D. G. Bourgin, Multiplicative transformations, Proc. Nat. Academy Sci. of U.S.A., 36(1950), 564-570.
[5] J. Brzdȩk, On a method of proving the Hyers-Ulam stability of functional equations on restricted domain, The Australian Journal of Mathematical Analysis and Applications 6(2009), 1-10. 71 (2009), 4396-4404.
[6] J. Brzdȩk, On the quotient stability of a family of functional equations, Nonlinear Analysis TMA 71 (2009), 4396-4404.
[7] J. Brzdęk, J. Sikorska, A conditional exponential functional equation and its stability, Nonlinear Analysis TMA 72 (2010), 2929-2934.
[8] D. G. Bourgin, Class of transformations and bordering transformations, Bull. Amer. Math. Soc. 57(1951), 223-237.
[9] J. Chung, On the Drygas functional equation in restricted domains, Aequat. Math. DOI 10.1007/s00010-015-0388-5.
[10] J. Chung and C-K. Choi, Asymptotic behaviors of alternative Jensen functional equations-revisited, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 19, Number 4 (November 2012), Pages 409-421
[11] J. Chung, D. Kim and J.M. Rassias, Stability of Jensen-type functional equations on restricted domains in a group and their asymptotic behaviors, Journal of Applied Mathematics, Volume 2012, Article ID 691981.
[12] J. Chung and J. M. Rassias, On a measure zero stability problem of a cyclic functional equation, Bulletin of the Australian Mathematical Society. Vol. 93, pp 272282, April 2016
[13] J. Chung and J. M. Rassias, Quadratic functional equations in a set of Lebesque measure zero, J. Math. Anal. Appl. 419(2014), 1065-1075
[14] M. Fochi, An alternative functional equation on restricted domain, Aequat. Math. 70 (2005), 2010-212.
[15] R. Ger and J. Sikorska, On the Cauchy equation on spheres, Ann. Math. Sil. 11 (1997) 89-99.
[16] A. Gilányi, Hyers-Ulam stability of monomial functional equations on a general domain, Proc. Natl. Acad. Sci. USA Vol. 96, pp. 10588-10590, September 1999.
[17] D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA 27(1941), 222-224.
[18] S. M. Jung, Hyers-Ulam stability of Jensen's equation and its application, Proc. Amer. Math.Soc. 126(1998), 3137-3143.
[19] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analisis, Springer, New-York, 2011.
[20] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998) 126âE"137.
[21] M. Kuczma, Functional Equations on restricted domains, Aequat. Math. 18(1978) 1-34.
[22] J.C. Oxtoby, Measure and Category, Springer, New-York, 1980.
[23] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl. 281 (2002), 747-762.
[24] J. M. Rassias and M. J. Rassias, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. math. 129(2005) 545-558.
[25] J. M. Rassias and M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. 281(2003), 516-524.
[26] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl. 276(2002), 747-762.
[27] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
[28] J. Sikorska, On two conditional Pexider functinal equations and their stabilities, Nonlinear Analysis TMA 70 (2009), 2673-2684.
[29] F. Skof, Sull'approssimazione delle applicazioni localmente δ-additive, Atii Accad. Sci.Torino Cl. Sci. Fis. Mat. Natur. 117(1983), 377-389
[30] F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129.
[31] S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.

