
Global Journal of Pure and Applied Mathematics.
ISSN 0973-1768 Volume 12, Number 4 (2016), pp. 3673–3682
© Research India Publications
http://www.ripublication.com/gjpam.htm

Measure zero stability problem for Jensen type
functional equations

Chang-Kwon Choi

Department of Mathematics,
Chonbuk National University,

Jeonju 561-756, Republic of Korea.

Bogeun Lee

Department of Mathematics,
Chonbuk National University,

Jeonju 561-756, Republic of Korea.

Abstract

In this paper, using the Baire category theorem we investigate the Hyers-Ulam sta-
bility problem of Jensen type functional equations on a set of Lebesgue measure
zero. As a consequence, we obtain an asymptotic behavior of the equations.
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1. Results

Throughout the paper, we denote by R, X and Y be the set of real numbers, a real
normed space and a real Banach space, respectively, d > 0 and ε ≥ 0 be fixed. A
mapping f : X → Y is called the Jensen type functional equations if f satisfies the
equations

f (x + y) + f (x − y) − 2f (x) = 0, (1.1)

f (x + y) − f (x − y) − 2f (y) = 0 (1.2)
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for all x, y ∈ X. A mapping f : X → Y is called an additive mapping if f satisfies
f (x + y) − f (x) − f (y) = 0 for all x, y ∈ X. The stability problems for functional
equations have been originated by Ulam in 1940 (see [31]). One of the first assertions
to be obtained is the following result, essentially due to Hyers [17] that gives an answer
to the question of Ulam.

Theorem 1.1. Let ε > 0 be fixed. Suppose that f : X → Y satisfies the functional
inequality

‖f (x + y) − f (x) − f (y)‖ ≤ ε

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y satisfying

‖f (x) − A(x)‖ ≤ ε

for all x ∈ X.

The terminology domain means a subset of X × X. Let f : X → Y , d > 0 and
ε ≥ 0. Among the numerous results on Ulam-Hyers stability theorem for functional
equations (e.g. [17], [19], [20], [24], [26], [27], [30]) there are various interesting results
which deal with the stability of functional equations in restricted domains ([2], [3], [5],
[7], [13], [15], [21], [24]). In particular, J. Chung, D. Kim and J. M. Rassias prove
the Ulam-Hyers stability of the Jensen type functional equation (1.1) and (1.2), i.e., the
stability of the inequalities

‖f (x + y) + f (x − y) − 2f (x)‖ ≤ ε, (1.3)

‖f (x + y) − f (x − y) − 2f (y)‖ ≤ ε (1.4)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d .

Theorem 1.2. Suppose that f : X → Y satisfies the functional inequality (1.3) for all
x, y ∈ X with ‖x‖+‖y‖ ≥ d . Then there exists a unique additive mapping A : X → Y

such that

‖f (x) − A(x) − f (0)‖ ≤ 5

2
ε

for all x ∈ X.

Theorem 1.3. Suppose that f : X → Y satisfies the functional inequality (1.4) for all
x, y ∈ X with ‖x‖ + ‖y‖ ≥ d and

‖f (x) + f (−x)‖ ≤ 3ε

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d. Then there exists a unique additive mapping
A : X → Y such that

‖f (x) − A(x)‖ ≤ 33

2
ε

for all x ∈ X.
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It is very natural to ask if the restricted domain �d := {(x, y) : ‖x‖ + ‖y‖ ≥ d}
in Theorem 1.2 and 1.3 can be replaced by a smaller subset �d ⊂ �d (e.g. a subset of
measure 0 in a measure space X)(see [13] for the quadratic functional equation).

In this paper we consider the Ulam-Hyers stability of the Jensen type functional
equations (1.1) and (1.2) in restricted domains � ⊂ X ×X satisfying the condition (C1)

and (C2): For given (x, y) ∈ X, there exists a t ∈ X such that

(C1) {(x + y, −x + y + t), (x,−x + t), (y, y + t), (0, t)} ⊂ �,

(C2) {(−x + y + t, x + y), (y + t, y), (−x + t, x)} ⊂ �,

respectively.
From now on we assume that � satisfies the condition (C1) and (C2). As main results

we prove the following.

Theorem 1.4. Suppose that f : X → Y satisfies the inequality

‖f (x + y) + f (x − y) − 2f (x)‖ ≤ ε (1.5)

for all (x, y) ∈ �. Then there exists a unique additive mapping A : X → Y such that

‖f (x) − A(x) − f (0)‖ ≤ 2ε (1.6)

for all x ∈ X.

Theorem 1.5. Suppose that f : X → Y satisfies the inequality

‖f (x + y) − f (x − y) − 2f (y)‖ ≤ ε (1.7)

for all (x, y) ∈ �. Then there exists a unique additive mapping A : X → Y such that

‖f (x) − A(x)‖ ≤ 3

2
ε (1.8)

for all x ∈ X.

Note that the set {(x, y) ∈ X × X : ‖x‖ + ‖y‖ ≥ d} satisfies the condition (C1) and
(C2). In particular, if X = R we prove the following.

Theorem 1.6. Let X = R and B ⊂ R. Assume that Bc := R \ B is of the first
category. Then there is a rotation � of B2 := B × B such that for any d ≥ 0 the set
�d := � ∩ {(x, y) ∈ R

2 : |x| + |y| ≥ d} satisfies the condition (C1) and (C2).

As a consequence of Theorem 1.6 we find a set �d of Rd := {(x, y) ∈ R
2 : |x|+|y| ≥

d} of 2-dimensional Lebesgue zero satisfying the condition (C1) and (C2), we obtain an
asymptotic behavior of f : R → Y satisfying

‖f (x + y) + f (x − y) − 2f (x)‖ → 0, (1.9)
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and that of f : R → Y

‖f (x + y) − f (x − y) − 2f (y)‖ → 0, (1.10)

as |x| + |y| → ∞ only for (x, y) in a set of Lebesgue measure zero in R.

Theorem 1.7. Suppose that f : R → Y satisfies the condition (1.9). Then f (x)−f (0)

is an unique additive mapping.

Theorem 1.8. Suppose that f : R → Y satisfies the condition (1.10). Then f (x) is an
unique additive mapping.

2. Proofs

Proof of Theorem 1.4. Replacing (x, y) by (x + y, x + y + t), (x, y) by (x, −x + t),
(x, y) by (y, y + t) and (x, y) by (0, t) in (1.5), respectively. Then we have

‖f (2y + t) + f (2x − t) − 2f (x + y)‖ ≤ ε (2.11)

‖f (t) + f (2x − t) − 2f (x)‖ ≤ ε (2.12)

‖f (−t) + f (2y + t) − 2f (y)‖ ≤ ε (2.13)

‖f (t) + f (−t) − 2f (0)‖ ≤ ε (2.14)

for all x, y, t ∈ X. � satisfies the condition (C1), it follows from (1.5) that for given
x, y ∈ X, there exist t ∈ X such that (2.1) ∼ (2.4). Then we have the following inequality

‖2f (x + y) − 2f (x) − 2f (y) + 2f (0)‖ (2.15)

= ‖2f (x + y) − f (2y + t) + f (2y + t) − f (2x − t) + f (2x − t)

− 2f (x) + f (t) − f (t) − 2f (y) − f (−t) + f (−t) + 2f (0)‖
≤ ‖f (2y + t) + f (2x − t) − 2f (x + y)‖ + ‖f (t) + f (2x − t) − 2f (x)‖

‖f (−t) + f (2y + t) − 2f (y)‖ + ‖f (t) + f (−t) − 2f (0)‖ ≤ 4ε

for all x, y, t ∈ X. Dividing (2.5) by 2 we have

‖f (x + y) − f (x) − f (y) + f (0)‖ ≤ 2ε (2.16)

for all x, y ∈ X. By theorem 1.1, there exist additive mapping A : X → Y such that

‖f (x) − A(x) − f (0)‖ ≤ 2ε (2.17)

for all x ∈ X. This completes the proof. �

Proof of Theorem 1.5. Replacing (x, y) by (−x + y + t, x + y), (x, y) by (−x + t, x)

and (x, y) by (y + t, y) in (1.6), respectively. Then we have

‖f (2y + t) − f (−2x + t) − 2f (x + y)‖ ≤ ε (2.18)

‖f (t) − f (−2x + t) − 2f (x)‖ ≤ ε (2.19)

‖f (2y + t) − f (t) − 2f (y)‖ ≤ ε (2.20)
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for all x, y, t ∈ X. � satisfies the condition (C2), it follows from (1.6) that for given
x, y ∈ X, there exist t ∈ X such that (2.8) ∼ (2.10). Then we have the following
inequality

‖2f (x + y) − 2f (x) − 2f (y) + 2f (0)‖ (2.21)

= ‖2f (x + y) − f (2y + t) + f (2y + t) − f (−2x + t) + f (2x + t)

− 2f (x) + f (t) − f (t) − 2f (y)) + 2f (0)‖
≤ ‖f (2y + t) − f (−2x + t) − 2f (x + y))‖ + ‖f (t) − f (−2x + t) − 2f (x)‖

‖f (2y + t) − f (t) − 2f (y))‖ ≤ 3ε

for all x, y, t ∈ X. Dividing (2.11) by 2 we have

‖f (x + y) − f (x) − f (y)‖ ≤ 3

2
ε (2.22)

for all x, y ∈ X. By theorem 1.1, there exist additive mapping A : X → Y such that

‖f (x) − A(x)‖ ≤ 3

2
ε (2.23)

for all x ∈ X. This completes the proof. �

Definition 2.1. A subset K of a topological space E is said to be of the first category if
K is a countable union of nowhere dense subsets of E, and otherwise it is said to be of
the second category.

Theorem 2.2. (Baire category theorem) Every nonempty open subset of a compact
Hausdorff space or a complete metric space is of the second category.

For the proof of the following Lemma 2.3 we refer the reader to [9, Lemma 2.3].

Lemma 2.3. Let B be a subset of R such that Bc := R \B is of the first category. Then,
for any countable subsets U ⊂ R, V ⊂ R\ {0} and M > 0, there exists t ≥ M such that

U + tV = {u + tv : u ∈ U, v ∈ V } ⊂ B. (2.24)

Lemma 2.4. Let

R =




√
3

2
−1

2
1

2

√
3

2




and let � = R−1(B × B) be the rotation of B × B by R−1. Then �d := � ∩ {(z1, z2) ∈
R

2 : |z1| + |z2| ≥ d} satisfies the condition (C1) and (C2).

Proof. Let

P(x, y, t) = {(x + y, −x + y + t), (x,−x + t), (y, y + t), (0, t)} (2.25)



3678 Chang-Kwon Choi and Bogeun Lee

for all x, y, t ∈ R. Then �d satisfies (C1) if and only if for given x, y ∈ R, there exists
t ∈ R such that

R(P (x, y, t)) ⊂ B × B (2.26)

and
P(x, y, t) ⊂ {(z1, z2) ∈ R

2 : |z1| + |z2| ≥ d}. (2.27)

The inclusion (2.16) is equivalent to

W1(x, y, t) :=
⋃

(z1,z2)∈P(x,y,t)

{√
3

2
z1 − 1

2
z2,

1

2
z1 +

√
3

2
z2

}
. (2.28)

It is easy to see that
W1(x, y, t) = U + tV (2.29)

where

U =
{

0,

√
3 + 1

2
x, −

√
3 − 1

2
x, ,

√
3 − 1

2
y,

√
3 + 1

2
y,

√
3 + 1

2
x

+
√

3 − 1

2
y, −

√
3 − 1

2
x +

√
3 + 1

2
y

}
,

V =
{

−1

2
,

√
3

2

}
.

By (2.17) and Lemma 2.3, for given x, y ∈ R and M > 0 there exists t ≥ M such that

W1(x, y, t) ⊂ B. (2.30)

Now, for given x, y and d ≥ 0 if we choose M > 0 such that

M ≥ d + |x| + |y|, (2.31)

then we have
P(x, y, t) ⊂ {(z1, z2) ∈ R

2 : |z1| + |z2| ≥ d} (2.32)

for all t ≥ M . Thus, it follows from (2.20) and (2.22) that �d satisfies (C1). Similarly,
let

Q(x, y, t) = {(−x + y + t, x + y), (y + t, y), (−x + t, x)} (2.33)

for all x, y, t ∈ R. Then �d satisfies (C2) if and only if for given x, y ∈ R, there exists
t ∈ R such that

R(Q(x, y, t)) ⊂ B × B (2.34)

and
Q(x, y, t) ⊂ {(z1, z2) ∈ R

2 : |z1| + |z2| ≥ d}. (2.35)
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The inclusion (2.16) is equivalent to

W2(x, y, t) :=
⋃

(z1,z2)∈Q(x,y,t)

{√
3

2
z1 − 1

2
z2,

1

2
z1 +

√
3

2
z2

}
= U + tV ⊂ B, (2.36)

for some t ∈ R, where

U =
{

−
√

3 + 1

2
x,

√
3 − 1

2
x,

√
3 − 1

2
y,

√
3 + 1

2
y, −

√
3 + 1

2
x

+
√

3 − 1

2
y,

√
3 − 1

2
x +

√
3 + 1

2
y

}
,

V =
{

1

2
,

√
3

2

}
.

It follows from (2.26) that �d satisfies (C2). This completes the proof. �

Remark 2.5. Similarly, appropriate rotation of 2n-product B2n of B satisfies the con-
dition (C1) and (C2) which has 2n-dimensional Lebesgue measure 0.

Remark 2.6. The set R of real numbers can be partitioned as

R = B ∪ (R \ B)

where B is of Lebesgue measure zero and R\B is of the first category [22, Theorem 1.6].
Thus, in view of Theorem 1.6 we can find a subset �d ⊂ {(x, y) ∈ R

2 : |x| + |y| ≥ d}
of Lebesgue measure zero satisfying (C1) and (C2).

Now, we obtain the following results.

Theorem 2.7. Suppose that f : R → Y satisfies the inequality

‖f (x + y) + f (x − y) − 2f (x)‖ ≤ ε

for all (x, y) ∈ �d . Then there exists a unique additive mapping A : R → Y such that

‖f (x) − A(x) − f (0)‖ ≤ 2ε

for all x ∈ R.

Theorem 2.8. Suppose that f : R → Y satisfies the inequality

‖f (x + y) − f (x − y) − 2f (y)‖ ≤ ε

for all (x, y) ∈ �d . Then there exists a unique additive mapping A : R → Y such that

‖f (x) − A(x)‖ ≤ 3

2
ε
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for all x ∈ R.

Proof of Theorem 1.7 and Theorem 1.8. The condition (1.9) implies that for each n ∈ N,
there exists dn > 0 such that

‖f (x + y) + f (x − y) − 2f (x)‖ ≤ 1

n
(2.37)

for all (x, y) ∈ �dn
. By Theorem 1.4, there exists a unique additive mapping An : R → Y

such that

‖f (x) − An(x) − f (0)‖ ≤ 2

n
(2.38)

for all x ∈ R. Replacing n by positive integers m, k in (2.28) and using the triangle
inequality with the results we have

‖Am(x) − Ak(x)‖ ≤ 2

m
+ 2

k
≤ 4 (2.39)

for all x ∈ R. From the additivity of Am, Ak, it follows that Am = Ak for all m, k ∈ N.
Letting n → ∞ in (2.28) we get the result. The proof of Theorem 1.8 is very similar as
that of Theorem 1.7. This completes the proof. �
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