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Abstract

In this paper, we consider a general version of the chip firing games, called the
signed chip firing games on weighted graphs. After studying basic properties on
the game, we characterize the score of the conventional chip firing games from the
viewpoint of the signed chip firing games. We also provide an alternative proof of
the well known fundamental theorem, called the uniqueness of the final configura-
tion of chip firing games.
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1. Introduction

Chip-firing is a game played on a graph G with the following rule: We put some non-
negative integral number of chips on each vertex of G. A vertex v is ready if it has at
least as many chips as its degree. In that case we may fire it and the result is that it
distributes one chip to each of its neighbors. This can cause another vertex to be ready,
and so on. If there is no vertex which is ready, the game terminates. The game is used as
a mathematical model of various phenomena on networks (cf. communication network
model in which chips represent packets or jobs) and has recently been developed by
many authors (cf.[1], [2], [3] and [4]).

The chip firing games can be generalized to those on weighted graphs by making a
simple modification of its rule. If a vertex is fired, it distributes an amount of chips to
each of its neighbors as much as the given weight of the edge between them. In this
case, the amount of chips moved by firing is not an integral number but a positive real
number. Throughout this paper, every chip-firing game is assumed to be the game on a
weighted graph.
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In the conventional chip firing games, it is assumed that the amount of chips on each
vertex is nonnegative, but if we allow the negative amount of chips, it can be more widely
used for modeling the phenomena on networks. For example, it can be used for modeling
the economic network in which chips are considered as money and the negative number
of chips are regarded as a debt.

In this paper, we consider a general version of the chip firing game, called the signed
chip firing game or simply, the signed game which allows the negative amount of chips on
each vertex. Our main concern is to investigate the relation between the conventional chip
firing games and the signed games. We first characterize the score of the conventional
chip firing games from the viewpoint of signed games and we provide an alternative proof
of the well known fundamental theorem, called the uniqueness of the final configuration
of chip firing games by using a reordering scheme which is developed in the signed chip
firing games. The existing proof of the theorem (see, [2]) is difficult to understand, but
the proof provided in this paper is intuitive and easy to understand.

2. Graph theoretic notions

In this section, we start with the graph theoretic notions frequently used throughout this
paper.

By a graph G = G(V, E) we mean a finite set V (G) (or simply V ) of vertices
with a set E(G) (or simply E), a subset of V × V whose elements are called edges.
By {x, y} ∈ E or x ∼ y we mean that two vertices x and y are joined by an edge.
Conventionally used, we denote by x ∈ V or x ∈ G the fact that x is a vertex in G.

A weight on a graph G(V, E) is a function w : V × V → [0, ∞) satisfying

(i) w(x, x) = 0, x ∈ V,

(ii) w(x, y) = w(y, x) if x ∼ y ,

(iii) w(x, y) = 0 if and only if {x, y} �∈ E.

In particular, a weight function w satisfying

w(x, y) = 1, if x ∼ y

is called the standard weight on G. A graph G(V, E) associated with a weight w is said
to be the weighted graph G(V, E; w). The degree of a vertex x, denoted by degw x, is
defined to be

degw x :=
∑
y∈V

w(x, y).

Throughout this paper, a function on a graph is understood as a function defined
just on the set of vertices of the graph. The discrete Laplacian �w of a function f on
G(V, E; w) is defined by

�wf (x) =
∑
y∈V

w(x, y){f (y) − f (x)}, x ∈ V.
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Considering a function on a graph as a vector, the Laplacian −�w : R
|V | → R

|V | is an
linear operator, so that it can be regarded as a |V | × |V | matrix indexed by the vertices
of G whose x, y entries are given by

−�w(x, y) =
{

degw x , if x = y ,

−w(x, y) , if x �= y.

Here, |V | denotes the number of elements in the set V .

3. Chip-firing games on weighted graphs

We start this section with recalling some definitions and notations related to the chip-
firing game. Throughout this paper, graphs are assumed to be finite, simple, connected
and weighted.

Suppose that an amount of chip is piled on each vertex in a graph G. By a configu-
ration, we mean a vector whose components are given by the quantity of chips piled on
each vertex. Let C0 denote the initial configuration of a chip-firing game.

Playing a game following the rules of chip-firing game up to N -th configuration from
some configuration, one obtains a firing word

F = (F(1) → F(2) → · · · → F(N))

where F(i), called a letter, corresponds to a vertex fired at (i − 1)-th configuration
from the given configuration, for i = 1, 2, . . . , N . To sum up, firing word means the
order of vertices fired during the chip-firing game(See [3] for more details). For a given
firing word F, the function CF : V → R

+ ∪ {0}, called the configuration under F ,
denotes the configuration after playing a game under the firing word F from a given
initial configuration. In particular, for a given initial configuration C0, if there exists a
firing word F such that there is no x ∈ V satisfying CF (x) ≥ degw x, which means
there is no vertex to be fired in the configuration under F , then CF is said to be a final
configuration induced by C0 under F . If we get to the final configuration, the game is
said to be terminated. Figure 1 shows an example of chip firing games.

For two firing words F = (F(1) → F(2) → · · · → F(m)) and G = (G(1) →
G(2) → · · · → G(n)), we define F ∨ G by

F ∨ G := (F(1) → F(2) → · · · → F(m) → G(1) → G(2) → · · · → G(n)).

The score f : V → N0 under F is the function such that f (x) is the number of firing
on the vertex x during the game followed by the firing word F . The following results
show that the score is a solution to the discrete Poisson equation with source C0 − CF .

Lemma 3.1. Take any firing word F . If x0 is a vertex to be fired after performing the F
then we have

−�wδx0(x), = CF (x) − CF∨(x0)(x), x ∈ V, (1)
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Figure 1: Example for chip-firing games on a weighted graph.

where

δx0(x) =
{

1 if x = x0,

0 otherwise.

Proof. Since

−�δx0(x) =
∑
y∈V

[
δx0(x) − δx0(y)

]
w(x, y)

= δx0(x) degw x −
∑
y∈V

δx0(y)w(x, y)

=



− degw x0, x = x0

w(x, x0), x �= x0, x ∼ x0

0, otherwise,

we have the result. �

The following theorem is easily proved from the above lemma.

Theorem 3.2. If f is the score under F , then we have

−�wf (x) = C0(x) − CF (x), x ∈ G. (2)

When the chip-firing game terminates, we define the length of the game as
∑
x∈V

f (x)

where f is a score under a firing word which induces the final configuration.

4. Signed chip firing games on weighted graphs

In this section, we introduce a general version of the chip firing game, called the signed
chip firing game which allows the negative amount of chips on each vertex. As far as
the authors’ knowledge, this type of game has never seen in the literature.

A signed chip-firing game (or simply, signed game) is a chip-firing game without the
rule that a vertex v is fired only if it has at least as much chip as the degree of v as one
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Figure 2: An example of the signed game.

can see in the Figure 2, for example. A firing word F generating a signed game is called
a signed firing word and a configuration SF under a signed firing word F is called a
signed configuration under F .

Remark 4.1. In the signed game, every vertex at any configuration can be fired. There-
fore the set of scores coincides with N

N
0 where N denotes the number of vertices and N0

denotes the set of nonnegative integers. Moreover, the final configuration is meaningless
in this game.

Without any modification of the proof, it is shown that Theorem 3.2 still remains true
for the signed games.

Theorem 4.2. Let F be a firing word generating a signed game on G(V, E; w) with the
initial configuration S0. If f is the signed score under F , then we have

−�wf (x) = S0(x) − SF (x), x ∈ G. (3)

Let F and G be the firing word for a signed game with the same initial configuration.
It follows easily from the above theorem that if F and G induces the same score f , then
we have SF = SG . Namely, the configuration is uniquely determined by the score.

For a word F , we mean by its reordering word F ′ that F ′ is a word obtained by
reordering the letters in F . Unlike the conventional game, in the signed game, every
reordering F ′ of a firing word F is also a firing word.

Using Theorem 4.2, we have the following result.

Theorem 4.3. Suppose an initial configuration S0 is given. For a firing word F and any
of its reordering F ′, the configurations under F and F ′ are the same.

Proof. Since F and F ′ have the same score, say f , it follows from Theorem 4.2 that

SF = −�wf + S0 = SF ′ .

�

5. Main results

In this section, we study a reordering scheme of signed firing words and apply this
scheme to prove two main results: a characterization of score and the uniqueness of
finial configuration for conventional chip firing games.
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Let a word F = (F(1) → F(2) → · · · → F(m)) be given. For a word G, a
reordering of G constructed by the following algorithm is said to be the reordering of G
associated to F , which is denoted by GF .

Step 1. We first construct a word H as follows.
If there is no letter in G then H is an empty word and this step terminates.
If F(1) is a letter in G, then take F(1) as the first letter of H. Then delete the letter

F(1) in G and denote it by G1. But if F(1) is not a letter in G, then take H as an empty
word and this step terminates.

Again, if F(2) is a letter in G1 then take F(2) as the second letter of H. We obtain
the word G2 by deleting the letter F(2) in G1. But if F(2) is not a letter in G, then take
(F(1)) as H and this step terminates.

By the same manner, construct H = (F(1) → · · · → F(n)) until F(n + 1) is not a
letter in Gn and this step terminates.

Step 2. If the word H in Step 1 is an empty word, then we define

GF := G.

If the word H in Step 1 is H = (F(1) → · · · → F(n)) for some n ∈ N, then we define

GF := H ∨ Gn.

For example, assume that we have two words

F = (x2 → x1 → x4 → x3 → x1 → x5 → x1)

and
G = (x1 → x3 → x3 → x2 → x4 → x5).

Following the step 1 of the above algorithm, we obtain H = (x2 → x1 → x4 → x3)

and G4 = (x3 → x5). Therefore the reordering of G associated to F is obtained as

GF = (x2 → x1 → x4 → x3 → x3 → x5).

Remark 5.1. In the above algorithm, if we define G0 := G, then we can say that for
each word F and G, there exist a word (including an empty word) H and a nonnegative
integer n such that the reordering of G associated to F can be represented as

GF = H ∨ Gn.

The following lemma plays an important role to prove the main results.

Lemma 5.2. Suppose an initial configuration C0 and a firing word F for a conventional
chip firing game is given on G(V, E; w). For a given signed firing word G, define a
subset V0 of V by

V0 := {x ∈ V | g(x) < f (x)} .
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If
V0 �= ∅ (4)

then there is a vertex y ∈ V0 such that

SG(y) ≥ degw y.

Here, f and g denote the scores under F and G, respectively.

Remark 5.3. In the above lemma, if G is also a firing word for a conventional game,
then (5.2) means that CG is not a final configuration.

Proof. Let GF be the reordering of G associated to F . Then we have

GF = H ∨ Gn

where the words H and Gn are obtained following the previous algorithm. Then it is easy
to see from the algorithm and (4) that there exists a nonempty normal word F ′ satisfying

F = H ∨ F ′.

Now, let y be the first letter of F ′. Then y is in V0 and CH(y) ≥ degw y. Also, it is easy
to see from the algorithm that the word Gn does not contain y as its letter. Thus we have

CGF (y) ≥ CH(y).

Then it follows from Theorem 4.3 that,

CG(y) = CGF (y),

which implies
CG(y) = CGF (y) ≥ CH(y) ≥ degw y.

�

We now discuss the relation between signed games and the conventional chip firing
games, which is one of the main results of this paper.

Theorem 5.4. Let an initial configuration C0 be given on a weighted graph G(V, E; w).

A function f is a score of the conventional game which induces the final configuration
if and only if

f (x) = min
g∈A

g(x), x ∈ G. (5)

Here, A is the set of the signed scores g (with its firing word G) satisfying

SG(x) < degw x, x ∈ V.
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Proof. (⇒) Since it is clear that f ∈ A, (5) follows easily from Lemma 5.2.
(⇐) Let f be a function given by (5) and F be a word which induces the score f . Then
CF (x) = −�wf (x) + C0(x) for every x ∈ V . Now we show that

CF (x0) < degwx0.

To the contrary, we suppose that there is a vertex x0 in V such that CF (x0) ≥ degwx0.
By (5), there is a function h(�= f ) in A such that f (x) ≤ h(x) for every x in V \{x0}
and f (x0) = h(x0). Then

−�wh(x0) + C0(x0) ≥ CF (x0).

Thus
−�wh(x0) + C0(x0) ≥ degwx0.

This leads a contradiction. Now, we show that CF (x) ≥ 0 for every x in V . To the
contrary, we suppose that there is y0 in V satisfying CF (y0) < 0. Then there is k0 ∈ N

satisfying
0 ≤ CF (y0) + k0degwy0 < degwy0.

Put

h(x) =
{

f (x) , for every x ∈ V \ {y0}
f (y0) − k0 , for y0

Then

−�wh(x) + C0(x) =
{

CF (x) − k0w(y0, x) , x ∈ V \ {y0}
CF (y0) + k0degwy0 , at y0

Thus h ∈ A but h(y0) < f (y0), which leads a contradiction. Finally, it remains to show
that that we can make a normal word by reordering F . Let G be a normal word which
induces a final configuration CG and g be a score vector under G. It is enough to show that
f = g. Suppose that f �= g. Since g ∈ A, by (5), the set V0 = {x ∈ V | f (x) < g(x)}
is nonempty. Thus by Lemma 5.2, there is a vertex x0 in V0 satisfying

CF (x0) ≥ degw x0.

It is a contradiction to the fact that 0 ≤ CF (x) < degw x for every x in S. This completes
the proof. �

In [2], A. Björner, L. Lovász and P. W. Shor showed that if the chip-firing game on a
graph terminates, then the final configuration of the chips does not depends on the order
of the vertex fired during the chip-firing game on a graph but depends only on the given
graph and the initial configuration. See Figure 1, for example.

Using the properties of the signed chip firing games, we provide an alternative proof
of the above result on weighted graphs, which is more comprehensive than the original
one.
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Theorem 5.5. Suppose an initial configuration C0 of (conventional) chip firing game on
G(V, E; w) is given. If the game terminates, then it has the unique final configuration.

Proof. Suppose F1 and F2 are the firing words of the given game, which induce final
configurations CF1 and CF2 . Applying Lemma 5.2 with G = F2, we have

f2(x) ≥ f1(x), x ∈ V.

Changing the role of F1 and F2, we also have

f1(x) ≥ f2(x), x ∈ V.

Thus f1 ≡ f2 and it follows from Theorem 3.2 that CF1 = CF2 . �
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