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Abstract

In this paper, the two-level linear programming problem with at least two leaders
and one follower is considered. To find a satisfactory solution for the problem, an
interactive fuzzy programming approach is introduced. The method is aimed so
that all the decision makers at the upper level achieve their minimum satisfaction
levels together with the suitable satisfaction balance between the decision maker
at the lower level and each decision maker at the upper level. So as to exemplify
the method, a numerical example is given. Additionally, it is shown that a k-level
programming problem can also be changed into a two-level programming problem
with k-1 decision makers at the upper level.
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1. Introduction

The two-level programming problem can be defined as the branch of mathematical pro-
gramming which is concerned with decision making problems of decentralized organi-
zations with two decision makers ([1],[9],[4],[13], [15] and [16]). In the problem, one
decision maker (DM) is at the top level and the other one is at the lower level. The DMs
at the top and lower levels are respectively called leader and follower. The leader has
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higher priority than the follower in order to make the decision. If there exists a coopera-
tive relationship between the leader and the follower and they also come in an agreement
to make the decision cooperatively, then the solution obtained under these circumstances
is called the satisfactory solution. Otherwise, the solution is named the Stackelberg
solution. The vertex enumeration approach [8], the Kuhn-Tucker approach ([5], [6],
[8], [11]) and the penalty function approach ([2], [22]) are considered as three broad
categories to find Stackelberg solutions to the two-level linear programming problems.

Sakawa et al. [14] introduced an interactive fuzzy programming approach in order
to find the satisfactory solutions for the two-level linear problems. In their interactive
fuzzy method, the membership functions of the objectives are firstly defined according to
the fuzzy goals of the DMs. Then, an initial solution is obtained taking into account the
minimal satisfaction degree of the leader. By balance the ratio of the satisfactory degree
of the leader to the one of the follower, the satisfactory solution is finally achieved.
The satisfactory solution obtained of the approach is also a Pareto optimal solution.
This interactive fuzzy programming approach can also be applied to address multi-level
programming problems and non-linear two-level programming problems ([14], [18],
[19]).

The decentralized two-level programming problem relates to the decentralized orga-
nizations with more than one leader or follower. Simaan and Cruz [21] andAnandalingam
[2] studied the non-cooperative two-level LPPs with single leader and many followers.
In the suggested methods, the leader optimizes the objective of self over a feasible region
which is made by the intersection of the inducible regions constructed by the follow-
ers separately. Sherali [20] investigated the analysis of the Stackelberg solutions to the
non-cooperative two-level linear programming problem with many leaders and single
follower.

Sakawa and Nishizaki [19] presented an interactive fuzzy programming approach
to solve the cooperative two-level linear programming problem with single leader and
multiple followers. In their interactive fuzzy programming approach, the satisfactory
solution is achieved in two phases. An interactive fuzzy process was recently introduced
in [10] to find satisfactory solution to the two-level linear programming problems with
two leaders and one follower. They also demonstrated that a three-level programming
problem can be transformed into a two-level programming problem with two DMs at the
upper level and one decision maker at the lower level.

In this paper, we apply the interactive fuzzy programming approach to obtain satis-
factory solution to the two-level linear programming problem with more than two leaders
and one follower when a mutually cooperative relationship exists between the decision
makers. In fact, this study relates to the decentralized organization with at least two
decision makers at minimum satisfaction levels. In order to achieve an overall satis-
faction balance between the decision maker at the lower level and each decision maker
at the upper level, the minimum satisfaction levels of the decision makers at the upper
level are updated during the algorithm. A numerical example is also given to illustrate
the method. It is additionally pointed out that a k-level programming problem can be
changed into a two-level programming problem with k-1 decision makers at the upper
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level. The proposed interactive fuzzy method of this paper can easily be used to solve
k-level linear programming problems instead of the rather difficult interactive fuzzy
approach introduced in [17].

2. Formulation of the Problem

The general form of the two-level linear programming problem with at least two decision
makers at the upper level with a cooperative relationship established among the decision
makers is formulated as follows:
P-1

min
upper level

Z1(x) =
k∑

i=1

c1,ixi

min
upper level

Z2(x) =
k∑

i=1

c2,ixi

min
upper level

Zk-1(x) =
k∑

i=1

ck−1,ixi

min
lower level

Zk(x) =
k∑

i=1

ck,ixi

s.t.
A1x1 + · · · + Akxk ≤ b,

x1 ≥ 0, . . . , xk ≥ 0,

where, xi i = 1, . . . , k is an ni-dimensional decision variable, cj,i , j = 1, . . . , k,
i = 1, . . . , k is an ni-dimensional constant row vector, b is an m-dimensional constant
column vector, and Ai , i = 1, . . . , k is an m × ni constant matrix.

In the above problem, x = (x1, . . . , xk), Zi(x), for i = 1, . . . , k − 1 represent the
objective functions of the upper levels, and the objective function of the lower level is
Zk(x), while xi , i = 1, . . . , k − 1 represent decision variables of the upper levels and
xk is decision variable of the lower level. First, every DM must define a membership
function according to his/her own fuzzy goals in order to apply the interactive fuzzy
programming approach to obtain a satisfactory solution to P-1. In this paper, DMi for
i = 1, 2, . . . , k is assumed to select the following linear membership function µi(Zi(x))

which is a strictly monotonic decreasing function for Zmin
i ≤ Zi(x) ≤ Zmax

i .

µi(Zi(x) =




0, Zi(x) ≥ Zmax
i

Zi(x) − Zmax
i

Zmin
i − Zmax

i

, Zmin
i ≤ Zi(x) ≤ Zmax

i

1, Zi(x) ≤ Zmin
i

(1)
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Let X be the feasible region of P-1. In the above definition, Zmin
i and Zmax

i are fuzzy
goals for ith decision maker and can be specified by the following rules: for i = 1, . . . , k

Zmin
i = min {Zi(x) : x ∈ X} (2)

Let xi for i = 1, . . . , k be the solution of ith problem in Eq. 2; subsequently, the suggested
method of Zimmermann [23] can be used to find Zmax

i for i = 1, . . . , k, as follows:
for i = 1, . . . , k

Zmax
i = max

{
Zj(xj )forj = 1, . . . , k, j �= i

}
(3)

According to the fuzzy decision making theory of Bellman and Zadeh [7], the following
addresses P-1.

Maximize {minµi(Zi(x))fori = 1, . . . , k}
s.t.

A1x1 + · · · + Akxk ≤ b,

x1 ≥ 0, . . . , xk ≥ 0.

The above problem can be transformed into the following equivalent problem using aux-
iliary variable λ:
P-2

Maximize λ

s.t.
µ1(Z1(x)) ≥ λ,

µ2(Z2(x)) ≥ λ,

µk(Zk(x)) ≥ λ,

0 ≤ λ ≤ 1,

A1x1 + · · · + Akxk ≤ b,

x1 ≥ 0, . . . , xk ≥ 0.

If all the decision makers as DM1, DM2,…, and DMk − 1 at the upper level are satisfied
with the optimal solution x� of the above problem, then it is concluded that x� becomes
a satisfactory solution; otherwise, DM1, DM2,…, and DMk −1 specify the minimum of
the decision makers satisfaction levels with full knowledge of the membership function
value of the decision maker at the lower level. If δ̂1, δ̂2, . . . , and δ̂k-1 are the minimum
satisfaction levels specified by DM1, DM2,…, and DMk − 1, respectively, then the
following problem must be solved to obtain a solution for which DM1, DM2,…, and
DMk − 1 are satisfied.
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P-3

Maximize µk (Zk(x))

s.t.

µ1(Z1(x)) ≥ δ̂1,
µ2(Z2(x)) ≥ δ̂2,

...

µk-1 (Zk-1(x)) ≥ δ̂k-1
A1x1 + · · · + Akxk ≤ b, x1 ≥ 0, · · · , xk ≥ 0.

Lemma 2.1. The solutions of P-2 and P-3 are Pareto optimal solutions.

Proof. The proof is given here only for P-3. The proof of P-2 is similar and is thus
omitted. Let xlbe an unique optimal solution of P-3 obtained in iteration l. If xl is
not a Pareto optimal solution of P-1. Therefore, there exists feasible point x̃ such that
Zj(x̃) < Zj(xl) for some j and Zi(x̃) ≤ Zi(x�), for i = 1, . . . , k, i �= j . Due to the
fact that µi(Zi(x)) is a monotone decreasing function for Zi(x), accordingly, we have:
µi(Zi(x̃)) ≥ µi(Zi(xl)) ≥ δ̂i , for i = 1, . . . , k, i �= j and µj(Zj (x̃)) > µj(Zj (xl)) ≥
δ̂j . This is a contradiction to uniqueness optimality of xl for P-3. �

With assumption that the objective functions at the both levels conflict with one
another, the obtained satisfaction level for DM1, DM2,…, and DMk-1 at x∗ achieved from
P-3 decreases the satisfaction level of the DMk, and consequently, this reduction may not
be desirable for the DMk at the lower level who acts in cooperation with DM1, DM2,…,

and DMk-1. To overcome this problem, Lai [12] introduced the ratio � = µlower level

µupper level
to

adjust the satisfaction levels between DMs for two-level linear programming problems
with one decision maker at both levels.

Since k-1 decision makers exist at the upper level, therefore, k-1 ratios �1 =
µk(Zk(x))

µ1(Z1(x))
, �2 = µk(Zk(x))

µ2(Z2(x))
, . . . , and �k-1 = µk(Zk(x))

µk-1(Zk-1(x))
must be considered

to adjust the satisfactory levels between DMs for two-level linear programming prob-
lems. Let [�L1, �U1], [�L2, �U2], . . . , and [�Lk-1, �Uk-1] be the desirable domains for
�1, �2, . . . , �k-1 specified by DM1, DM2, and DM k-1, respectively. Accordingly, a
solution x of P-3 will become satisfactory if the following relations hold true:

�1 ∈ [�L1, �U1], �2 ∈ [�L2, �U2], . . . , and �k-1 ∈ [�Lk-1, �Uk-1]. (4)

If at least one of the above relations does not hold, then the values of minimal satisfactory
levels of the decision makers at the upper level must be updated to obtain a satisfactory
solution. Updating the values of minimum satisfaction levels to confirm the above re-
lations is not easy in practice. For example, for k=3, the following procedure, which is
derived directly from [12], needs to be considered to update the values ofδ̂1 and δ̂2.
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[Procedure 1 to update the values of δ̂1 and δ̂2]

If no feasible solution exists for P-3 for minimal satisfaction levels δ̂1 and δ̂2, then DM1
and DM2 decrease their value of δ̂1 and δ̂2, respectively.
If �31 < �L31 and �32 ∈ [�L32, �U32], the value of δ̂1 is increased by DM1.
If �31 > �U31 and �32 ∈ [�L32, �U32], DM1 decreases the value of δ̂1.
If �32 < �L32 and �31 ∈ [�L31, �U31], DM2 increases the value of δ̂2.
If �32 > �U32 and �31 ∈ [�L31, �U31], DM2 decreases the value of δ̂2.
If �31 < �L31 and �32 < �L32, DM1 and DM2 increase the values of δ̂1 and δ̂2, re-
spectively.
If �31 > �U31 and �32 > �U32, the values of δ̂1 and δ̂2 are decreased by DM1 and
DM2, respectively.
If �31 < �L31 and �32 > �U32, the value of δ̂1 is increased by DM1 and the value of
δ̂2 is decreased by DM2.
If �31 > �U31 and �32 < �L32, the value of δ̂1 is decreased by DM1and the value of
δ̂2 is increased by DM2.

It is not difficult to show that for a problem of M decision makers at the upper level,
3M comparisons are needed to update values δ̂M, . . . , δ̂1. Therefore, doing updates for
rather big M is not easy and encompasses some difficulties in practice.

Presenting an easier procedure is the main idea of this paper. To do this, with the
assumption that xp is the optimal solution of P-3 at iteration p, we subsequently define:

[�L, �U] = [�L1, �U1] ∩ [�L2, �U2] ∩ · · · ∩ [�Lk-1�Uk-1], (5)

�p
max = µk(Zk(xp))

min{µ1(Z1(xp)), µ2(Z2(xp)), . . . , µk-1(Zk-1(xp))} , (6)

�
p
min = µk(Zk(xp))

max{µ1(Z1(xp)), µ2(Z2(xp)), . . . , µk-1(Zk-1(xp))} . (7)

It is resulted from definitions of �l
max and �l

min that if �l
max ∈ [�L, �U] and �l

min ∈
[�L, �U ], then �i ∈ [�Li, �Ui] for i = 1, . . . , k − 1.

According to (5), (6), and (7), DM1, DM2,…, DMk-1 must update the levels based
on the following procedure:

[Procedure 2 to update the minimal satisfactory levels δ̂1, δ̂2, . . . , and δ̂k-1]

If there is not a feasible solution to P-3 for a minimal satisfactory level δ̂1, δ̂2, . . . , and
δ̂k-1, DM1, DM2,…, DM k-1 decrease their values of δ̂1, δ̂2, . . . , and δ̂k-1, respectively.
If �p

max > �U , the decision maker at the upper level with a minimum value of member-
ship function must increase his/her minimum satisfaction level.
If �

p
min < �L, the decision maker at the upper level with a maximum value of member-

ship function must decrease his/her minimum satisfaction level.
If �p

max < �L, all decision makers at the upper level must decrease their values of the
minimum satisfaction level.
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If �
p
min > �U , all decision makers at the upper level must increase their values of the

minimum satisfaction level.

In iteration p, P-3 has to be resolved for the updated values of δ̂1, δ̂2, . . . , and δ̂k-1,
and the ratios of �p

max and �
p
min must be checked again at the solution obtained.

At the iteration p, let µ1(z
p
1 ), µ2(Z

p
2 ), . . . , µk(Z

p

k ),

�p
max = µk(Z

p

k )

min{µ1(z
p
1 ), µ2(Z

p
2 ), . . . , µk−1(Z

p

k−1)}
and

�
p

min = µk(Z
p

k )

max{µ1(z
p
1 ), µ2(Z

p
2 ), . . . , µk−1(Z

p

k−1)}
denote the satisfaction degrees of DM1, DM2,…, and DMk, the ratio of satisfaction
degree of the follower to the minimum satisfaction degree of the leaders, and the ratio of
the follower to the maximum value of the satisfaction degree of the leaders, respectively.
The interactive process will be terminated if the following two conditions are satisfied.

[Termination conditions of interactive process]
Condition 1

µ1(Z
p
1 ) ≥ δ̂1, µ2(Z

p
2 ) ≥ δ̂2, . . . , µk-1(Z

p

k-1) ≥ δ̂k-1.

Condition 2
�p

max ∈ [�L, �U ]
and

�
p
min ∈ [�L, �U ].

3. k-level programming problems

In this section, it is illustrated that a k-level programming problem can be transformed
into a two-level programming problem with k-1 decision makers at the upper level. When
a mutual cooperative relationship exists between decision makers, the general form of a
k-level programming problem is as following:
P-4

min
for DM1

Z1(x)

min
for DM2

Z2(x)

.

.
.
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min
for DMk

Zk(x)

s.t x ∈ X

In the above problem, DM1, DM2,…, DMk-1 have minimum satisfaction levels of
δ̂1, δ̂2, . . . , ˆδk-1, respectively. Additionally,

�i = µi+1(Zi+1(x))

µi(Zi(x))
, i = 1, ..., k − 1, (8)

is the ratio of decision makers satisfactory degrees in adjacent two levels. If DMi,
i = 1, . . . , k − 1 specifies the lower bound �Li and the upper bound �Ui of the ratio
�i , the following condition can be presented in which the overall satisfactory balance is
appropriate.

�i ∈ [�Li, �Ui], i = 1, . . . , k − 1. (9)

According to the above descriptions, the interactive fuzzy process to solve P-4 will be
terminated if the following conditions hold true:

Condition 1:
µ1(Z1) ≥ δ̂1, . . . , µk-1 (Zk-1) ≥ δ̂k-1.

Condition 2:
�1 ∈ [�L1, �U1], . . . , �k-1 ∈ [�Lk-1, �Uk-1].

Now, to transform the above problem into the two-level programming problem, DM1,
DM2,…, DMk-1 that respectively have minimal satisfactory levels of δ̂1, δ̂2, . . . , δ̂k-1
are considered as decision makers at the upper level and DMk who does not have a
minimum satisfaction level of self is taken into account as the follower. To achieve an
overall satisfactory balance between DMk at the lower level and each decision maker

at the upper level the ratio of
µk(Zk(x)

µi(Zi(x)
, i = 1, . . . , k − 1 must belong to the interval

[�̃Li, �̃Ui]. According to (8), and (9) the lower bound �̃Li and the upper bound �̃Ui,
i = 1, . . . , k − 1 are computed as following:

�̃Lk-1 = �Lk-1 and �̃Uk-1 = �Uk-1, (10)

�̃Ln = �Ln × · · · �k-1 and �̃Un = �Un × · · · × �k-1, n = 1, . . . , k − 2. (11)

According to the above-mentioned description, P-4 is transformed into the two-level
programming problem including k-1 decision makers at the upper level and one decision
maker at the lower level with the following termination conditions which can be solved
by the use of the interactive fuzzy process introduced in the previous section.

Condition 1:
µ1(Z1) ≥ δ̂1, . . . , µk-1(Zk-1) ≥ δ̂k-1.
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Condition 2:
�max ∈ [�L, �U]

and
�min ∈ [�L, �U],

where

[�L, �U] = [�̃L1, �̃U1] ∩ [�̃L2, �̃U2] ∩ · · ·
∩ [�̃Lk-1, �̃Uk-1].

4. Numerical example

The following two-level linear programming problem with three decision makers at the
upper level is solved to illustrate the proposed method. All data are derived from [17].
P-5

min
upper level

10∑
i=1

C1ixi

min
upper level

10∑
i=1

C2ixi

min
upper level

10∑
i=1

C3ixi

min
lower level

10∑
i=1

C4ixi

s.t A1x1 + · · · + A10x10 ≤ b, xi ≥ 0 for i = 1, . . . , 10.
The coefficients of the above problem are listed in Table 1.

Four individual minimization problems of the four decision makers are solved at
the beginning of the procedure in order to identify membership functions of the fuzzy
goals for the objective functions. The individual minima and the corresponding optimal
solution are shown in Table 2.

Suppose that the decision makers employ the linear membership function (1) whose
parameters are determined by relations (2) and (3). According to the values (Zmin

1 , Zmax
1 ) =

(43.016, 131.994), (Zmin
2 , Zmax

2 ) = (23.387, 96.824), (Zmin
3 , Zmax

3 ) = (28.387, 56.319),
and (Zmin

4 , Zmax
4 ) = (−33.594, 60.046), maximization P-2 for this problem is written

as P-6:
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Table 1: The coefficients of P-5
i 1 2 3 4 5 6 7 8 9 10

c1i 15 −46 1 34 −30 42 −18 39 46 25
c2i 26 27 6 1 49 −16 −45 18 41 −40
c3i 14 36 17 −5 −26 17 37 6 25 −4
c4i 23 14 12 −10 27 −11 −14 −6 −27 −7
Ai −43 −4 38 −45 −18 −6 25 46 48 −20 b 13

25 −39 −38 9 47 −32 26 −45 −1 17 −20
−39 −3 33 −27 34 −26 20 43 −29 −9 −1
38 19 −22 −35 39 −21 30 41 34 −38 55
13 −19 45 17 −47 10 33 −40 −5 −30 −14

−41 49 −10 −19 −22 −23 −36 −49 −11 4 −102
−41 38 −9 −11 12 −9 48 14 13 −39 10
−32 −48 48 30 −16 29 −3 −35 −38 −43 −70
−38 −11 −48 −5 41 19 −36 −28 11 −34 −83
−26 −30 38 −36 41 −41 −33 −18 7 22 −49
−28 40 28 −9 46 23 10 7 −44 6 51
32 −10 18 −37 −25 36 −9 −26 34 16 18

−47 −38 38 −7 −40 −35 −27 10 −15 36 −81
−6 −34 −3 2 7 48 −34 16 18 26 26
−44 −11 39 −23 −43 0 −42 −28 −29 −9 −123
11 3 −36 25 12 3 42 25 6 47 89

Table 2: Optimal solutions to the individual problems

x1 1.171 x2 0 x3 0 x4 0 x5 0.575
x6 0 x7 0.343 x8 0.918 x9 0 x10 0

Zmin
1 43.016 Zmax

1 131.994
x1 1.232 x2 0 x3 0 x4 0 x5 0.167
x6 0.789 x7 0.387 x8 0.808 x9 0 x10 0

Zmin
2 23.387 Zmax

2 98.824
x1 0.986 x2 0 x3 0 x4 0 x5 0.688
x6 0 x7 0 x8 1.146 x9 0 x10 0

Zmin
3 28.387 Zmax

3 56.319
x1 0.705 x2 0 x3 0 x4 0 x5 0
x6 0.256 x7 0 x8 1.188 x9 1.399 x10 0

Zmin
4 −33.594 Zmax

4 60.046
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P-6
Maximize λ

s.t.
(Z1(x) − 131.994)

(43.016 − 131.994)
≥ λ,

(Z2(x) − 96.824)

(23.387 − 96.824)
≥ λ,

(Z3(x) − 56.319)

(28.387 − 56.319)
≥ λ,

(Z4(x) − 60.046)

(−33.594 − 60.046)
≥ λ,

x ∈ S

where S denotes the feasible region of P-5. The result of the first iteration including an
optimal solution to P-6 is shown in Table 3.

Table 3: Iteration 1 of the interactive fuzzy process

x1 1.079 x2 0.527 x3 0 x4 1.223 x5 0.163
x6 0.179 x7 0.164 x8 1.038 x9 0.117 x10 0.191
Z1

1 83.84 Z1
2 57.09 Z1

3 41.225 Z1
4 9.377

µ1(Z
1
1) 0.541 µ2(Z

1
2) 0.541 µ3(Z

1
3) 0.543 µ4(Z

1
4) 0.543

Suppose that leaders are not satisfied with the solution obtained in iteration 1 and
taking the result of the first iteration into account, decision makers DM1, DM2 and
DM3 specify the minimal satisfactory levels at δ̂1 = 0.7,δ̂2 = 0.6 and δ̂3 = 0.6,
respectively. Moreover, suppose that DM1, DM2 and DM3 specify [�L1, �U1] =
[0.6, 0.8],[�L2, �U2] = [0.6, 0.9] and [�L3, �U3] = [0.5, 0.9] considering the result
of the first iteration. According to (5), [�L, �U] = [0.6, 0.8]. The problem with the
minimal satisfactory levels 3 is therefore written as P-7:
P-7

Maximize µ4(Z4(x))

s.t.
(Z1(x) − 131.994)

(43.016 − 131.994)
≥ 0.7,

(Z2(x) − 96.824)

(23.387 − 96.824)
≥ 0.6,

(Z3(x) − 56.319)

(28.387 − 56.319)
≥ 0.6,

x ∈ S.
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Table 4: Iteration 2 of the interactive fuzzy process

x1 1.092 x2 0.599 x3 0.141 x4 0.805 x5 0.428
x6 0.408 x7 0.124 x8 0.993 x9 0 x10 0.505
Z2

1 69.753 Z2
2 52.754 Z2

3 39.558 Z2
4 22.983

µ1(Z
2
1) 0.7 µ2(Z

2
2) 0.6 µ3(Z

2
3) 0.6 µ4(Z

2
4) 0.398

�2
max 0.66 �2

min 0.566

The result of the second iteration including an optimal solution to P-7 is shown in Table 4.
At the second iteration, the satisfactory degrees µ1(Z

2
1)=0.7 of DM1, µ2(Z

2
2)=0.6 of

DM2 and µ3(Z
2
3) =0.6 of DM3 become equal to their minimal satisfactory levels 0.7,

0.6, and 0.6, respectively. But the ratio �2
min=0.566 is not in the interval of [0.6,0.8].

Consequently, this solution does not satisfy the second condition of termination of the
interactive process. Since �2

min < �L, the satisfactory level of DM1 must therefore
be reduced. Suppose DM1 updates its minimal satisfaction level at δ̂1=0.67, then, the
problem with the revised minimal satisfactory levels 3 is formulated as P-8 and the result
of the third iteration is shown in Table 5.

P-8

Maximize µ4(Z4(x))

s.t.

(Z1(x) − 131.994)

(43.016 − 131.994)
≥ 0.67,

(Z2(x) − 96.824)

(23.387 − 96.824)
≥ 0.6,

(Z3(x) − 56.319)

(28.387 − 56.319)
≥ 0.6,

x ∈ S.

Table 5: Iteration 3 of the interactive fuzzy process

x1 1.059 x2 0.576 x3 0.002 x4 1.118 x5 0.218
x6 0.2 x7 0.178 x8 1.034 x9 0 x10 0.239
Z3

1 72.36 Z3
2 52.74 Z3

3 39.572 Z3
4 14.582

µ1(Z
3
1) 0.67 µ2(Z

3
2) 0.6 µ3(Z

3
3) 0.6 µ4(Z

3
4) 0.485

�3
max 0.809 �3

min 0.724

At the third iteration, the ratio �3
max = 0.809 is not in the interval of [0.6,0.8]. There-

fore, this solution does not satisfy the second condition of termination of the interactive
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process. Since �3
max > �U , DM2 and DM3 who have minimum values of membership

functions must increase their minimum satisfaction levels. Suppose DM1 and DM2 re-
spectively specify δ̂1 = 0.61 and δ̂2 = 0.62 as their minimum satisfaction levels, then,
the problem with the revised minimal satisfactory levels 3 is formulated as P-9 and the
result of the fourth iteration is listed in Table 6.

P-9

Maximize µ4(Z4(x))

s.t.

(Z1(x) − 131.994)

(43.016 − 131.994)
≥ 0.67,

(Z2(x) − 96.824)

(23.387 − 96.824)
≥ 0.61,

((Z3(x) − 56.319)

(28.387 − 56.319)
≥ 0.62,

x ∈ S.

Table 6: Iteration 4 of the interactive fuzzy process

x1 1.126 x2 0.584 x3 0.11 x4 0.771 x5 0.4
x6 0.424 x7 0.095 x8 0.995 x9 0 x10 0.523
Z4

1 72.328 Z4
2 52.006 Z4

3 39.004 Z4
4 22.859

µ1(Z
4
1) 0.671 µ2(Z

4
2) 0.61 µ3(Z

4
3) 0.62 µ4(Z

4
4) 0.397

�4
max 0.651 �4

min 0.592

At the fourth iteration, �4
min is not in the interval of [0.6, 0.8]. As a consequence, the

solution does not satisfy the second condition of termination of the interactive process.
Since �4

min < �L, DM1 must decrease its minimum satisfaction level. If DM1 specify
δ̂1 = 0.66 as his/her minimum satisfaction level, P-3 for the revised minimum satisfaction
levels is then formulated as P-10 and the results of the fifth iteration are shown in Table 7.

P-10

Maximize µ4(Z4(x))

s.t.

(Z1(x) − 131.994)

(43.016 − 131.994)
≥ 0.66,

(Z2(x) − 96.824)

(23.387 − 96.824)
≥ 0.61,



3598 M. Borza & A. S. Rambely

(Z3(x) − 56.319)

(28.387 − 56.319)
≥ 0.62,

x ∈ S.

Table 7: Iteration 5 of the interactive fuzzy process

x1 1.117 x2 0.576 x3 0.063 x4 0.875 x5 0.33
x6 0.355 x7 0.113 x8 1.009 x9 0 x10 0.434
Z5

1 73.249 Z5
2 52.054 Z5

3 39.024 Z5
4 20.092

µ1(Z
5
1) 0.66 µ2(Z

5
2) 0.61 µ3(Z

5
3) 0.62 µ4(Z

5
4) 0.427

�5
max 0.7 �5

min 0.647

At the fifth iteration, since the satisfactory degrees µ1(Z
5
1) = 0.66 of DM1, µ2(Z

5
2) =

0.61 of DM2 and µ3(Z
5
3) = 0.62 of DM3 become equal to their minimal satisfactory

levels 0.66, 0.61, and 0.62, respectively, and �5
max = 0.7 and �5

min = 0.647 are in the
interval of [0.6,0.7], it is therefore concluded that the obtained solution is a satisfactory
solution and the interactive fuzzy stops.

5. Conclusion

In this paper, a method based on interactive fuzzy programming approach is introduced to
obtain a Pareto satisfactory solution to the two-level linear programming problems with
at least two decision makers at the upper level when a mutual cooperative relationship
exists between the decision makers. In the method, All the leaders are satisfied with the
satisfactory solution and appropriate coordination exists between the satisfaction degree
of the follower and that of each leader. It is shown that this interactive fuzzy process can
also be applied to the multi-level linear programming problems.
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