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Abstract

Regression modeling is usually based on the probability distribution of the response
variable. For exponential family distribution, the model is usually in the form of
generalized linear model (GLM). Unfortunately, for data which follows Gamma-
Pareto (G-P) distribution computational technique for GLM Gamma-Pareto has not
been established yet. Since there is a mathematical relationship between G-P and
gamma distribution, there is a possibility to develop model G-P distributed data us-
ing gamma distribution. In this paper we study the modeling of data which follows
G-P distribution using GLM gamma. The simulated data were used to analyze G-P
distributed data using GLM gamma. The response variable was transformed such
that data follow gamma distribution. Then the transformed response variable, with
the explanatory variable, was analyzed using GLM gamma. Finally the estimator
of response variable was obtained by inversely transform the fitted value of GLM
gamma. The result shows that GLM gamma fits good model for the data as long
as the response variable has a good fit to G-P distribution and has high correlation
with the explanatory variable.
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1. Introduction

The regression model explains a phenomenon (the response variable) based on other
phenomena (explanatory variables). Classical regression model is developed with the
assumption that the response variables are normally distributed. This assumption is used
for the validity of the test, for both the model and its parameters.

In real data, the response variable does not always normally distributed. For data of
exponential family distribution, is developed generalized linear model (GLM). GLM uses
link function that link the mean of response variable to the linear form of the explanatory
variables. The link function is a monotone differentiable function (Dobson [3]). Since
GLM is developed based on the probability distribution of response variable, the form
of link function depends on this distribution.

G-P distribution developed by Alzaatreh ef al. [1] is a member of the exponential
family distribution Hanum [6]. Therefore, regression modeling of G-P could be devel-
oped in the form of GLM. Hanum [6] develop GLM G-P analytically. The model requires
computational program so the model can be applied. Unfortunately, the computation
program has not published yet.

Among GLM, GLM gamma which is based on the gamma distribution is often used.
The right skew data are often fit when analyzed with GLM gamma. Alzaatreh ez al. [1]
mentioned the mathematical relationship between G-P and gamma distribution. This is
reasonable because the G-P distribution developed from the gamma distribution. The
existence of this relationship provides a possibility to analyze the G-P distributed data
through GLM Gamma. The availability of many computing program for GLM Gamma
is helpful for this work. Therefore, in this paper we study the modeling G-P distributed
data using GLM gamma.

2. Exponential Form of Gamma-Pareto’s PDF

According to Dobson [3] probability density function (pdf) of exponential family distri-
bution is

g(y i v) = expla(y)b(v) +c(v) +d(y)}. 2.1

Reparameterized 7 in (2.1) into w as canonical parameter for Y, McCullagh & Nelder
[8] write the pdf exponential family as

yo + b(w)
g(y:w, @) =exp {— +c(y, d))} : (2.2)
a(e)
In Alzaatreh et al. [1], pdf of G-P distribution is written as
61 yye—l sy\—1-1
= log = = 2.3
8(y) Qwr(a)(oge) (9) 2:3)

with &, 0,60 > 0 and y > 6. Taking t = p, this pdf can be written in the form of (2.1)

g =exp{ o' log 2 —alogo — |log(y (@) + (@ — Dlog (log 3 ) |} . 24)
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Reparameterized (2.4) with o = —1/(xp) and ¢ = 1/, then we get the form (2.2) of

2.4)
y _ _1
o) — exp {a)logg log( w)_[l log ¢+”' 05

¢ ¢

Using (2.5) we can form GLM of G-P with log g as response variable. Despite of de-

veloping GLM G-P, it may be easier to transform log g into another existing distribution
that already has GLM.

3. Relationship between G-P and Gamma Distributions

Y U dY U . .
Let U = log 7 soY =fe”, and U = 6e” . Rewrite pdf (2.3) in U

0! =1
gw) = ——u* e The" or
0T (o)
61 |
gu) = T @) “le")e or
o~ . =
gu)y = QO‘F(O{)M e¢, u>0. 3.6)

Equation (2.1) is the pdf of I'(«, o). This result confirms Alzaatreh et al. [1] that if
Y
Y ~ G-P(a, 0, 0) then U = log ) ~ I'(«, 0). As the inverse, if we have U ~ I'(«, 0)

then Y = 6eV ~ G-P(a, 0, 6).

It is clear that we can transform data Y from G-P distribution into U which follows
gamma distribution. This transformation may follows with analyzing the transformed
data through GLM gamma. Finally, estimation of Y can be determined using inverse
transformation U to Y.

4. Simulation, Analysis, and Verification Methods

The data used in this paper is simulation data. The simulation aimed to get the response
variable Y that follows G-P distribution. We also need explanatory variable X which
highly correlated to Y. In order to fulfill these two conditions of X and Y, we use
equation Y = a 4+ bX + ¢ to generate Y, were a and b are constants, X is fix variable,
and ¢ ~ G-P(«, 0, ). Variables X and ¢ are each of length n. With this equation, X
and Y will be highly correlated. Using ¢ ~ G-P(«, g, 0), we expect Y will follow G-P
distribution. The steps for this simulation are

1. Determine n, a, b, and X, also «, g, and 6.
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2. Generate ¢ ~ G-P(«, 0, ) and determined ¥ = a + bX + ¢.
3. Check the correlation between Y and X.

4. Fit the response variable Y to G-P distribution using minimum value of Y, y(min),
as the estimator of 9.

5. Check the goodness of fit using Kolmogorov-Smirnov test (KST).

To generate ¢ ~ G-P(«, o, 6) we use quantile function of G-P(«, o, 6) as described in
Hanum et al. [5]. Fitting Y to G-P distribution, we use maximum likelihood as describe
by Alzaatreh et al. [1] and Hanum et al. [5]. If the correlation is good enough and Y
follows G-P, then we can continue to analyze the data.

Data analysis begins with confirming the relationship between G-P and gamma dis-

tribution. That is, we check that U = log — follows gamma distribution. The next step
is running GLM gamma with U as response variable and X as explanatory variable to
obtain the estimator U. Finally transform U to get the estimator of Y. The steps for
analyzing the data are

Y .
1. Transform Y to U = log 7 or u; = log Vi .

Y

2. Fit U with gamma distribution, check the fitness using KST.

3. Model U and covariate X using GLM gamma, determine the estimator U.

4. Determine the estimator ¥ = yayeY or Y; = yeY.

Analysis of GLM gamma using R according to the theory in Balajari [2].

In order to diagnosis the goodness of the estimation of ¥ we need to compare Y
and Y. The goodness of estimation can be analysis through Mean Absolute Percentage
Error (MAPE), correlation, and KST between Y and Y. Estimation with smaller MAPE is
better. MAPE less than 10% means very good estimation (Lewis [7]). On the other hand,
KST with p-value larger than significance level means both variable come from similar
distribution (Crutcher [3]). The closer p-value to 1, the better Y fit to Y distribution.

Finally we do correlation analysis to analyze the relationship between data charac-
teristics and the goodness of the estimation. For this goal we do correlation analysis
between data characteristics those are goodness of fit Y to G-P, and correlation between
X and Y, and estimation properties those are MAPE, correlation between Y and Y ,and
goodness of fit Y fit to ¥ distribution.

5. Results and Discussion

In order to obtain pairs of X and ¥ which meet our conditions, we have run many times
of simulations. Some results are failed to fulfill the conditions due to low correlation or
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the distribution of Y. Finally we have 50 pairs of X and Y those meet the conditions.
Here we show some of them in Table 1.

Table 1: Some of simulation and analysis results

No n,a,b, X e Y U Correlation Estimation

1 n 100 o 7 o 6.6653 o 6.6648 (y,x) 0.923 MAPE 0.0938
a 5 o 0.1 0 0.135 0 0.1347  (u,x) 0919 Cor(y,yh) 09124
b 0.5 6 10 0 19.906 p-val 0.8106
X 1:100 p-val 0.3621 p-val 0.3621 b hat 0.5308

2 n 100 o 7 o 2.4352 o 24345  (y,x) 0.978 MAPE 0.1332
a 5 o 0.1 0 0.3805 0 0.3807 (u,x) 0956 Cor(y,yh) 0.9693
b 1 6 10 0 27.88 p-val 0.1509
X 1:100 p-val 0.1509 p-val 0.1509 b hat 0.7424

3 n 100 oa 7 o 5.4289 o 54311 (y,x) 0.936 MAPE 0.0849
a 5 o 0.1 0 0.1627 0 0.1627 (u,x) 0944 Cor(y,yh) 09171
b 1 6 20 0 37.72 p-val 0.9053
X 1:100 p-val 0.5765 p-val 0.5675 b hat 1.069

4 n 100 a 2 o 4.3484 o 43466 (y,x) 0.667 MAPE 0.1929
a 5 o 05 o} 0.2628 o} 0.2629  (u,x) 0.76  Cor(y, yh) 0.6625
b 1 6 10 0 29.221 p-val 0.8106
X 10:109 p-val 0.5765 p-val 0.5765 b hat 1.231

5 n 100 a 2 o 3.2864 o 3.2871  (y,x) 0.803 MAPE 0.9357
a 5 o 05 o 0.3045 0 0.3046 (u,x) 0.849 Cor(y,yh) 0.7684
b 1 6 10 0 32412 p-val 0.00
X 10:109 p-val  0.052 p-val 0.3621 b hat 1.231

6 n 100 a 05 o 3.0437 o 3.0428 (y,x) 0.781 MAPE 0.1323
a 5 o 05 0 0.2538 0 0.2653 (u,x) 0.856 Cor(y,yh) 0.7278
b 0.5 6 10 0 21.719 p-val 0.2765
X 10:109 p-val 02064 p-val 0.2064 b hat 0.5963

Table 1 column 2 and 3 contain the simulation seeds as mention in step 1. While

column 4 and 5 are the result of fitting ¥ to G-P and fitting U to gamma including the
p-value of KST. Correlation between Y and X, and correlation between X and U are in
column 6. The last column contains MAPE, correlation, p—Va}ue of KST between Y and
its estimator, and estimate of b in linear regression between Y and X.

In Table 1 we can see that transformation of ¥ which follows G-P(«, 0,60) to U =
log % which follows I' (o, ). The differences of @ and o values are only due to rounding.
KST gives similar p-value for fitting both ¥ to G-P(«, 0, 0) and U to I'(«, o). This
result confirms the analytical result in (3.1) and Alzaatreh et al. [1]. It also gives us more
confidence to use gamma distribution in modeling data which having G-P distribution.

As the coefficient of X in linear model to generated Y, the value of b shoud be
estimated to show the goodness of simulation. The estimates are the coefficient of X in
linear regression between Y and X. Table 2 shows the result of 100 run of simulation
to estimate b. It contains the seed parameters of G-P, means of p-value of KST and
correlation between Y and ¥, means of b estimate, and lower and upper bound of b. In
Table 2 we can see that b is always in the range of its lower and upper bound. This means
good estimation of b.
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Table 2: The estimation of b

No € p-val  Correlation b hat b Lower upper
1 2,0.1,10 0.8604 0.7032 0.0997 0.1 0.0968 0.1016
2 2,005 10 0.3640 0.8292 0.0500 0.05 0.0489  0.0512
3 2,03,10 0.189 06998 0.0564 0.5 04911  0.5285
4 2,03,15 0.7546 0.6660 04938 05 04735 05144

5 2,03,20 0.8051 0.6607 04910 05 04752 0.5180

6

7

8

9

2,05,7 0.1078 0.6874 0.9988 1 0.9416  1.0480
2,05,15 0.2346 0.6128 1.5589 1.5 14732  1.6245
2,05,15 03126 0.6008 2.0566 2 1.9935  2.1681
2,05,35 0.3884 0.6910 5.1114 5 49341  5.4012
10 2,0.5,60 0.3288 0.6263 10.3067 10  9.9516 10.7282
11 2,0.6,90 0.2091 0.6124 25.3377 25 24.2139 26.2113

Next we want to know whether GLM gamma yield a proper model and estimation
for G-P distributed data. We also need to know in what condition of data that gives good
model and estimation. So we do the correlation analysis between data condition and the
estimation properties. Both represented by p-value of KST and the correlations those
presented in Table 1 respectively. This correlation analysis is based on 50 pairs of X and
Y those we got in simulation.

There are 2 significant correlations. Both of them are positive. The first correlation
is the correlation between degree of fitness Y to G-P and degree of fitness estimator Y
to Y. With positive correlation, its mean the better Y fit to G-P the better confirmation
of distribution between Y and its estimator. Table 1 shows that with p-value as low as
0.108, with high correlation between X and Y, the goodness measurement indicate good
estimation, except for the distribution confirmation between Y and Y.

The second significant correlation is correlation between X and Y correlation between
Y and Y. With positive correlation, its means that the higher correlation between X and
Y, the higher correlation between Y and its estimator. This correlation did not effect
by the goodness of fit of Y to G-P. Even with p-value of fitting Y achieves 0.052, the
correlation of estimation still close to the correlation of the data.

On the other hand, the distance between Y and ¥ which is described by MAPE
is correlated individually neither with the correlation between response and explana-
tory variable nor with the goodness of fit response variable to G-P. They may explain
MAPE simultaneously. We analyzed the simultant effect of goodness of fit Y to G-P and
Cor(x, y) using multiple regression. Table 3 shows the result of multiple regression.

Table 3: Regression analysis for MAPE

Coefficients Estimate  Std. Error T value Pr(> |t])

Intercept 0.57501 0.10617 5.416 2.74e—06 ***
Goodness of fit —0.31146  0.09395 —3.315 0.00189 **
Cor(x, y) —0.33391 0.09841 —3.393 0.00152 **
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The regression has p-value: 0.002352 for F-statistic. It means the degrees of fitness
of Y to G-P and correlation between X and Y simultaneously have significant effect to
MAPE value. Negative values of the estimate of goodnessof fit and Cor(x, y) indicate
that the better Y fit to G-P and the higher correlation between X and Y, the smaller
MAPE value. It means the better condition of data for modeling the better model and
estimation of response variable.

6. Conclusion

Data which is G-P distributed can be analyzed using GLM gamma. The goodness of
estimation of response variable depends on two factors. The first factor is the goodness
of fit of the response variable to G-P distribution. The other factor is correlation between
response and explanatory variable. Good fit response variable to G-P and high correlation
between response and explanatory variable will yield good model. Just like common
modeling, as long as the data fulfill the good condition of modeling, the model and the
estimation will be good.
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