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Abstract

In this paper, the reproducing kernel Hilbert space method (RKHSM) is applied to
find approximate solution of fractional delay integro differential equations satisfy-
ing initial conditions. The fractional derivatives are considered in the Caputo sense.
Numerical examples are provided to demonstrate the efficiency and accuracy of the
presented method. It is shown that RKHSM gives excellent results when applied
to both fractional linear and nonlinear delay integro differential equations.
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1. Introduction

In this paper, we consider the following fractional delay integro differential equation

q1x
D%(x) = G(X,U(QM),M(QM))‘FF(X,/ Ki(x,t,u(qi1), u(gat)) dt,

qx
[ Kt tu@n.utqary o) + e M)
a
subject to the condition

u(a) =y 2)

Where G, H are a given functions with appropriate domain of definition, a < x <
b, 0 <a <1, q1,q92 €1[0,1].

Fractional calculus has occupied a central place in many areas such as science, control,
signal processing, and engineering due to its potential in solving differential and integral
equations [1, 2, 3, 4, 5].

In real world systems, Integro differential equations with fractional derivatives play
an important role in the describing of a variety of phenomena in physics, technology,
biology, physiology, and many areas of applied science [6, 7, 8, 9], so they have received
significant attention from many researchers by developing some methods to find approx-
imate solutions for fractional integro differential equations such as: collocation method
[10], fractional differential transform method [11] and Adomian decomposition method
[12]. However, Fractional delay integro differential equations provide a valuable tools
for modeling physical phenomena by giving explanations behave like the real process,
so the interest for them will keep growing [13, 14, 15, 16]. Computational difficulties
that face researchers in solving many of fractional delay integro differential equations,
in addition to most of them do not have analytical solutions have leaded to use approxi-
mation and numerical methods. Therefore different studies [17, 18, 19, 20, 21, 22] have
been done to build up methods for giving approximate solutions.

Reproducing kernel theory has important applications in different mathematical ar-
eas, such as, probability and statistics, numerical analysis, and differential equations
[24, 25, 26]. This theory enables researchers to get approximate solutions for many
types of problems, for example, nonlinear system of singular and regular boundary
and initial value problems, nonlinear operator equations, nonlinear Fredholm-Volterra
integro-differential equations and integro-differential equations of fractional order, non-
local fractional boundary value problems and etc.[27, 28, 29, 30, 31, 32, 33, 34].

Our aim in this paper is to use the reproducing kernel Hilbert space method to find
approximate solution for both fractional linear and nonlinear proportional delay integro
differential equations of first order.

The paper is organized as follows. In section 2 of this paper a brief review of some
basic definitions that used; in section 3 we illustrated a reproducing kernel Hilbert spaces
with their kernels and the algorithm of reproducing kernel Hilbert space is presented; in
section 4 the numerical examples are discussed. Finally, a brief conclusion of this paper
is given in section 5.
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2. Basic Definitions

Fractional derivatives have many definitions [35] but the most used of these definitions
are Riemann-Liouville, Grunwald-Letnikow and Caputo. Riemann-Liouville derivative
has certain disadvantages when trying to model real-world phenomena using fractional
differential equations. Therefore, we will introduce a modified fractional differential
operator proposed by Caputo’s work on the theory of viscoelasticity [36].

Definition 2.1. A function f(x), x > 0, is said to be in the space C,, € R if there exists
areal p > p such that f(x) = x” fi(x), where fi(x) € [0, 00). Clearly C,, < Cg if
B < u.

Definition 2.2. A function f(x), x > 0, is said to be in the space CZ’ e N U{0}if
fmec,.

Definition 2.3. The Riemann-Liouvill fractional integral operator of order « > 0 of a
function f € C, is defined as

JOf(x) = ﬁ/x(x -0V f@)dt, a >0, x >a

with J° f(x) = f(x). Properties of the operator J* can be found in [37, 38].

Definition 2.4. The fractional derivative of f (x) in the Caputo sense is defined as
1 X
DUf(x)=J""*D" f(x) = f (x =" @) dr,
I'm—ow) J,

form—-1<a<m, meN, x>a, feC",.

Lemma 2.5. Leta > 0, n = [a] and f(x) = x¢ for some ¢ > 0. Then,

0 if ce{0,1,...,n—1}
Daf(x) = I'c+1) c—a

X if ce Nand ¢ >nor cnotin Nand ¢ >n — 1
Nec+1—a)

Definition 2.6. Let M be a nonempty abstract set. A function K : M x M — C is a
reproducing kernel of the Hilbert space H if and only if

1. Vie M, K(.,x) € H.
2. Vte M, Yue H, (u(.), K(.,t)) = u(@).

The condition (2) is called “the reproducing property”, a Hilbert space which possesses
a reproducing Kernel is called a reproducing kernel Hilbert space.
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Definition 2.7. W,"[a, b] = {u|u(j) is absolutely continuous, j = 1,2,...,m — 1 and
u"™ € L*[a, b]}. The inner product and the norm is given by

m—1

b
(w, vywr =Y u(@w? (@) +/ u™ (x)v™ (x) dx
i=0 a

with [lullwg =/t u)wy.

3. Reproducing kernel Hilbert Space Method (RKHSM)

* The reproducing kernel space Wzl [a, b] is defined as Wzl [a, b] = {u|u is absolutely
continuous real value function, u’ € Lz[a, b]}. The inner product and norm of
WZ] [a, b], respectively, is given by

b
(u, v}y =/ () +u' (V' (1)) dt,

||u||W21 = /(u, ”>W2‘

In [23], Li and Cui proved that Wzl [a, b] is a reproducing kernel Hilbert space and
its reproducing kernel is given by

1
M(x»}’)zm[COSh(x+y—b—a)+cosh|x—y|—b-|-a]

* The reproducing kernel space sz[a, b] is defined as sz[a, bl = {ulu,u’ are
absolutely continuous real value functions, u” € Lz[a, b], u(a) = 0}. The inner
product and norm of W22 [a, D], respectively, is given by

b
(u, V)2 = u(@v(a) + u'(@v'(a) +/ u" (t)v" (1) dt,

||”||W22 = /(u, M>W22

In [24], Cui and Lin proved that W22 [a, b] 1s a reproducing kernel Hilbert space
and its reproducing kernel is given by

1
8(y—a)(2a2—y2+3x(2+y)—a(6+3x+y) if y<x
S(x,y) =

8(x—a)(zcﬂ—x2+3y(2+x)—a(6+3y+a) if y>x
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The essential idea of solving fractional delay integro differential equations using RKHSM
is offered as follows:

* Homogenization of the initial condition.

* constructalinear operator 7 : sz [a, b] — W21 [a, b],suchthat Tu(x) = D%u(x)—
G(x,u(qix), u(gzx)). Obviously, T is bounded linear operator. After the previous
steps, our problem becomes as follows:

Tu(x) = F(x, qlxKl(x,t,u(Cht),u(qzt))dt,
q2x
f Ko (x,t,u(qit), u(gat)) dt) + H(x) (3)
ula) =0 “4)

Where, x € [a, b], u(x) € W[a, b] and

q1x qx
F (x, Ki(x,t,u(qt), u(qzt))dt,/ Ko(x,t,u(qit), u(qzt))dt>
a a

+ H(x) € W)[a, b).

e Let {x;};2, be acountable dense setin [a, b]. Let w; (x) = M (x;, x) and &;(x) =
T*w,(x), where T™ is the adjoint operator of T'.

By applying Gram-Schmidt process to {&;(x)}52; we can derived an orthonor-
T
mal system {&, (x)}°2, of W[a, b], where &, (x) = Z,B,kgk(x), where B¢ are

k=1
orthogonal coefficients.

Theorem 3.1. Assume that the inverse operator T~ ! exists. Then if {x:}22, is dense on
[a, b], then {&;(x)}2, is a complete system of sz [a, b].

For the proof, see [24].
Theorem 3.2. Let {x;}22 | be a dense set on [a, b] and the solution of (3-4) is unique on
o0
sz [a, b]. Then the solution is given by u(x) = Z A€ (x), where

=1

T q1Xk
Ar =) Bu (F (xk, / Ki(xe, 1, uqit), u(gat)) dt,
k=1 a

q2Xk
/ Ko (xi, t, u(qit), u(gat)) dl) +H(xk)>-
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Proof. Since {ET (x)}32, is a complete orthonormal basis of sz [a, b].

(@) =D (), Er(0))yad (0) = ) (u(x), Y Beai(0)) &, ()

=1 =1 k=1

= > Bat (@), )y () = DY B (u(x), T*or(x)) y2d 1 ()
=1 k=1 =1 k=1

= > BalTu(), ok ()yadr (0) = DY Bt (Tu(x), M (xi, %)) g€ (%)
=1 k=1 =1 k=1

=Y BuTu(x)é, (x)
=1 k=1
x© L q1xk

=YY Bu (F (xk, / Ki(xx, £, u(qit), u(qat)) dt,
=1 k=1

By taking finitely many terms in the series representation of u (x) one can has approximate
n
solution u, (x) = Z A,?, (x).
=1

Since W22 [a, b] is a Hilbert space, then

q1Xk
>0 Bu (F (xk,/ K1 (. £, u(qit), u(gat)) dt,

qaxk
/ Ko (xk, t,u(gt), u(qat)) dt) + H(xk)) < 00.
[ |

Theorem 3.3. The approximate solution u,(x) and its derivative u; (x) are uniformly
convergent.

For the proof, see [29].

4. Numerical Examples

In this section, the RKHSM is applied for some fractional delay integro differential equa-
tions. All computations for these numerical examples are performed by using Mathe-
matica 10.0. Results of each example are compared with exact solution.
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Example 4.1. [40] Consider the following Pantograph fractional delay integro differ-
ential equation:

1 X 1 x « x2 & * i

D%u(x) = —u(x)+u (—)—I————e4+—+—+ezx+/ eIy dt—l—/ tu(t) dt

2 4)727 4" T 0 0
u0)=20

The exact solution fora = 1 is u(x) = ¢* — 1.

T
Solution: Using the RKHSM, taking x; = —, t = 1, 2, ..., 100, the numerical results

n
are given in Table 1 and the graphs of the approximate solutions for different values of
« are given in Figure 1.

Table 1: Numerical solution for Example 4.1.

x | Exact Solution | Approximate Solution Absolute Error

0 0 0 0
0.1 0.105171 0.105169 2.380712202x107°
0.2 0.221403 0.2213998 4705422046 % 107°
0.3 0.349859 0.349853 6.131708729x10~°
0.4 0.491825 0.491818 6.447475122x107°
0.5 0.648721 0.648714 6.775316183x107°
0.6 0.822119 0.822112 7.155388168x107°
0.7 1.01375 1.01375 7.673885816x107°
0.8 1.22554 1.22553 8.485877928 x107°
0.9 1.4596 1.45959 9.888583331x107°
1.0 1.71828 1.71827 1.24612491x10~°

From the numerical results in Table 1 and Figure 1, it is clear that the approximate
solutions are in good agreement with the exact solutions when o = 1 and the solution
continuously depends on the fractional derivative.

Example 4.2. [41] Consider the following fractional delay integro differential equation:

Du(x) = u (%) n % /03 () (t)u (%) dt

u) =1

The exact solution for @ = 1 is u(x) = e*.
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(c) The comparison of approximate solution for ¢ =
1, 0.9, 0.8, 0.7 and the exact solution of Example 4.1

Figure 1: Graphical Results for Example 4.1.
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Solution: Using the RKHSM, taking x,; = z, T =1,2,...,100, the numerical results

n
are given in Table 2 and the graphs of the approximate solutions for different values of
« are given in Figure 2.

Table 2: Numerical solution for Example 4.2.

x | Exact Solution | Approximate Solution | Absolute Error
0 1 1 0
0.1 1.105171 1.10517 7.534209%x 10~
0.2 1.221402 1.221401 1.348448x107°
0.3 1.349859 1.349857 1.806692x10~°
0.4 1.491825 1.491822 2.44178x107°
0.5 1.648721 1.648718 3.318686x107°
0.6 1.822119 1.822117 2.098947x107°
0.7 2.013753 2.013752 7.367289x 10~
0.8 2.225541 2.225542 7.192589% 10~
0.9 2.459603 2.459605 2.258516x107°
1.0 2.718282 2.718286 3.863248x107°

Example 4.3. [41] Consider the following fractional delay integro differential equation:

X 2
D%u(x) =1-— l)cu()c) + 2u(x) + 2/ <u (£)> dt
2 0 2

u) =20

The exact solution fora = 1 is u(x) = xe”.

Solution: Using the RKHSM, taking x, = E T =1,2,...,100, the numerical results

n
are given in Table 3 and the graphs of the approximate solutions for different values of
a are given in Figure 3.

Example 4.4. [40] Consider the following fractional delay integro differential equation:

D*u(x) = u(x) — %m (1+3)u(5)+

In(1 * n@1 1
2)"\2 ~In(l+ ) (FInd1 )+ 1)

1+x

tX d Pl d
t t t t
+/0 e +/0 T
1u(0) = 0

The exact solution for . = 1 is u(x) = In(1 + x).
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(a) Comparison results for u(x) and the exact
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(c) The comparison of approximate solution for ¢ =
1, 0.9, 0.8, 0.7 and the exact solution of Example 4.2

Figure 2: Graphical Results for Example 4.2
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Table 3: Numerical solution for Example 4.3

x | Exact Solution | Approximate Solution Absolute Error

0 0 0 0
0.1 0.110517 0.11054 2.272490478x 107>
0.2 0.244281 0.244286 4.966069537x107°
0.3 0.404958 0.404946 1.190127977x 107>
0.4 0.59673 0.596702 2.811077039x 107>
0.5 0.824361 0.824317 4.379312493x 107>
0.6 1.09327 1.09321 5.904012849x 107>
0.7 1.40963 1.40955 7.401542909% 107>
0.8 1.78043 1.78034 8.914361313x 107>
0.9 2.21364 2.21354 1.054170083 % 10~*
1.0 2.71828 2.71816 1.248829391x10~*

Solution: Using the RKHSM, taking x,; = z, T =1,2,...,100, the numerical results

n
are given in Table 4 and the graphs of the approximate solutions for different values of
« are given in Figure 4.

Table 4: Numerical solution for Example 4.4

x | Exact Solution | Approximate Solution Absolute Error

0 0 0 0
0.1 0.0953102 0.095313 2.807703988x10~°
0.2 0.182322 0.182327 5.294432785x107°
0.3 0.262364 0.262372 7.613572512x107°
0.4 0.336472 0.336482 9.876593867x 10~°
0.5 0.405465 0.405477 1.217317636x 107>
0.6 0.470004 0.470018 1.461429025%x 107>
0.7 0.530628 0.530645 1.722895504x 107>
0.8 0.587787 0.587807 2.009678991x 107>
0.9 0.641854 0.641877 2.330358105x 107>
1.0 0.693147 0.693174 2.69441272x107°
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(a) Comparison results for u(x) and the exact
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(c) The comparison of approximate solution for ¢ =
1, 0.9, 0.8, 0.7 and the exact solution of Example 4.3

Figure 3: Graphical Results for Example 4.3
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(a) Comparison results for u(x) and the exact
solution
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Figure 4: Graphical Results for Example 4.4
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Example 4.5. Consider the following fractional delay integro differential equation:

2.1 2 2 X
D u(x) = % — %exu(x) — (0.55x) u (%) +./0 te’u(t) dt

+/2tu(t) dt
0
u) =0

=

The exact solution is u(x) = x.

Solution: Using the RKHSM, taking x; = E T =1,2,...,20, the numerical results
n

are given in Table 5 and the graphs of the approximate solutions for different values of
« are given in Figure 5.

Table 5: Numerical solution for Example 4.5

x | Exact Solution | Approximate Solution Absolute Error

0 0 0 0
0.1 0.001 0.00103977 3.977091251x 107>
0.2 0.008 0.00805486 5.485644081x 107>
0.3 0.027 0.0270727 7.268372792x 107>
0.4 0.064 0.064095 9.502448458x 107>
0.5 0.125 0.125126 1.259262531x10~*
0.6 0.216 0.216162 1.61550631x10~%
0.7 0.343 0.343209 2.085628645x10~%
0.8 0.512 0.512273 2.733701536x10~%
0.9 0.729 0.729373 3.728262884x10~%
1.0 1.0 1.00079 7.91487481x10~*

5. Conclusion

In this paper, a method is proposed for finding approximate solutions for fractional delay
integro differential equations of first order. It may be concluded from the obtained results
that the major advantages of the presented method are; it can be used for both linear and
nonlinear fractional delay integro differential equations; it gives approximate solutions
with a high degree of accuracy and agreement between approximate and exact solutions.
This confirms the validity of the present method and it is efficient, accurate and reliable
for fractional delay integro differential equations.
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