Composite Mendeleev’s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind

Ilis Suryani
Department of Mathematics, University of Riau, Pekanbaru 28293, Indonesia

M. Imran
Numerical Computing Group, Department of Mathematics, University of Riau, Pekanbaru 28293, Indonesia

M. D. H. Gamal
Department of Mathematics, University of Riau, Pekanbaru 28293, Indonesia

Abstract
This paper discusses composite Mendeleev’s quadratures for solving a linear Fredholm integral equation of the second kind. The numerical results show that our estimation have a good degree of accuracy.

AMS subject classification:
Keywords: Linear Fredholm integral equation, Mendeleev’s quadratures.

1. Introduction
Consider a linear Fredholm integral equation of the second kind as follows:

\[u(x) = f(x) + \lambda \int_{a}^{b} k(x, t)u(t)dt, \quad a \leq x \leq b. \]

(1.1)
where \(k(x, t) \) and \(f(x) \) are known functions, but \(u(x) \) is function to be determined [1, 4].

Many authors have considered solving problem (1.1) with different methods such as Taylor’s expansion [6, 8, 14], Adomian’s decomposition [2], wavelet [3, 7], Sinc collocation [10, 13], homotopy perturbation [5] and quadrature methods [9, 11].

In this paper, we solve problem (1.1) using composite Mendeleev’s quadratures. The derivation of the method is given in the second section. The numerical approach and result of this method respectively is presented by third and fourth section. In the end of the discussions is given the conclusion.

2. Composite Mendeleev’s Quadratures

Mendeleev’s quadratures for approximating the solution of \(\int_a^b f(x)dx \) has two forms [12]:

\[
\int_a^b f(x)dx \approx \frac{b-a}{4} \left(f(a) + 3f \left(a + \frac{2}{3}(b-a) \right) \right), \quad (2.2)
\]

and

\[
\int_a^b f(x)dx \approx \frac{b-a}{4} \left(3f \left(a + \frac{1}{3}(b-a) \right) + f(b) \right). \quad (2.3)
\]

We call formula (2.2) and (2.3) respectively the left and right Mendeleev’s quadrature.

Suppose the interval \([a, b]\) divided into \(n\) subintervals, that is

\[
a = x_0 < x_2 < x_4 \cdots < x_{2n} = b, \quad \text{and} \quad h = \frac{b-a}{n},
\]

where

\[
x_{2i} = x_0 + ih, \quad i = 1, 2, \ldots, n.
\]

The definite integral \(\int_a^b f(x)dx \) can be written as

\[
\int_{x_0}^{x_{2n}} f(x)dx = \int_{x_0}^{x_2} f(x)dx + \int_{x_2}^{x_4} f(x)dx + \cdots + \int_{x_{2n-2}}^{x_{2n}} f(x)dx. \quad (2.4)
\]

If we apply the left Mendeleev’s quadrature (2.2) to approximate the equation (2.4), then we have

\[
\int_{x_0}^{x_{2n}} f(x)dx \approx \frac{h}{4} \sum_{i=1}^{n} \left(f(x_{2i-2}) + 3f(x_{2i-1}) \right), \quad (2.5)
\]

where

\[
x_{2i-1} = \frac{x_{2i-2} + 2x_{2i}}{3}, \quad i = 1, 2, \ldots, n.
\]
By the same way, we use the right Mendeleev’s quadrature (2.2), we obtain

\[
\int_{x_0}^{x_{2n}} f(x)dx \approx \frac{h}{4} \sum_{i=1}^{n} (3f(x_{2i-1})^* + f(x_{2i})),
\]

(2.6)

where

\[
x_{2i-1}^* = \frac{2x_{2i-2} + x_{2i}}{3}, \quad i = 1, 2, \ldots, n.
\]

Formula (2.5) and (2.6), we call the composite left and right Mendeleev’s quadrature.

3. Solving a Linear Fredholm Integral Equation of The Second Kind with Composite Mendeleev’s Quadratures

To solve (1.1), we approximate the integral in the right-hand side of (1.1) with the composite Mendeleev’s quadratures (2.5) and (2.6), we have

\[
u(x) = f(x) + \frac{h}{4} \sum_{j=1}^{n} (k(x, t_{2j-2})u(t_{2j-2}) + 3k(x, t_{2j-1})u(t_{2j-1})),
\]

(3.7)

and

\[
u(x) = f(x) + \frac{h}{4} \sum_{j=1}^{n} (3k(x, t_{2j-2}^*)u(t_{2j-2}^*) + k(x, t_{2j})u(t_{2j})).
\]

(3.8)

For \(x = x_i, i = 0, 1, 2, \ldots, 2n\) in (3.7) and (3.8), we get the following system:

\[
u(x_i) = f(x_i) + \frac{h}{4} \sum_{j=1}^{n} (k(x_i, t_{2j-2})u(t_{2j-2}) + 3k(x_i, t_{2j-1})u(t_{2j-1})),
\]

(3.9)

and

\[
u(x_i) = f(x_i) + \frac{h}{4} \sum_{j=1}^{n} (3k(x_i, t_{2j-2}^*)u(t_{2j-2}^*) + k(x_i, t_{2j})u(t_{2j})).
\]

(3.10)

For simplicity, we define the following notation:

\[
u_i = u(x_i), \quad k_{ij} = k(x_i, t_j), \quad f_i = f(x_i),
\]

(3.11)

so equation (3.9) and (3.10) can be written as

\[
u_i = f_i + \frac{h}{4} \sum_{j=1}^{n} (k_{i,2j-2}u_{2j-2} + 3k_{i,2j-1}u_{2j-1}),
\]

(3.12)
and
\[u_i = f_i + \frac{h}{4} \sum_{j=1}^{n} (3k_{i,2j-1}^n u_{2j-1}^n + k_{i,2j} u_{2j}), \quad (3.13) \]

Equation (3.12) and (3.13) are the approximated solution of the linear Fredholm integral equation of the second kind using the composite Mendeleev’s quadratures.

4. A Numerical Result

In this section, we solve the Love integral equation using the composite left Mendeleev’s quadrature (3.9).

Example 4.1. Love’s integral equation, is defined as follows:
\[u(x) = f(x) + \frac{1}{\pi} \int_{-1}^{1} \frac{s}{s^2 + (x - t)^2} u(t) dt, \quad -1 \leq x \leq 1. \quad (4.14) \]

We consider this equation in particular case when \(s = 1 \) and \(f(x) = 1 \). The numerical results are show in Table 1 and Figure 1.

Table 1: The numerical solutions of (4.14) with the composite left Mendeleev’s quadrature by varying \(n \)
\[
\begin{array}{cccccc}
 x & n = 8 & n = 16 & n = 32 & n = 64 \\
 \hline
 -1 & 1.63960090042 & 1.63968349373 & 1.63969375500 & 1.63969503826 \\
 -\frac{3}{4} & 1.75189402812 & 1.75194693332 & 1.75195371945 & 1.75195457760 \\
 -\frac{1}{2} & 1.84236720540 & 1.84238235249 & 1.84238447820 & 1.84238475481 \\
 -\frac{1}{4} & 1.89961585080 & 1.89961510820 & 1.89961515336 & 1.89961516544 \\
 0 & 1.91903290064 & 1.91903204797 & 1.91903199653 & 1.91903199334 \\
 \frac{1}{4} & 1.89961699263 & 1.89961537985 & 1.89961519130 & 1.89961517031 \\
 \frac{1}{2} & 1.84240678715 & 1.84238750615 & 1.84238512855 & 1.84238483630 \\
 \frac{3}{4} & 1.75202094790 & 1.75196280399 & 1.75195570320 & 1.75195482556 \\
 1 & 1.63979247040 & 1.63970712368 & 1.63969669933 & 1.63969540601 \\
\end{array}
\]
In Table 1 we present the numerical solutions of (4.14) by varying the number of subintervals, n, in points $x = \pm 1, \pm \frac{3}{4}, \pm \frac{1}{2}, \pm \frac{1}{4}, 0$. Then we plot each numerical solution as depicted in Figure 1. From Table 1 and Figure 1 we see that, for sufficiently small h, we get a good accuracy.

References

