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Abstract: 

 

In this article, we construct a solution of a singularly perturbed boundary 
value problem for a differential equation of conditionally stable type in the 
critical case. The issues of the limiting transition solution of the perturbed 
problem to the solution of the unperturbed problem as the small parameter 
approaches zero and the existence of the phenomenon of the boundary jump 
have been investigated. Analytical representation of the solution of the 
perturbed problem has been found using introduced initial and boundary 
functions. At the same time formulas for the boundary jumps, the orders of the 
jumps, asymptotic estimates for the solution of the considered boundary value 
problem have been found. 
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1. Introduction 

First studies devoted to the phenomena of the initial jumps of solutions of nonlinear 
singularly perturbed initial value problems with unbounded initial values aspiring of 
the small parameter to zero are the works of Vishik and Lyusternik [1], and of 
Kasymov [2]. These studies were continued in [3,4]. 
The phenomenon of the jump in applied problems is an important factor, which 
should be taken into account at the replacement of the perturbed problem by more 
simplified degenerate problem. The magnitude of the jump makes it possible to 
determine the range of the simplified problem applicability. 
For example, new rationale of Painlevé paradox and the origin of jump phenomenon 
were proposed in the works of Neumark and Smirnov [5]. 
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Mathematically, the jump phenomenon was investigated in [6-8]. In the papers [9-12] 
more general classes of singularly perturbed boundary value problems for linear 
differential equations of the n-th order, having a phenomenon of the initial jump under 
the condition of stability of rest points of the joint equation have been investigated. 
The given condition consists in that the coefficient under the −−1n  derivative is 
different from zero on the interval [0,1]. In this case, phenomenon of the initial jump 
occurs only at one end of the segment [0,1]. 
In this paper, we will consider somewhat different problem for a singularly perturbed 
equation of the third order and it is not containing the second derivative. 
Thus, condition for the stability of the joint equation’s rest point is not performed for 
the considered equation. 
 
 
2. Statement of the Problem. 
Thus, we consider a singularly perturbed boundary value problem 

)()()( tFytCytByyL =+′+′′′≡ εε , (1) 

,),1(,),0(,),0( 010 byayay ==′= εεε  (2) 

where 0>ε  is a small parameter, 001 ,, baa  – are known constants. 

Assume that: 
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Under condition (c), we obtain that additional characteristic equation 0)(3 =+ µµ tB  
has roots: .)(,)(,0 321 tBtB −=−−== µµµ  

This case is said to be conditionally stable of the critical case. Characteristic feature of 
this case is the presence of jumps simultaneously at the points: 1,0 == tt . 

Our aim is to establish the asymptotic estimates of solutions of singularly perturbed 
boundary value problem (1), (2), to prove the existence of the phenomenon of 
boundary jumps, determine the order of the boundary of the jump in the points 0=t  
and 1=t , investigate the asymptotic behavior of the solution of the boundary value 
problem (1), (2) as 0→ε . 
The study will be conducted by a certain rule. In the first stage, on the basis of 
auxiliary functions we will construct the solution of the problem (1), (2). In the next 
step there will be investigated the asymptotic behavior of the solution of the problem 
(1), (2), phenomena of boundary jumps. 
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3. Fundamental Solution System. 
At the same time with (1), we consider the homogeneous equation 

0)()( =+′+′′′≡ ytCytByyL εε . (4) 

 
Lemma 1. If conditions (a)

 
and (b) are satisfied, then, for sufficiently small 0>ε , 

the fundamental solution system 3,1),,( =ityi ε  of the singularly perturbed Eq. (4) 

permits the asymptotic representations: 
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Proof. The proof of the lemma is readily obtained from the well-known theorems of 
Schlesinger [10] and Birkhoff [11] (for example, see [12, pp.29-34]). 
For the Wronskian’s determinant ),( εtW  the fundamental solution system 

3,1),,( =ityi ε  of Eq. (5), for sufficiently small 0>ε , we obtain 
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4. Construction of initial functions. 
Following previous work [9], let us introduce the Cauchy function for the Eq. (4): 
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where ),,( εstW  is the 3 th-order determinant obtained from the determinant ),( εsW  

by replacing the 3th row of the fundamental solution system with 
),(),,(),,( 321 εεε tytyty  of Eq. (4). 

From the explicit expression (7) of Cauchy function ),,( εstK , defined at 10 ≤≤≤ ts , 

it satisfies the homogeneous Eq. (4) with respect to the variable t  and the initial 

conditions: 1),,(,1,0,0),,()( =′′== εε ssKjssK
j  and it does not depend on the 

choice of the fundamental system of solutions of the equation (4). 
Now, we introduce the following functions: 
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Here ),,(),,(),,( 10 εεε stKssKssK =+ , ),,(),,,( 10 εε stPstP  is the 3 d-order 

determinants obtained from the determinant ),( εsW  as a result of replacement of the 

3-d row respectively: 
)0),,(,),(( 21 εε tyty ; )),(,0,0( 3 εty , 

where ),(),,(),,( 321 εεε tytyty is the fundamental system of solutions of Eq. (4). 

Notice, that ),,(),,,( 10 εε stKstK  are continuous functions and, together with its 

derivatives up to third order inclusively, and as a functions of the variable t  satisfy 
the homogeneous equation (4). The functions ),,(),,,( 10 εε stKstK  will be called 

the initial functions of the problem (1), (2). 
Let conditions (a) and (b) be satisfied. Then, from (8) using estimates (5) and (6) for 

initial functions ),,()(
0 εstK
q  and ),,()(

1 εstK
q  for sufficiently small ε , we obtain the 

following asymptotic representations: 
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5. Construction of boundary functions. 

Consider the determinant of the third order 
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where ),(),,(),,( 321 εεε tytyty is the fundamental system of solutions of Eq. (4). 

Expanding the determinant )(εJ in elements of the 3-d row and taking into account 

(5), at 0→ε  we obtain 
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Definition. Functions 3,1),,( =Φ ktk ε  are referred to as boundary functions of the 

perturbed problem (1) (2) if they satisfy the homogeneous Eq. (4) and boundary 
conditions 

;3,2,0),0(,1),0(1 ==Φ=Φ kk εε  ;2,1,0),1(,1),1(3 ==Φ=Φ kk εε  

.3,1,0),0(,1),0(2 ==Φ=Φ′ kk εε  (11) 

 
Theorem 1. Let conditions (a), (b), and (c) be satisfied. Then, for sufficiently small 

0>ε , the boundary functions 3,1),,( =Φ ktk ε  exist on the interval [0,1], are unique, 

and are given as follows: 
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where ),( εtJ k  is the determinant obtained from )(εJ  by substituting the k
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with the fundamental solution system 3,1),,( =ityi ε  of Eq. (4). 

Let conditions (a), (b) and (c) be satisfied. Expanding the determinant ),,( εtJ i in 

elements of the ith row, then from (12) and taking into account (5) and (10), at 0→ε  
we obtain the following asymptotic formula: 
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6.  Analytic representation and asymptotic estimates of the solution. 
Theorem 2. Let conditions (a) and (b) be satisfied. Then the inhomogeneous 

boundary value problem (1), (2) has a unique solution and expressed by the formula 
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Proof. It is sufficient to prove the theorem that the function defined by the formula 
(14) satisfies all the conditions determining the solutions of the problem (1), (2). Its 
uniqueness follows from the estimate (10). The theorem is proved. 
Consider the formula (13). Using (9), (12), we obtain (13) on the segment 10 ≤≤ t

following asymptotic representation: 
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Now, we define a degenerate problem. From (15) we come to the conclusion that the 
initial condition for the degenerate solutions can be obtained from equation (2) in the 
form 0)0( ay = . Thus, we obtain 

),()()(0 tFytCytByL =+′≡ 0)0( ay = . (16) 

The solution of (16) can be represented in the form 
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It follows from this and (16) that in points t=0, t=1 the solution of problem (1), (2) 
possesses a phenomenon of boundary jumps first and zero orders. 
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