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Abstract 

 

The aim of this paper is to examine the effectiveness of Half-Sweep 

Successive Over Relaxation (HSSOR) method with nonlocal discretization 

scheme which is derived based on the four-point rotated nonlocal arithmetic 

mean scheme in solving nonlinear elliptic boundary value problems. By using 

an approximate equation based on the second order finite difference scheme, 

the half-sweep approximation equation has been derived. Then, the nonlocal 

discretization scheme is applied to transform the system of nonlinear 

approximation equations into the corresponding system of linear equations. 

Throughout numerical results, it can be pointed out that the proposed HSSOR 

method was superior in terms of number of iterations, execution time and 

maximum error compared to Full-Sweep Successive Over-relaxation 

(FSSOR) and Half-Sweep Gauss-Seidel (HSGS). 

 

Keywords: Nonlinear Elliptic Boundary Value Problems; Nonlocal 

Arithmetic Mean Scheme; Half-Sweep SOR iteration. 

 
 

1. Introduction 
Nonlinear elliptic boundary value problems occur in real time application such as 

numerical weather forecasting, radioactive transfer, optimal control and other areas of 

physics and engineering. Many numerical methods have been proposed to solve 

nonlinear two-dimensional elliptic problems such as non-polynomial spline scheme 

[1], Pade’ approximation [2], collocation method [3], spline scheme [4], finite 

element methods [5], finite difference methods [6]and numerical integration method 

[7]. 



3416 M. U. Alibubin et al 

 

To get approximate solution of nonlinear elliptic boundary value problems, the paper 

deals with the finite difference method to discretize the proposed problem in order to 

develop a reliable algorithm. Based on the previous studies of the linear case, it can be 

observed that many researchers have also proposed and formulated high-order finite 

difference approximation equations, see in [8,9,10,11,12]. However in this paper, 

second order rotated finite difference approximation equations are used to construct 

the system of nonlinear equations. To get numerical solutions of nonlinear system 

iteratively, the nonlocal discretization scheme is imposed into the nonlinear system in 

order to develop the corresponding system of linear equations. Actually in the case of 

linear systems, many researchers proposed various iterative methods which are used 

to accelerate convergence rate in solving any linear systems. For instance, in year 

1985 Evan proposed Group Explicit iterative method [13]. The, this method was 

extended by using half-sweep iteration concept [14,15,16,17,18]. As a matter of fact, 

the concept of half-sweep iteration is actually to reduce the computational 

complexities during iteration process. This is because of the implementation of the 

half-sweep iterations only considers nearly half of whole node points in a solution 

domain respectively. Due to the large scale of the generated linear system, the paper 

deals with the application of half-sweep iteration concept which is known as Half-

sweep SOR method together with nonlocal discretization scheme for solving the two-

dimensional nonlinear elliptic problems. Hence, the outlines of this paper were 

organized in following ways: Section 2 will show the formulation of nonlocal 

arithmetic mean schemes. Next, the explanation of FSGS, FSSOR and HSSOR 

iterative methods in Section 3 will be given and some numerical results will be shown 

in Section 4 to state the effectiveness of the proposed methods. Furthermore, the 

conclusion is mentioned in Section 5. 

Now suppose that nonlinear two-dimensional elliptic boundary value problem is given 

in general form as 

( ) ( ) [ ] [ ]babayxuuuyxFuu yxyyxx ,,,,,,, ×=Ω∈=+  (1) 

With 

( ) ( )uyxfuuuuuuuyxF yxyx ,,,,,, +−−=
 

(2)
 

subject to the boundary conditions 
Ω∂= ),,(),( yxgyxu  

where Ω  is an arbitrary simply connected bounded region with smooth boundary 

Ω∂ and ( )uyxf ,,  and ),( yxg  are continuous functions in the respective domain. From 

Eq. (1), it can be observed that the function ( )
yx uuuyxF ,,,,  is classified as nonlinear 

terms. 
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Figure. 1: Finite grid networks for the full-sweep (a) and half-sweep (b) in case m=8 

 

 

In formulating various iterative schemes such as full-and half-sweep cases, we need to 

build the finite grid network as a guide for development and implementation of the 

proposed methods. Figure 1 act as a guide to develop the proposed methods. Let us 

consider the finite rectangular grid network with spacing grid h as shown in Figure 1. 

Assume that the spacing grid h in which both directions with 

jhyyihxx ji +=+= 00 ,  are defined as 

( )
m

ab
yxh

−
=∆=∆=

 
(3)

 
where x∆ and y∆ represent the increment of x and y directions respectively while m is 

number of subintervals. Then let ( ) jiii uyxU ,, =  indicates the approximation value of 

function u at point ( )
ii

yx , .  

 

 

2. Formulation of Half-Sweep Nonlocal Arithmetic Mean Schemes 
Before constructing the half-sweep finite difference approximation equation of 

problem (1), let us consider several nonlocal discretization schemes proposed by 

Moaddy et al. (2011) over one dimensional problems as follows: 

1

2

+≅ iii UUU
 

(4)
 

i
ii

i U
UU

U 






 +
≅ +−

2

112
 (5) 
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i

ii
i U

UU
U 







 +
≅ +−  (6) 

Actually, the formulation of nonlocal discretization scheme in Eq. (5) derived by 

using the concept of two-point arithmetic mean scheme which is defined as 

( )11

2

2

1
+− +≅

iii
UUU

 
(7)

 
To obtain an approximate value of ijU  for the two-dimensional problems, let us 

consider the approximate value of ijU  based on the four-point Nonlocal Arithmetic 

Mean (NAM) Scheme as follows: 

( )1,1,,1,1,
4

1
+−+− +++≅ jijijijiji UUUUU

 
(8)

 
or Eq. (8) can be illustrated in stencil form as 

ijji UU

















≅

010

101

010

4

1
,

 
(9)

 

Note that the Eq. (8) clearly considers a group of four-points and the value of ijU is 

categorized as a reference point, then four neighbor points, jiU ,1− , jiU ,1+ , 1, −jiU  and 

1, +jiU  are used as a nonlocal approach to evaluate the approximate value of ijU . 

Therefore, by using the approach of second-order centered finite difference 

discretization scheme, we obtain the following five-point full-sweep finite difference 

approximation equation of problems (1) as follows 










 −−
=

+−
+

+− −+−++−+−

h

UU

h

UU
Uyxf

h

UUU

h

UUU jijijiji

ijji

jijijijijiji

2
,

2
,,,

22 1,1,,1,1

2

1,,1,

2

,1,,1

 
(10)

 

Then, by imposing Eq. (10), we have the following linear approximation equations 

njifhUUUUU ijjijijijiji ,,.2,1,,04 2

,1,1,,1,1 L==−−+++ −++−

 
(11)

 
Where 

( ) 






 −−
=

−+−+

h

UU

h

UU
Uyxff

jijijiji

ijjiji
2

,
2

,
4

1
,,

1,1,,1,1

,

 
(12)

 

Apart from the full-sweep approximation equation in Eq. (10), Abdullah [20] has 

introduced the half-sweep concept via the second-order rotated finite difference 

scheme to derive five-point rotated finite difference approximation equation for 2D 

linear elliptic problems. By adopting the same idea, we proposed the half-sweep 

iteration concept applied to the Eq. (8) by introducing a new formulation of four-point 

Nonlocal Arithmetic Mean (NAM) Scheme. To do this, by referring in Figure 1(b), 

we initiate a four-point rotated nonlocal arithmetic mean scheme as follows: 

( )1,11,11,11,1,
4

1
−++−++−− +++≅ jijijijiji UUUUU

 
(13)

 
or Eq. (15) can be illustrated in stencil form as 
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(14)

 

In similar way to derive the formulae of Eqs. (5) and (6) by using the four-point 

rotated nonlocal arithmetic mean scheme, we produce the following four-point rotated 

arithmetic mean schemes as: 

( ) jijijijiji UUUUUU
ji ,1,11,11,11,1

2

4

1
, −++−++−− +++≅

 
(15)

 

( ) 2

1,11,11,11,1

3

,, 4

1
jiji

UUUUUU jijijiji −++−++−− +++≅  (16) 

Actually the concept of arithmetic mean approach has been widely used to derive 

several formulations in numerical methods such as Arithmetic Mean (AM) [21], 2-

Point Block Arithmetic Mean [22] and Half-Sweep Arithmetic Mean (HSAM) [23] 

methods. Therefore, by using four-point rotated nonlocal arithmetic mean scheme, we 

obtain the following five-point rotated finite difference approximation equation of 

problems (1) as follows 

024
2

,1,11,11,11,1 =−−+++ −++−++−− ijjijijijiji fhUUUUU
 

(17)
 

Where 

( ) ( ) 








 −−
=

−++−−−++

h

UU

h

UU
Uyxff

jijijiji

ijjiji
22

,
22

,,,
1,11,11,11,1

,

 
(18)

 

Actually, Eq. (18) is called as the nonlinear term of the problem (1) for half-sweep 

case. To solve the nonlinear system in Eq. (17), the four-point rotated nonlocal 

arithmetic mean approach in Eq. (13) being imposed over the nonlinear function in 

(18). Therefore, the approximation equation (17) can be rewritten as 

( )
( ) ( ) 












 −−
+++=

−++−−−++

+−−+++−−
h

UU

h

UU
UUUUyxff

jijijiji

jijijijijiji
22

,
22

,
4

1
,,

1,11,11,11,1

1,11,11,11,1,

 
(19)

 

Then both of the approximation equations (17) and (18) can be used to construct the 

following linear system in matrix form or 

~~
fUA =

 
(20)

 
 

 

3. Formulation of Successive Over Relaxation Method 

As mentioned in the previous section, Refer to the linear system (20), it can be seen 

that the characteristic of the coefficient matrix of the linear system has large scale and 

sparse. Therefore, the iterative methods are suitable option to solve the linear system 

[24]. Actually, the SOR iterative method was proposed by Young [25]. The standard 

SOR method is also named as Full-sweep SOR (FSSOR) method. According to that, 

we consider the application of HSSOR method as linear solver. Particularly, the 

HSSOR method is essentially the extension of the FSSOR iterative method. The main 

purpose of the half-sweep iteration is to reduce the computational complexities during 
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iteration process. Let the linear system (21) be expressed as summation of the three 

matrices 

VLDA −−=
 

(21)
 where D, L and V are diagonal, lower triangular and upper triangular matrices 

respectively. 

According to Eq. (13), the HSSOR iterative method can be defined generally as [26]: 

( ) ( ) ( )( ) ( ) ( ) fUU LDDLVLD kk

~

1

~

11

~

1
−−+ −+





 −−−= ωωωω  (22) 

Where ω  and ( )k

ijU  represent as a relaxation factor and the kth the estimation for 

corresponding exact solutions respectively. 

As taking 1=ω , the HSSOR reduces to HSGS. In this paper, the FSGS iterative 

method will be used as a control method. In addition to that, a good choice for the 

value of the parameter ω  can be used to accelerate the convergence rate of the 

iteration process. In practice, the optimal value of ω  in range 21 <≤ ω  will be 

obtained by implementing several computer programs and then the best approximate 

value of ω  is chosen in which its number of iterations is the smallest. Also the 

implementation of the HSSOR iterative method may be described in Algorithm 1. 

 

Algorithm 1 : HSSOR scheme 

i. Initialize 
( ) 100 10,0 −←← εiU  

ii. Assign the optimal value of ω 

iii. Calculate 
( )1+k
iU  using 

( ) ( ) ( )( ) ( ) ( ) fUU LDDLVLD kk

~

1

~

11

~

1
−−+ −+





 −−−= ωωωω  

iv. Check the convergence test,
( ) ( ) 101 10−+ =≤− εk

i
k

i UU
. If yes, go to step (v). 

Otherwise go back to step (iii). 

v. Display approximate solutions. 

 

 

4. Numerical Experiment 
In order to investigate the performance of the proposed iterative methods together 

with the corresponding NAM, we consider three examples of nonlinear elliptic 

equations being used to demonstrate effectiveness of the HSSOR compared with 

HSGS and FSSOR iterative methods. In comparison, three criterions will be 

considered such as number of iterations, execution time (in seconds) and maximum 

absolute error. For implementation of these three iterative schemes, the convergence 

test considered the tolerance error, which is fixed as ε = 10
10

− . 

 
Examples 1[27] 

( ) Ω=+++ ,exp uuuuuuu
yxyyxx

 (23) 

where exact solution is defined by 
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Ω+= ,),( 2
yxyxu  (24) 

Example 2 [27] 

( ) Ω=−−+ ,exp uuuuuuu
yxyyxx

 (25) 

where the exact solution is defined by 

( ) Ω−= ,sinexp),( yxyxu π  (26) 

 
Example 3 [27] 

( ) ( )( ) Ω−−−−=−+ ,cosexp1sinexp 2
yxyxuuuu yyyxx ππππ  (27) 

where the exact solution is defined by 

( ) Ω−= ,sinexp),( yxyxu π  (28) 

All the simulations were implemented by C programming language. Results of 

numerical simulations, which were obtained from implementation of FSGS, FSSOR, 

and HSSOR iterative methods have been recorded in Table 1 at different values of 

mesh sizes, m = 32, 64, 128, 256 and 512. 

 

Table 1: Comparison of Number Iterations (K), Execution Time (seconds) and 

Maximum Errors for The Iterative Methods Using Examples at grid size 32, 64, 128, 

256 and 512. 

 
EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 

Number of iteration 

M FSGS FSSOR HSSOR FSGS FSSOR HSSOR FSGS FSSOR HSSOR 

32 1806 136 

ω = 1.815600 

97 

ω = 1.748000 

1893 135 

ω =1.820792 

91 

ω =1.760000 

1874 130 

ω =1.824111 

90 

ω =1.757177 

64 6688 266 

ω =1.902690 

194 

ω =1.864400 

7004 258 

ω =1.908310 

184 

ω =1.871200 

6933 259 

ω =1.908173 

182 

ω =1.870220 

128 24616 524 

ω = 1.950120 

387 

ω = 1.929500 

25717 522 

ω =1.951567 

365 

ω =1.933100 

25454 514 

ω =1.953209 

358 

ω =1.932445 

256 89975 1035 

ω =1.974601 

772 

ω = 1.963800 

93638 1026 

ω =1.976000 

725 

ω =1.965800 

92667 1025 

ω =1.975365 

713 

ω =1.965414 

512 326055 2058 

ω =1.987200 

1538 

ω = 1.981500 

327035 2050 

ω =1.987960 

1439 

ω =1.982608 

334019 2049 

ω =1.987719 

1416 

ω =1.982419 

Execution time (seconds) 

M FSGS FSSOR HSSOR FSGS FSSOR HSSOR FSGS FSSOR HSSOR 

32 0.77 0.11 0.06 0.56 0.11 0.05 0.65 0.11 0.05 

64 8.85 0.39 0.33 5.33 0.34 0.12 4.21 0.34 0.26 

128 124.43 2.73 1.21 73.48 1.95 1.23 48.28 1.30 0.70 

256 1828.76 21.27 9.85 1117.96 8.12 6.80 691.48 8.67 3.83 

512 13573.85 168.81 67.81 2893.71 62.80 48.26 2926.35 65.14 32.19 

 Maximum errors 

M FSGS FSSOR HSSOR FSGS FSSOR HSSOR FSGS FSSOR HSSOR 

32 9.6161e-02 9.6161e-02 5.8860e-02 2.8691e-04 2.8692e-04 2.4094e-02 3.24351-04 3.2436e-04 1.8003e-02 

64 9.6274e-02 9.6274e-02 5.8717e-02 7.1708e-05 7.1746e-05 2.4164e-02 8.1132e-05 8.1170e-05 1.8115e-02 

128 9.6298e-02 9.6298e-02 5.8709e-02 1.7792e-05 1.7937e-05 2.4166e-02 2.0146e-05 2.0293e-05 1.8152e-02 

256 9.6304e-02 9.6305e-02 5.8699e-02 3.9149e-06 4.4848e-06 2.4171e-02 4.4965e-06 5.0710e-06 1.8160e-02 

512 9.6304e-02 9.6307e-02 5.8698e-02 6.6923e-06 1.1212e-06 2.4172e-02 1.5640e-06 1.2673e-06 1.8162e-02 

 

 

5. Conclusion 
For the numerical solution of the two-dimensional nonlinear elliptic boundary value 

problems, this paper applied the HSSOR iterative method associated with the four-
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point rotated nonlocal arithmetic mean scheme. Based numerical results recorded in 

Table 1, for various mesh size m such as 32, 64,128,256 and 512 the number of 

iterations has declined approximately by 50% corresponds to the HSSOR iterative 

method as compared with FSGS and FSSOR methods with four-point nonlocal AM. 

Particularly in terms of execution time, implementations of HSSOR method are much 

faster than FSGS and FSSOR methods. It means that the HSSOR method requires the 

fewer amounts for number of iterations and computational time as compared with 

FSGS and iterative methods. In the aspect of accuracy, numerical solutions obtained 

for test nonlinear problems are comparable for all the tested iterative methods. Finally, 

it can be concluded that the HSSOR method is superior to FSGS and FSSOR methods. 

This is mainly because of the reduction of computational complexity in which the 

HSSOR method will only consider approximately half of all interior node points in a 

solution domain during iteration process. 
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