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Abstract

In this paper, we consider the degenerate numbers Rn(λ) and polynomials Rn(x, λ)

related to the Stirling numbers and the Bell polynomials. We also obtain some
explicit formulas for degenerate numbers Rn(λ) and polynomials Rn(x, λ).
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1. Introduction

Recently, many mathematicians have studied the area of the Stirling numbers, the
Bernoulli numbers and polynomials, the Euler numbers and polynomials, the degenerate
Bernoulli numbers and polynomials, the degenerate Euler numbers and polynomials(see
[1, 2, 5, 6, 7, 8, 9]). In [2], L. Carlitz introduced the degenerate Bernoulli polynomi-
als. Recently, Feng Qi et al. [7] studied the partially degenerate Bernoull polynomials
of the first kind in p-adic field. In [3, 4], we introduced the polynomials Rn(x) and
numbers Rn related to the Stirling numbers and the Bell polynomials. Also, from this
polynomials, we obtained some relation between the Stirling numbers, the Bell numbers,
the Rn and Rn(x). In this paper, we establish some interesting properties for degener-
ate numbers Rn(λ) and polynomials Rn(x, λ). Throughout this paper, we always make
use of the following notations: N = {1, 2, 3, . . .} denotes the set of natural numbers
and N0 = {0, 1, 2, 3, . . .} denotes the set of nonnegative integers, Z denotes the set of
integers.

Let us define the numbers Rn and polynomials Rn(x) as follows:(
2

eet−1 + 1

)
=

∞∑
n=0

Rn

tn

n! , (1.1)
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(
2

eet−1 + 1

)
ext =

∞∑
n=0

Rn(x)
tn

n! . (1.2)

Observe that if x = 0, then Rn(0) = Rn. For more theoretical properties of the numbers
Rn and polynomials Rn(x), the readers may refer to [3, 4]. We recall that the classical
Stirling numbers of the first kind S1(n, k) and S2(n, k) are defined by the relations(see
[9])

(x)n =
n∑

k=0

S1(n, k)xk and xn =
n∑

k=0

S2(n, k)(x)k,

respectively. Here (x)n = x(x−1) · · · (x−n+1) denotes the falling factorial polynomial
of order n. The numbers S2(n, m) also admit a representation in terms of a generating
function ∞∑

n=m

S2(n, m)
tn

n! = (et − 1)m

m! . (1.3)

We also have ∞∑
n=m

S1(n, m)
tn

n! = (log(1 + t))m

m! . (1.4)

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
k=0

(x − λk) (1.5)

for positive integer n, with the convention (x|λ)0 = 1; we may also write

(x|λ)n =
n∑

k=0

S1(n, k)λn−kxk. (1.6)

Note that (x|λ) is a homogeneous polynomials in λ and x of degree n, so if λ �= 0 then
(x|λ)n = λn(λ−1x|1)n. Clearly (x|0)n = xn. We also need the binomial theorem: for a
variable x,

(1 + λt)x/λ =
∞∑

n=0

(x|λ)n
tn

n! . (1.7)

As well known definition, the Bell polynomials are defined by Bell(1934) as below
∞∑

n=0

Bn(x)
tn

n! = e(et−1)x. (1.8)

Also, let S2(n, k) be denote the Stirling numbers of the second kind. Then

Bn(x) =
n∑

k=0

S2(n, k)xk. (1.9)

In the special case, Bn(1) = Bn are called the n-th Bell numbers.
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2. On the degenerate numbers Rn(λ) and polynomials Rn(x, λ)

In this section, we define the degenerate numbers Rn(λ) and polynomials Rn(x, λ),
and we obtain explicit formulas for them. For a variable t , we consider the degenerate
polynomials Rn(x, λ) which are given by the generating function to be

2

e(1+λt)1/λ−1 + 1
(1 + λt)x/λ =

∞∑
n=0

Rn(x, λ)
tn

n! . (2.1)

When x = 0, Rn(0, λ) = Rn(λ) are called the degenerate numbers Rn(λ). Note that
(1 + λt)1/λ tends to et as λ → 0.

From (2.1) and (1.2), we note that

∞∑
n=0

lim
λ→0

Rn(x, λ)
tn

n! = lim
λ→0

2

e(1+λt)1/λ−1 + 1
(1 + λt)x/λ

=
∞∑

n=0

Rn(x)
tn

n! .

Thus, we get

lim
λ→0

Rn(x, λ) = Rn(x), (n ≥ 0).

From (2.1) and (1.7), we have

∞∑
n=0

Rn(x, λ)
tn

n! = 2

e(1+λt)1/λ−1 + 1
(1 + λt)x/λ

=
( ∞∑

m=0

Rm(λ)
tm

m!

) ( ∞∑
l=0

(x|λ)l
t l

l!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
Rl(λ)(x|λ)n−l

)
tn

n! .

(2.2)

Therefore, by (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1. For n ≥ 0, we have

Rn(x, λ) =
n∑

l=0

(
n

l

)
Rl(λ)(x|λ)n−l .

Applying binomial theorem and Cauchy’s rule for product of two power series will
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yield

2 = (e(1+λt)1/λ−1 + 1)

∞∑
n=0

Rn(λ)
tn

n!

=
(
e(1+λt)1/λ−1

) ∞∑
n=0

Rn(λ)
tn

n! +
∞∑

n=0

Rn(λ)
tn

n!

=
( ∞∑

n=0

1

e

∞∑
k=0

(k|λ)n
1

k!
tn

n!

) ( ∞∑
m=0

Rm(λ)
tm

m!

)
+

∞∑
n=0

Rn(λ)
tn

n!

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
1

e

∞∑
k=0

(k|λ)l
1

k!Rn−l(λ) + Rn(λ)

)
tn

n! .

(2.3)

By comparing of the coefficients
tn

n! on the both sides of (2.3), we have the following

theorem.

Theorem 2.2. For n ∈ Z+, we have

1

e

n∑
l=0

(
n

l

) ∞∑
k=0

(k|λ)l
1

k!Rn−l(λ) + Rn(λ) =
{

2, if n = 0,

0, if n �= 0.

By (2.1), we have

∞∑
n=0

2(x|λ)n
tn

n! = 2(1 + λt)x/λ

= (e(1+λt)1/λ−1 + 1)

∞∑
n=0

Rn(x, λ)
tn

n!

=
(
e(1+λt)1/λ−1

) ∞∑
n=0

Rn(x, λ)
tn

n! +
∞∑

n=0

Rn(x, λ)
tn

n!

=
( ∞∑

n=0

1

e

∞∑
k=0

(k|λ)n
1

k!
tn

n!

) ( ∞∑
m=0

Rm(x, λ)
tm

m!

)
+

∞∑
n=0

Rn(x, λ)
tn

n!

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
1

e

∞∑
k=0

(k|λ)l
1

k!Rn−l(x, λ) + Rn(λ)

)
tn

n! .
(2.4)

Comparing the coefficients of
tn

n! on the both sides of (2.4), we have the following

theorem.
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Theorem 2.3. For n ∈ Z+, we have

n∑
l=0

(
n

l

) ∞∑
k=0

(k|λ)l
1

k!Rn−l(x, λ) + Rn(x, λ) = 2e(x|λ)n.

By (2.1) and (1.7), we get

∞∑
n=0

Rn(x, λ)
tn

n! = 2
∞∑
l=0

(−1)le−lel(1+λt)1/λ

(1 + λt)x/λ

= 2
∞∑
l=0

(−1)le−l

∞∑
k=0

(1 + λt)k/λ lk

k!(1 + λt)x/λ

= 2
∞∑
l=0

(−1)le−l

∞∑
k=0

lk(1 + λt)(k+x)/λ 1

k!

=
∞∑

n=0

(
2

∞∑
l=0

(−1)le−l

∞∑
k=0

lk(k + x|λ)n
1

k!

)
tn

n! .

(2.5)

By comparing of the coefficients
tn

n! on the both sides of (2.5), we have the following

theorem.

Theorem 2.4. For n ∈ Z+, we have

Rn(x, λ) = 2
∞∑
l=0

(−1)le−l

∞∑
k=0

(k + x|λ)n
lk

k! .

From (2.1), we have

∞∑
n=0

Rn(x + y, λ)
tn

n! = 2

e(1+λt)1/λ−1 + 1
(1 + λt)(x+y)/λ

= 2

e(1+λt)1/λ−1 + 1
(1 + λt)x/λ(1 + λt)y/λ

=
( ∞∑

n=0

Rn(x, λ)
tn

n!

) ( ∞∑
n=0

(y|λ)n
tn

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
Rl(x, λ)(y|λ)n−l

)
tn

n! .

(2.6)

Therefore, by (2.6), we have the following theorem.
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Theorem 2.5. For n ∈ Z+, we have

Rn(x + y, λ) =
n∑

k=0

(
n

k

)
Rk(x, λ)(y|λ)n−k.

By replacing t by
eλt − 1

λ
in (2.1), we obtain

(
2

eet−1 + 1

)
ext =

∞∑
n=0

Rn(x, λ)

(
eλt − 1

λ

)n
1

n!

=
∞∑

n=0

Rn(x, λ)λ−n

∞∑
m=n

S2(m, n)λm tm

m!

=
∞∑

m=0

(
m∑

n=0

Rn(x, λ)λm−nS2(m, n)

)
tm

m! .

(2.7)

Thus, by (2.7) and (1.2), we have the following theorem.

Theorem 2.6. For n ∈ Z+, we have

Rm(x) =
m∑

n=0

λm−nRn(x, λ)S2(m, n).

By replacing t by log(1 + λt)1/λ in (1.2), we have

∞∑
n=0

Rn(x)
(
log(1 + λt)1/λ

)n 1

n! = 2

e(1+λt)2/λ−1 + 1
(1 + λt)x/λ

=
∞∑

m=0

Rm(x, λ)
tm

m! ,
(2.8)

and

∞∑
n=0

Rn(x)
(
log(1 + λt)1/λ

)n 1

n! =
∞∑

m=0

(
m∑

n=0

Rn(x)λm−nS1(m, n)

)
tm

m! . (2.9)

Thus, by (2.8) and (2.9), we have the following theorem.

Theorem 2.7. For n ∈ Z+, we have

Rm(x, λ) =
m∑

n=0

λm−nRn(x)S1(m, n).
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