Conditional energy stability of the zero solution to the boundary-initial value problem

Bahloul Tarek and Bouzit Mohamed

Department of Mathematics and Informatics, Oum El Bouaghi University, Algeria.

Abstract

In this paper we examine the stability of the zero solution to the boundary-initial value problem. In order to investigate the effect of a nonlinear term on the stability of a solution to a partial differential equation (PDE).

AMS subject classification:

Keywords: The energy method, stability of the solution.

1. Introduction

We apply the energy method to study the stability of the solution to the boundary-initial value problem,

$$u_t = u_{xx} + au^3 - \frac{1}{2}tu, \quad x \in (0, 1), \quad t > 0,$$
 (1)

where a is a positive constant, suppose now (1) holds on the spatial region (0,1) with boundary conditions

$$u(0,t) = u(1,t) = 0$$
(2)

and suppose we wish to investigate the behaviour of u subject to initial data

$$u(x,0) = \varphi(x) \tag{3}$$

Even though we know $u \equiv 0$ is a stable solution to (1), (3) we shall obtain this result directly using an energy method, choosing a problem to illustrate the technique.

Let now *u* be a solution to (1), (3) that satisfies arbitrary initial data $\varphi(x)$. We define an energy F(t) by

$$F(t) = \frac{1}{2}t \parallel u \parallel^2$$
(4)

where $\| . \|$ denotes the norm on $L^2(0, 1)$ more precisely,

$$|| u ||^2 = \int_0^1 u^2 dx.$$

Multiply the differential equation (1) by u and integrate over (0,1) to find

$$\int_0^1 u_t u dx = \int_0^1 u u_{xx} dx + a \int_0^1 u^4 dx - \frac{1}{2}t \int_0^1 u^2 dx$$

by use of the Cauchy-Schwarz inequality. From the Sobolev embedding inequality we know that (see the [1])

$$\int_{0}^{1} u^{4} dx \leq \frac{1}{4} \left(\int_{0}^{1} u_{x}^{2} dx \right)^{2}.$$
 (5)

Hence, with

$$E(t) = \frac{1}{2} \parallel u \parallel^2 \left(= \int_0^1 u^2 dx \right).$$

this equation becomes (after integration by parts as before)

$$\frac{d}{dt}E(t) \le - \| u_x \|^2 + a \| u_x \|^4 - tE(t).$$

this equation becomes

$$\frac{d}{dt}F(t) \le -a \| u_x \|^2 \left(\frac{1}{a} - \| u_x \|^2 \right).$$
(6)

Next, from Poincare's inequality, $\pi^2 \parallel u \parallel^2 \le \parallel u_x \parallel^2$. Now, use this in (0.6),

$$\frac{d}{dt}F(t) \le -a\pi^2 \| u \|^2 \left(\frac{1}{a} - \pi^2 \| u \|^2\right), \tag{7}$$

if $0 < \frac{1}{a} - \pi^2 ||u||^2 = \eta$ then

$$\frac{d}{dt}F(t) \leq -a\pi^{2} \| u \|^{2} \left(\frac{1}{a^{\frac{1}{2}}} - \pi \| u \| \right) \left(\frac{1}{a^{\frac{1}{2}}} + \pi \| u \| \right),
\frac{d}{dt}F(t) \leq -\eta a\pi^{2} \| u \|^{2},$$
(8)

so (0.8) shows

$$\frac{d}{dt}F(t) \le 0, \text{ for } \epsilon < t \tag{9}$$

Hence,

$$\parallel u(t) \parallel \leq \parallel u(\epsilon) \parallel$$

with same consideration that we have

$$\frac{d}{dt}F(t) \le -a\pi^2 \parallel u \parallel^2 \eta \tag{10}$$

Further,

$$\frac{dF}{F} \le -c\frac{dt}{t}$$
, where $c = 2a\pi^2\eta$

we find

Next,

$$dln\left(F(t)\right) \le dln(t^{-c}),$$

Using an integrating factor we may obtain from this inequality

$$ln\left(\frac{F(t)}{F(\epsilon)}\right) \le ln(\frac{t^{-c}}{\epsilon^{-c}}),$$

$$F(t) \le F(\epsilon) \times \frac{\epsilon^{c}}{t^{c}}$$
(11)

which in turn integrates to

$$\parallel u(t) \parallel^2 \le 2\frac{\epsilon^{\gamma}}{t^{\gamma}} \parallel u(\epsilon) \parallel^2, \text{ where } \gamma = c+1.$$
(12)

What we have shown is that if $|| u(\epsilon) || < \frac{1}{2a}$, then $|| u(t) || \to 0$ as $t \to \infty$. And the zero solution to (0.1), (0.3) is stable.

Again, the equation (0.4) becomes (after integration by parts as before)

$$\frac{d}{dt}E(t) \le - \| u_x \|^2 + a \| u^2 \|^2 - tE(t).$$

this equation becomes

$$\frac{d}{dt}F(t) \le - \| u_x \|^2 + a \| u^2 \|^2.$$
$$\frac{d}{dt}F(t) \le -a \| u_x \|^2 \left(\frac{1}{a} - \max_{S_{adm}} \frac{\| u^2 \|^2}{\| u_x \|^2} \right)$$

where S_{adm} is the space of admissible functions over which we seek a maximum. Set

$$S_{adm} = \{ u \in C^2 \mid u = 0 \text{ when } x = 0, 1 \}.$$

Now define R_F by

$$\frac{1}{R_F} = \max_{S_{adm}} \frac{\| u^2 \|^2}{\| u_x \|^2},$$

then the energy inequality (0.5) may be rewritten

$$\frac{d}{dt}F(t) \leq -a \parallel u_x \parallel^2 \left(\frac{1}{a} - \frac{1}{R_F}\right),$$

The problem remains to find R_F . Recall that

$$R_F^{-1} = \max_{S_{adm}} \frac{\parallel u^2 \parallel^2}{\parallel u_x \parallel^2},$$

Let $\Lambda_1 = || u^2 ||^2$, $\Lambda_2 = || u_x ||^2$. The Euler–Lagrange equations are found from

$$\frac{d}{d\epsilon} \frac{\Lambda_1(u+\epsilon\tau)}{\Lambda_1(u_x+\epsilon\tau_x)} |_{\epsilon=0} = \delta\left(\frac{\Lambda_1}{\Lambda_2}\right),$$
$$= \frac{\Lambda_2\delta\Lambda_1 - \Lambda_1\delta\Lambda_2}{\Lambda_2^2}$$
$$= \frac{1}{\Lambda_2} \left(\delta\Lambda_1 - \frac{\Lambda_1}{\Lambda_2}|_{\max}\delta\Lambda_2\right)$$
$$= \frac{1}{\Lambda_2} \left(\delta\Lambda_1 - \frac{1}{R_F}\delta\Lambda_2\right)$$

(Since δ refers to the *derivative* evaluated at $\epsilon = 0$. $\frac{\Lambda_1}{\Lambda_2}$ Is here understood to be at the stationary value.) Therefore,

$$\delta\Lambda_1 - \frac{1}{R_F}\delta\Lambda_2 = 0 \tag{13}$$

Here

$$\delta \Lambda_1 = \frac{d}{d\epsilon} \int_0^1 (u + \epsilon \tau)^4 dx \mid_{\epsilon=0},$$

where τ is an arbitrary $C^2(0, 1)$ function with $\tau(0) = \tau(1) = 0$, and

.

$$\delta \Lambda_1 = \frac{d}{d\epsilon} \int_0^1 (u_x + \epsilon \tau_x)^2 dx \mid_{\epsilon=0} .$$

So (0.13) leads to

$$\int_0^1 2u^3 \tau - R_F^{-1} u_x \tau_x dx = 0$$

Integration by parts shows that

$$\int_0^1 \left(u_{xx} + 2R_F u^3 \right) \tau dx = 0.$$

Since τ is arbitrary apart from the continuity and boundary condition requirements, we must have

$$u_{xx} + 2R_F u^3 = 0, \qquad u(0) = u(1) = 0$$
 (14)

We now examine Eq. (0.14) within the framework of a 2 - dim phase-space.

The second-order differential equation, given in Eq. (0.14), may be reformulated to two first-order system equations

$$\frac{du}{dx} = v, \quad \frac{dv}{dx} = -2R_F u^3$$

subject to initial conditions

$$u(0) = u(1) = 0$$

then

$$\frac{dv}{du} = -2R_F \frac{u^3}{v}.$$

In general, this is a first—order, nonlinear differential equation, whose solutions are the curves of the solution trajectories in phase-space.

2. The harmonic balance method

The method of harmonic balance provides a general technique for calculating approximations to the periodic solutions of differential equations. It corresponds to a truncated Fourier series and allows for the systematic determination of the coefficients to the various harmonics and the angular frequency.

We begin by calculating the first-order harmonic balance approximation to the periodic solutions of

$$\frac{dv}{du} = -2R_F \frac{u^3}{v},\tag{15}$$

$$u(0) = 0, \quad v(0) = a.$$
 (16)

This approximation takes the form

$$u_1 = asin(\omega_1 x),$$

Observe that this expression automatically satisfies the initial conditions. Substituting Eq. (1.1) into Eq. (1.2) gives $(\theta = \omega_1 x - \frac{\pi}{2})$

$$-a\omega_1^2\cos(\theta) + a^3\alpha\cos^3(\theta) \simeq 0, \quad \alpha = 2R_F.$$
$$-a\omega_1^2\cos(\theta) + a^3\alpha\left(\frac{3}{4}\cos(\theta) + \frac{1}{4}\cos(3\theta)\right) \simeq 0.$$
$$\left(\frac{3}{4}a^3\alpha - a\omega_1^2\right)\cos(\theta) + higher\ harmonic \simeq 0.$$

Setting the coefficient of $cos(\theta)$ to zero gives the first-approximation to the angular frequency

$$\omega_1(a) = a \sqrt{\frac{3}{4}\alpha}.$$

and

$$u_1 = a \quad sin(a\sqrt{\frac{3}{4}}\alpha x),$$

where we have taken a = 1, since we are primarily interested in R_F not u. The condition u(1) = 0 then shows that

$$\sqrt{\frac{3}{2}}R_F = n\pi, \quad n = \pm 1, \pm 2\cdots$$

This gives an infinite sequence of values for R_F (corresponding to stationary values of the quotient $\frac{\parallel u^2 \parallel^2}{\parallel u_x \parallel^2}$),

$$R_F=\frac{2}{3}\pi^2,\frac{8}{3}\pi^2\cdots$$

For stability, we need $a < R_F(\min)$, and so $R_F = \frac{2}{3}\pi^2$. In particular, therefore.

$$a < \frac{2}{3}\pi^2$$

yields stability of the zero solution to (0.1), (0.3).

References

- [1] B. Straughan, *The Energy Method, Stability, and Nonlinear Convection*, Springer-Verlag Berlin Heidelberg New York (2004).
- [2] F. M. Arscott, *Periodic differential equations*, Oxford London Edinburgh New York Paris Frankfurt (1964).
- [3] H.A. Levine, Some nonexistence and instability theorems for formally parabolic equations of the form Pu, Arch. Ral. Mech. Anal., 51 (1973), pp. 371–386.
- [4] R. E. Mickens, *Truly Nonlinear Oscillators An Introduction to Harmonic Balance, Parameter Expansion, Iteration, and Averaging Methods*, World Scientific Publishing Co. Pte. Ltd. London (2010).
- [5] D. W. Jordan, P. Smith, *Nonlinear Ordinary Differential Equations: Problems and Solutions*, Oxford New York (2007).

3400