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Abstract

In this paper we examine the stability of the zero solution to the boundary-initial
value problem. In order to investigate the effect of a nonlinear term on the stability
of a solution to a partial differential equation (PDE).
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1. Introduction

We apply the energy method to study the stability of the solution to the boundary-initial
value problem,

ut = uxx + au3 − 1

2
tu, x ∈ (0, 1), t > 0, (1)

where a is a positive constant, suppose now (1) holds on the spatial region (0,1) with
boundary conditions

u(0, t) = u(1, t) = 0 (2)

and suppose we wish to investigate the behaviour of u subject to initial data

u(x, 0) = ϕ(x) (3)

Even though we know u ≡ 0 is a stable solution to (1), (3) we shall obtain this result
directly using an energy method, choosing a problem to illustrate the technique.

Let now u be a solution to (1), (3) that satisfies arbitrary initial data ϕ(x). We define
an energy F(t) by

F(t) = 1

2
t ‖ u ‖2 (4)
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where ‖ . ‖ denotes the norm on L2(0, 1) more precisely,

‖ u ‖2=
∫ 1

0
u2dx.

Multiply the differential equation (1) by u and integrate over (0,1) to find

∫ 1

0
utudx =

∫ 1

0
uuxxdx + a

∫ 1

0
u4dx − 1

2
t

∫ 1

0
u2dx

by use of the Cauchy-Schwarz inequality. From the Sobolev embedding inequality we
know that (see the [1]) ∫ 1

0
u4dx ≤ 1

4

(∫ 1

0
u2

xdx

)2

. (5)

Hence, with

E(t) = 1

2
‖ u ‖2

(
=

∫ 1

0
u2dx

)
.

this equation becomes (after integration by parts as before)

d

dt
E(t) ≤ − ‖ ux ‖2 +a ‖ ux ‖4 −tE(t).

this equation becomes

d

dt
F (t) ≤ −a ‖ ux ‖2

(
1

a
− ‖ ux ‖2

)
. (6)

Next, from Poincare’s inequality, π2 ‖ u ‖2≤‖ ux ‖2. Now, use this in (0.6),

d

dt
F (t) ≤ −aπ2 ‖ u ‖2

(
1

a
− π2 ‖ u ‖2

)
, (7)

if 0 <
1

a
− π2 ‖ u ‖2= η then

d

dt
F (t) ≤ −aπ2 ‖ u ‖2

(
1

a
1
2

− π ‖ u ‖
) (

1

a
1
2

+ π ‖ u ‖
)

,

d

dt
F (t) ≤ −ηaπ2 ‖ u ‖2, (8)

so (0.8) shows
d

dt
F (t) ≤ 0, f or ε < t (9)

Hence,
‖ u(t) ‖≤‖ u(ε) ‖
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with same consideration that we have

d

dt
F (t) ≤ −aπ2 ‖ u ‖2 η (10)

Further,
dF

F
≤ −c

dt

t
, where c = 2aπ2η

we find
dln (F (t)) ≤ dln(t−c),

Using an integrating factor we may obtain from this inequality

ln

(
F(t)

F (ε)

)
≤ ln(

t−c

ε−c
),

Next,

F(t) ≤ F(ε) × εc

tc
(11)

which in turn integrates to

‖ u(t) ‖2≤ 2
εγ

tγ
‖ u(ε) ‖2, where γ = c + 1. (12)

What we have shown is that if ‖ u(ε) ‖< 1

2a
, then ‖ u(t) ‖−→ 0 as t −→ ∞. And the

zero solution to (0.1), (0.3) is stable.
Again, the equation (0.4) becomes (after integration by parts as before)

d

dt
E(t) ≤ − ‖ ux ‖2 +a ‖ u2 ‖2 −tE(t).

this equation becomes

d

dt
F (t) ≤ − ‖ ux ‖2 +a ‖ u2 ‖2 .

d

dt
F (t) ≤ −a ‖ ux ‖2

(
1

a
− max

Sadm

‖ u2 ‖2

‖ ux ‖2

)

where Sadm is the space of admissible functions over which we seek a maximum. Set

Sadm = {u ∈ C2 | u = 0 when x = 0, 1}.
Now define RF by

1

RF

= max
Sadm

‖ u2 ‖2

‖ ux ‖2
,
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then the energy inequality (0.5) may be rewritten

d

dt
F (t) ≤ −a ‖ ux ‖2

(
1

a
− 1

RF

)
,

The problem remains to find RF . Recall that

R−1
F = max

Sadm

‖ u2 ‖2

‖ ux ‖2
,

Let �1 =‖ u2 ‖2, �2 =‖ ux ‖2. The Euler–Lagrange equations are found from

d

dε

�1(u + ετ)

�1(ux + ετx)
|ε=0= δ

(
�1

�2

)
,

= �2δ�1 − �1δ�2

�2
2

= 1

�2

(
δ�1 − �1

�2
|maxδ�2

)

= 1

�2

(
δ�1 − 1

RF

δ�2

)

(Since δ refers to the derivative evaluated at ε = 0.
�1

�2
Is here understood to be at the

stationary value.) Therefore,

δ�1 − 1

RF

δ�2 = 0 (13)

Here

δ�1 = d

dε

∫ 1

0
(u + ετ)4dx |ε=0,

where τ is an arbitrary C2(0, 1) function with τ(0) = τ(1) = 0, and

δ�1 = d

dε

∫ 1

0
(ux + ετx)

2dx |ε=0 .

So (0.13) leads to ∫ 1

0
2u3τ − R−1

F uxτxdx = 0.

Integration by parts shows that

∫ 1

0

(
uxx + 2RF u3) τdx = 0.
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Since τ is arbitrary apart from the continuity and boundary condition requirements, we
must have

uxx + 2RF u3 = 0, u(0) = u(1) = 0 (14)

We now examine Eq. (0.14) within the framework of a 2 − dim phase−space.
The second-order differential equation, given in Eq. (0.14), may be reformulated to

two first-order system equations

du

dx
= v,

dv

dx
= −2RF u3

subject to initial conditions
u(0) = u(1) = 0

then
dv

du
= −2RF

u3

v
.

In general, this is a first−order, nonlinear differential equation, whose solutions are
the curves of the solution trajectories in phase-space.

2. The harmonic balance method

The method of harmonic balance provides a general technique for calculating approxi-
mations to the periodic solutions of differential equations. It corresponds to a truncated
Fourier series and allows for the systematic determination of the coefficients to the var-
ious harmonics and the angular frequency.

We begin by calculating the first-order harmonic balance approximation to the peri-
odic solutions of

dv

du
= −2RF

u3

v
, (15)

u(0) = 0, v(0) = a. (16)

This approximation takes the form

u1 = asin(ω1x),

Observe that this expression automatically satisfies the initial conditions. Substituting

Eq. (1.1) into Eq. (1.2) gives (θ = ω1x − π

2
)

−aω2
1cos(θ) + a3αcos3(θ) � 0, α = 2RF .

−aω2
1cos(θ) + a3α

(
3

4
cos(θ) + 1

4
cos(3θ)

)
� 0.

(
3

4
a3α − aω2

1

)
cos(θ) + higher harmonic � 0.
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Setting the coefficient of cos(θ) to zero gives the first−approximation to the angular
frequency

ω1(a) = a

√
3

4
α.

and

u1 = a sin(a

√
3

4
αx),

where we have taken a = 1, since we are primarily interested in RF not u. The condition
u(1) = 0 then shows that

√
3

2
RF = nπ, n = ±1, ±2 · · · .

This gives an infinite sequence of values for RF

(
corresponding to stationary values of

the quotient
‖ u2 ‖2

‖ ux ‖2

)
,

RF = 2

3
π2,

8

3
π2 · · · .

For stability, we need a < RF (min), and so RF = 2

3
π2. In particular, therefore.

a <
2

3
π2.

yields stability of the zero solution to (0.1), (0.3).
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