Blow-up for Discretization of some Semilinear Parabolic Equations with a Convection Term

N'Guessan Koffi and Diabate Nabongo
Université Alassane Ouattara de Bouaké, UFR-SED, 01 BP V 18 Bouaké 01, (Côte d'Ivoire).
Toure Kidjegbo Augustin
Institut National Polytechnique
Houphout-Boigny de Yamoussoukro, BP 1093 Yamoussoukro, (Côte d'Ivoire).

Abstract

This paper concerns the study of the numerical approximation for the following parabolic equations with a convection term $$
\left\{\begin{array}{l} u_{t}(x, t)=u_{x x}(x, t)-u(x, t) u_{x}(x, t)+u^{p}(x, t), \quad 0<x<1, t>0, \\ u_{x}(0, t)=0, \quad u_{x}(1, t)=0, \quad t>0, \\ u(x, 0)=u_{0}(x)>0, \quad 0 \leq x \leq 1, \end{array}\right.
$$ where $p>1$. We obtain some conditions under which the solution of the discrete form of the above problem blows up in a finite time and estimate its numerical blow-up time. We also prove that the numerical blow-up time converges to the real one, when the mesh size goes to zero. Finally, we give some numerical experiments to illustrate ours analysis.

AMS subject classification: 35K58, 35B44, 35B50,35B51, 65M06, 35 K 28.
Keywords: Burgers' equation, discretization, parabolic equations, convection term, blow-up, blow-up time, convergence.

1. Introduction

Consider the following boundary value problem

$$
\begin{gather*}
u_{t}(x, t)=u_{x x}(x, t)-u(x, t) u_{x}(x, t)+u^{p}(x, t), \quad 0<x<1, \quad t>0, \tag{1}\\
u_{x}(0, t)=0, \quad u_{x}(1, t)=0, \quad t>0, \tag{2}\\
u(x, 0)=u_{0}(x)>0, \quad 0 \leq x \leq 1, \tag{3}
\end{gather*}
$$

where $p>1, u_{0} \in C^{2}([0,1]), u_{0}$ is decreasing on $(0,1)$ and verifies

$$
\begin{gather*}
u_{0}^{\prime}(0)=0, \quad u_{0}^{\prime}(1)=0, \tag{4}\\
u_{0}^{\prime \prime}(x)-u_{0}(x) u_{0}^{\prime}(x)+u_{0}^{p}(x) \geq 0, \quad 0 \leq x \leq 1, \tag{5}\\
u_{0}(x)>-p(p-1) u_{0}^{\prime}(x), \quad 0<x<1 . \tag{6}
\end{gather*}
$$

Definition 1.1. We say that the solution u of (1)-(3) blows up in a finite time if there exists a finite time T_{b} such that $\|u(., t)\|_{\infty}<\infty$ for $t \in\left[0, T_{b}\right)$ but

$$
\lim _{t \rightarrow T_{b}}\|u(., t)\|_{\infty}=\infty
$$

The time T_{b} is called the blow-up time of the solution u.
The above problem models viscous Burgers' equation in one dimension with a reaction term. The solution $u(x, t)$ represents the motion field of the fluid in space and time. The term $u u_{x}$ is called convection term. It's a nonlinear term that ensures the movement, generates instability and also responsible for the turbulent appearance (here we'll refer to it as intermittent since we are in one dimension) when it happens. The term $u_{x x}$ is the diffusion term. In the general case the term $u_{x x}$ is replaced by $\nu u_{x x}$ with $\nu>0$. The term $\nu u_{x x}$ is the viscous term, which has the opposite effect of slicking and making it appear laminar that is ordered. The constant ν, coefficient of the viscous term, is called the kinematic viscosity (normalized by the density) of the fluid. The fluid's flow ability is inversely proportional to the size of the viscosity. The term u^{p} (the reaction term) is the external force which is generally a white and Gaussian noise within the time scale which forces the fluid to flow faster, slower or make it mill around. It's the quantitative relation between the convection term and viscous, called Reynolds number that will condition the appearance of the flow in the case when there is no external force. Burger's equation occurring in various areas applied mathematics, such as nonlinear acoustics, gas dynamics, traffic flow and fluid mechanics. At the end of the thirties, the Dutch scientist J. M. Burger, introduced a one dimensional model for
pressure less gas dynamics. He was hoping that the use of a simple model having much in common with the Navier-Stokes equation would significantly contribute to the study of fluid turbulence(see [2], [25]).

The theoretical study of blow-up solutions for the parabolic equations with a convection term has been the subject of investigations of many authors (see [3], [6], [7], [8], [9], [21], [22], [23] and the references cited therein). Local in time existence and uniqueness of the solution have been proved(see [4], [5], [26], [28] and the references cited therein). Here, we are interesting in the numerical study using a discrete form of (1)-(3). We give some assumptions under which the solution of a discrete form of (1)(3) blows up in a finite time and estimate its numerical blow-up time. We also show that the numerical blow-up time converges to the theoretical one when the mesh size goes to zero. A similar study has been undertaken in [10] and [28].

The paper is organized as follows. In the next section, we present a discrete scheme of (1)-(3) and give some lemmas which will be used throughout the paper. In the third section, under some conditions, we prove that the solution of the discrete form of (1)(3) blows up in a finite time. In the fourth section, we study the convergence of the numerical blow-up time. Finally, in last section, we give some numerical experiments.

2. Properties of the discrete scheme

In this section, we give some lemmas which will be used later. We start by the construction of the discrete scheme. Let I be a positive integer and let $h=1 / I$. Define the grid $x_{i}=i h, 0 \leq i \leq I$ and approximate the solution u of (1)-(3) by the solution $U_{h}^{(n)}=\left(U_{0}^{(n)}, U_{1}^{(n)}, \ldots, U_{I}^{(n)}\right)^{T}$ of the following discrete equations

$$
\begin{gather*}
\delta_{t} U_{i}^{(n)}=\delta^{2} U_{i}^{(n)}-U_{i}^{(n)} \delta^{0} U_{i}^{(n)}+\left(U_{i}^{(n)}\right)^{p}, 1 \leq i \leq I-1, \tag{7}\\
\delta_{t} U_{0}^{(n)}=\delta^{2} U_{0}^{(n)}+\left(U_{0}^{(n)}\right)^{p}, \tag{8}\\
\delta_{t} U_{I}^{(n)}=\delta^{2} U_{I}^{(n)}+\left(U_{I}^{(n)}\right)^{p}, \tag{9}\\
U_{i}^{(0)}=\varphi_{i}>0, \quad 0 \leq i \leq I, \tag{10}
\end{gather*}
$$

where

$$
\begin{gathered}
n \geq 0, p \geq 2, \\
\delta_{t} U_{i}^{(n)}=\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}}, \quad 0 \leq i \leq I, \\
\delta^{2} U_{i}^{(n)}=\frac{U_{i+1}^{(n)}-2 U_{i}^{(n)}+U_{i-1}^{(n)}}{h^{2}}, \quad 1 \leq i \leq I-1,
\end{gathered}
$$

$$
\begin{gathered}
\delta^{2} U_{0}^{(n)}=\frac{2 U_{1}^{(n)}-2 U_{0}^{(n)}}{h^{2}}, \quad \delta^{2} U_{I}^{(n)}=\frac{2 U_{I-1}^{(n)}-2 U_{I}^{(n)}}{h^{2}}, \\
\delta^{0} U_{i}^{(n)}=\frac{U_{i+1}^{(n)}-U_{i-1}^{(n)}}{2 h}, \quad 1 \leq i \leq I-1, \\
\delta^{0} U_{0}^{(n)}=0, \quad \delta^{0} U_{I}^{(n)}=0 \\
\delta^{+} \varphi_{i} \leq 0, \quad 0 \leq i \leq I-1 \\
\varphi_{i}^{p-1}>-p(p-1) h\left(\delta^{0} \varphi_{i}\right) \varphi_{i-1}^{p-2}, \quad 1 \leq i \leq I-1 .
\end{gathered}
$$

In order to permit the discrete solution to reproduce the properties of the continuous one when the time t approaches the blow-up time T_{b}, we need to adapt the size of the time step. We choose

$$
\Delta t_{n}=\min \left(\frac{h^{2}}{2}, \tau\left\|U_{h}^{(n)}\right\|_{\infty}^{1-p}\right) \text { with } \tau \in(0,1)
$$

Let us notice that the restriction on the time step ensures the nonnegativity of the discrete solution when this one is decreasing. To facilitate our discussion, we need to define the notion of numerical blow-up.

Definition 2.1. We say that the solution $U_{h}^{(n)}, n \geq 0$, of the discrete problem (7)-(10) blows up in a finite time, if

$$
\lim _{n \rightarrow \infty}\left\|U_{h}^{(n)}\right\|_{\infty}=\infty
$$

and

$$
T_{h}^{\Delta t}=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \triangle t_{i}<\infty
$$

The number $T_{h}^{\Delta t}$ is called the numerical blow-up time of the discrete solution.
The following Lemma is a discrete form of the maximum principle.
Lemma 2.2. Let $a_{h}^{(n)}, b_{h}^{(n)}$ and $V_{h}^{(n)}$ be three sequences, with $n \geq 0, a_{h}^{(n)} \leq 0$ and $b_{h}^{(n)} \delta^{0} V_{h}^{(n)} \leq 0$, such that

$$
\begin{gather*}
\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}+b_{i}^{(n)} \delta^{0} V_{i}^{(n)}+a_{i}^{(n)} V_{i}^{(n)} \geq 0,0 \leq i \leq I, \tag{11}\\
V_{i}^{(0)} \geq 0 . \tag{12}
\end{gather*}
$$

Then, we have

$$
V_{i}^{(n)} \geq 0, \quad 0 \leq i \leq I, n>0 \text { when } \Delta t_{n} \leq \frac{h^{2}}{2}
$$

Proof. A straightforward computation shows that for $1 \leq i \leq I-1$,

$$
\begin{gathered}
V_{i}^{(n+1)} \geq\left(1-2 \frac{\Delta t_{n}}{h^{2}}\right) V_{i}^{(n)}+\frac{\Delta t_{n}}{h^{2}}\left(V_{i+1}^{(n)}+V_{i-1}^{(n)}\right)-\Delta t_{n} b_{i}^{(n)} \delta^{0} V_{i}^{(n)}-\Delta t_{n} a_{i}^{(n)} V_{i}^{(n)}, \\
V_{0}^{(n+1)} \geq\left(1-2 \frac{\Delta t_{n}}{h^{2}}\right) V_{0}^{(n)}+\frac{2 \Delta t_{n}}{h^{2}} V_{1}^{(n)}-\Delta t_{n} a_{0}^{(n)} V_{0}^{(n)}, \\
V_{I}^{(n+1)} \geq\left(1-2 \frac{\Delta t_{n}}{h^{2}}\right) V_{I}^{(n)}+\frac{2 \Delta t_{n}}{h^{2}} V_{I-1}^{(n)}-\Delta t_{n} a_{I}^{(n)} V_{I}^{(n)} .
\end{gathered}
$$

If $V_{h}^{(n)} \geq 0$, then using an argument of recursion, we easily see that $V_{h}^{(n+1)} \geq 0$, because $1-\frac{2 \Delta t_{n}}{h^{2}} \geq 0, b_{h}^{(n)} \delta^{0} V_{h}^{(n)} \leq 0$ and $a_{h}^{(n)} \leq 0$. This ends the proof.

A direct consequence of the above result is the following comparison Lemma.
Lemma 2.3. Let $a_{h}^{(n)}, V_{h}^{(n)}$ and $W_{h}^{(n)}$ be three sequences, with $n \geq 0, a_{h}^{(n)} \leq 0$, $\delta^{0} V_{h}^{(n)} \leq 0$ and $\delta^{0} W_{h}^{(n)} \leq 0$, such that

$$
\begin{gather*}
\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}+V_{i}^{(n)} \delta^{0} V_{i}^{(n)}+a_{i}^{(n)} V_{i}^{(n)}<\delta_{t} W_{i}^{(n)}- \\
\delta^{2} W_{i}^{(n)}+W_{i}^{(n)} \delta^{0} W_{i}^{(n)}+a_{i}^{(n)} W_{i}^{(n)}, \quad 0 \leq i \leq I \tag{13}\\
V_{i}^{(0)}<W_{i}^{(0)}, \quad 0 \leq i \leq I . \tag{14}
\end{gather*}
$$

Then, we have

$$
V_{i}^{(n)}<W_{i}^{(n)}, 0 \leq i \leq I, \quad n>0 \quad \text { when } \quad \Delta t_{n} \leq \frac{h^{2}}{2}
$$

Proof. Define the sequence $Z_{h}^{(n)}=W_{h}^{(n)}-V_{h}^{(n)}$. A straightforward calculation gives

$$
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}+W_{i}^{(n)} \delta^{0} W_{i}^{(n)}-V_{i}^{(n)} \delta^{0} V_{i}^{(n)}+a_{i}^{(n)} Z_{i}^{(n)}>0,0 \leq i \leq I
$$

which is equivalent to

$$
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}+W_{i}^{(n)} \delta^{0} Z_{i}^{(n)}+\left(a_{i}^{(n)}+\delta^{0} V_{i}^{(n)}\right) Z_{i}^{(n)}>0,0 \leq i \leq I
$$

Knowing that $Z_{h}^{(0)}>0$, from Lemma 2.2, we have $Z_{h}^{(n)}>0$, which implies that $V_{i}^{(n)}<$ $W_{i}^{(n)}, 0 \leq i \leq I$ and the proof is complete.

We need the following result about the operator δ_{t}.
Lemma 2.4. Let $U_{h}^{(n)}, n \geq 0$, be a sequence such that $U_{h}^{(n)}>0$. Then

$$
\delta_{t}\left(U_{i}^{(n)}\right)^{p} \geq p\left(U_{i}^{(n)}\right)^{p-1} \delta_{t} U_{i}^{(n)}, 0 \leq i \leq I .
$$

Proof. Using Taylor's expansion, we get

$$
\delta_{t}\left(U_{i}^{(n)}\right)^{p}=p\left(U_{i}^{(n)}\right)^{p-1} \delta_{t} U_{i}^{(n)}+\frac{p(p-1)}{2} \Delta t_{n}\left(\delta_{t} U_{i}^{(n)}\right)^{2}\left(\theta_{i}^{(n)}\right)^{p-2}, 0 \leq i \leq I,
$$

where $\theta_{i}^{(n)}$ is an intermediate value between $U_{i}^{(n)}$ and $U_{i}^{(n+1)}, 0 \leq i \leq I$.
Next, we use the fact that $U_{h}^{(n)}>0, n \geq 0$, to complete the proof.
The following lemma shows the decreasing in space of the discrete solution.
Lemma 2.5. Let $U_{h}^{(n)}, n \geq 0$, be the solution of the discrete problem (7)-(10). Then

$$
\begin{equation*}
U_{i+1}^{(n)}<U_{i}^{(n)}, 0 \leq i \leq I-1 . \tag{15}
\end{equation*}
$$

Proof. Define the vector $Z_{h}^{(n)}$ such that $Z_{i}^{(n)}=U_{i}^{(n)}-U_{i+1}^{(n)}, 0 \leq i \leq I-1$. We have

$$
\begin{gathered}
Z_{i}^{(n)}=U_{i}^{(n)}-U_{i+1}^{(n)}, 1 \leq i \leq I-2, \\
Z_{0}^{(n)}=U_{0}^{(n)}-U_{1}^{(n)}, \\
Z_{I-1}^{(n)}=U_{I-1}^{(n)}-U_{I}^{(n)} .
\end{gathered}
$$

A straightforward computations reveals that

$$
\begin{gathered}
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}+U_{i}^{(n)} \delta^{0} Z_{i}^{(n)}+Z_{i}^{(n)} \delta^{0} U_{i+1}^{(n)}-p\left(\beta_{i}^{(n)}\right)^{p-1} Z_{i}^{(n)}=0,1 \leq i \leq I-2, \\
\delta_{t} Z_{0}^{(n)}-\delta^{2} Z_{0}^{(n)}-U_{1}^{(n)} \delta^{0} U_{1}^{(n)}-p\left(\beta_{0}^{(n)}\right)^{p-1} Z_{0}^{(n)}=0, \\
\delta_{t} Z_{I-1}^{(n)}-\delta^{2} Z_{I-1}^{(n)}+U_{I-1}^{(n)} \delta^{0} U_{I-1}^{(n)}-p\left(\beta_{I-1}^{(n)}\right)^{p-1} Z_{I-1}^{(n)}=0,
\end{gathered}
$$

which are equivalent to

$$
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}+U_{i}^{(n)} \delta^{0} Z_{i}^{(n)}+\left(\delta^{0} U_{i+1}^{(n)}-p\left(\beta_{i}^{(n)}\right)^{p-1}\right) Z_{i}^{(n)}=0,1 \leq i \leq I-2,
$$

$$
\begin{gathered}
\delta_{t} Z_{0}^{(n)}-\delta^{2} Z_{0}^{(n)}+U_{1}^{(n)} \delta^{0} Z_{0}^{(n)}-p\left(\beta_{0}^{(n)}\right)^{p-1} Z_{0}^{(n)}=0 \\
\delta_{t} Z_{I-1}^{(n)}-\delta^{2} Z_{I-1}^{(n)}+U_{I-1}^{(n)} \delta^{0} Z_{I-1}^{(n)}-p\left(\beta_{I-1}^{(n)}\right)^{p-1} Z_{I-1}^{(n)}=0,
\end{gathered}
$$

where $\beta_{i}^{(n)}$ is an intermediate value between $U_{i+1}^{(n)}$ and $U_{i}^{(n)}, 0 \leq i \leq I-1$.
Knowing that $Z_{h}^{(0)}>0$, from Lemma 2.2, we have $Z_{h}^{(n)}>0$, which implies that $U_{i+1}^{(n)}<$ $U_{i}^{(n)}, 0 \leq i \leq I-1$, and we obtain the desired result.

The lemma below reveals the positivity of the discrete solution.
Lemma 2.6. Let $U_{h}^{(n)}, n \geq 0$, be the solution of the discrete problem (7)-(10). Then

$$
\begin{equation*}
U_{i}^{(n)}>0, \quad 0 \leq i \leq I \quad \text { when } \quad \Delta t_{n} \leq \frac{h^{2}}{2} . \tag{16}
\end{equation*}
$$

Proof. A routine calculation reveals that for $1 \leq i \leq I-1$,

$$
\begin{gathered}
U_{i}^{(n+1)}=\left(1-\frac{\Delta t_{n}}{h^{2}}\right) U_{i}^{(n)}+\frac{2 \Delta t_{n}}{h^{2}}\left(U_{i+1}^{(n)}+U_{i-1}^{(n)}\right)-\Delta t_{n} U_{i}^{(n)} \delta^{0} U_{i}^{(n)}+\Delta t_{n}\left(U_{i}^{(n)}\right)^{p}, \\
U_{0}^{(n+1)}=\left(1-\frac{2 \Delta t_{n}}{h^{2}}\right) U_{0}^{(n)}+\frac{2 \Delta t_{n}}{h^{2}} U_{1}^{(n)}+\Delta t_{n}\left(U_{0}^{(n)}\right)^{p}, \\
U_{I}^{(n+1)}=\left(1-\frac{2 \Delta t_{n}}{h^{2}}\right) U_{I}^{(n)}+\frac{2 \Delta t_{n}}{h^{2}} U_{I-1}^{(n)}+\Delta t_{n}\left(U_{I}^{(n)}\right)^{p} .
\end{gathered}
$$

If $U_{h}^{(n)}>0$, then using an argument of recursion, we easily see that $U_{h}^{(n+1)}>0$, because $1-\frac{2 \Delta t_{n}}{h^{2}} \geq 0$ and $\delta^{0} U_{h}^{(n)}<0$.

The following lemma gives the increasing in time of the discrete solution.
Lemma 2.7. Let $U_{h}^{(n)}, n \geq 0$, be the solution of the discrete problem (7)-(10). Then

$$
\delta_{t} U_{i}^{(n)}>0, \quad 0 \leq i \leq I .
$$

Proof. Consider the vector $Z_{h}^{(n)}$ such that $Z_{i}^{(n)}=\delta_{t} U_{i}^{(n)}, 0 \leq i \leq I$.
A straightforward calculation gives

$$
\begin{gathered}
\delta_{t} Z_{i}^{(n)}=\delta^{2} Z_{i}^{(n)}-U_{i}^{(n)} \delta^{0} Z_{i}^{(n)}-Z_{i}^{(n)} \delta^{0} U_{i}^{(n)}+\delta_{t}\left(U_{i}^{(n)}\right)^{p}, 1 \leq i \leq I-1, \\
\delta_{t} Z_{0}^{(n)}=\delta^{2} Z_{0}^{(n)}+\delta_{t}\left(U_{0}^{(n)}\right)^{p}
\end{gathered}
$$

$$
\delta_{t} Z_{I}^{(n)}=\delta^{2} Z_{I}^{(n)}+\delta_{t}\left(U_{I}^{(n)}\right)^{p} .
$$

Using Lemma 2.4, We finally have

$$
\begin{gathered}
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}+U_{i}^{(n)} \delta^{0} Z_{i}^{(n)}+\left(\delta^{0} U_{i}^{(n)}-p\left(U_{i}^{(n)}\right)^{p-1}\right) Z_{i}^{(n)} \geq 0,1 \leq i \leq I-1, \\
\delta_{t} Z_{0}^{(n)}-\delta^{2} Z_{0}^{(n)}-p\left(U_{0}^{(n)}\right)^{p-1} Z_{0}^{(n)} \geq 0 \\
\delta_{t} Z_{I}^{(n)}-\delta^{2} Z_{I}^{(n)}-p\left(U_{I}^{(n)}\right)^{p-1} Z_{I}^{(n)} \geq 0 .
\end{gathered}
$$

Knowing that $Z_{h}^{(0)}>0$, from Lemma 2.2, we have $Z_{h}^{(n)}>0$, which implies that $\delta_{t} U_{i}^{(n)}>0,0 \leq i \leq I$. We have the wished result.

The following lemma is a discrete generalization of the condition (6).
Lemma 2.8. Let $U_{h}^{(n)}, n \geq 0$, be the solution of the discrete problem (7)-(10). Then

$$
\left(U_{i}^{(n)}\right)^{p-1}>-p(p-1) h\left(\delta^{0} U_{i}^{(n)}\right)\left(U_{i-1}^{(n)}\right)^{p-2}, 1 \leq i \leq I-1, p \geq 2
$$

Proof. Consider the vectors $Z_{h}^{(n)}, K_{h}^{(n)}$ and $V_{h}^{(n)}$ such that $Z_{i}^{(n)}=K_{i}^{(n)}-V_{i}^{(n)}$ with $K_{i}^{(n)}=\left(U_{i}^{(n)}\right)^{p-1}$ and $V_{i}^{(n)}=-p(p-1) h\left(\delta^{0} U_{i}^{(n)}\right)\left(U_{i-1}^{(n)}\right)^{p-2}$. We have
$\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}+K_{i}^{(n)} \delta^{0} Z_{i}^{(n)}+Z_{i}^{(n)} \delta^{0} V_{i}^{(n)}-p\left(\beta_{i}^{(n)}\right)^{p-1} Z_{i}^{(n)}=0,1 \leq i \leq I-1$,
which is equivalent to

$$
\delta_{t} Z_{i}^{(n)}-\delta^{2} Z_{i}^{(n)}+K_{i}^{(n)} \delta^{0} Z_{i}^{(n)}+\left(\delta^{0} V_{i}^{(n)}-p\left(\beta_{i}^{(n)}\right)^{p-1}\right) Z_{i}^{(n)}=0,1 \leq i \leq I-1,
$$

where $\beta_{i}^{(n)}$ is an intermediate value between $V_{i}^{(n)}$ and $K_{i}^{(n)}, 1 \leq i \leq I-1$. Knowing that $Z_{h}^{(0)}>0$, from Lemma 2.2, we have $Z_{h}^{(n)}>0$, which implies that $V_{i}^{(n)}<K_{i}^{(n)}$, $1 \leq i \leq I-1$, and we obtain the desired result.

We need the following result about the operator δ^{2}.
Lemma 2.9. Let $U_{h}^{(n)}, n \geq 0$, be a sequence such that $U_{h}^{(n)}>0$. Then, we have for $0 \leq i \leq I$,

$$
\delta^{2}\left(U_{i}^{(n)}\right)^{p} \geq p\left(U_{i}^{(n)}\right)^{p-1} \delta^{2}\left(U_{i}^{(n)}\right)
$$

Proof. Applying Taylor's expansion, we obtain

$$
\begin{gathered}
\delta^{2}\left(U_{i}^{(n)}\right)^{p}=p\left(U_{i}^{(n)}\right)^{p-1} \delta^{2} U_{i}^{(n)}+\left(U_{i-1}^{(n)}-U_{i}^{(n)}\right)^{2} \frac{p(p-1)}{2 h^{2}}\left(\theta_{i}^{(n)}\right)^{p-2} \\
\quad+\left(U_{i+1}^{(n)}-U_{i}^{(n)}\right)^{2} \frac{p(p-1)}{2 h^{2}}\left(\xi_{i}^{(n)}\right)^{p-2} \text { if } 1 \leq i \leq I-1,
\end{gathered}
$$

$$
\begin{aligned}
& \delta^{2}\left(U_{0}^{(n)}\right)^{p}=p\left(U_{0}^{(n)}\right)^{p-1} \delta^{2} U_{0}^{(n)}+\left(U_{1}^{(n)}-U_{0}^{(n)}\right)^{2} \frac{p(p-1)}{2 h^{2}}\left(\theta_{0}^{(n)}\right)^{p-2}, \\
& \delta^{2}\left(U_{I}^{(n)}\right)^{p}=p\left(U_{I}^{(n)}\right)^{p-1} \delta^{2} U_{I}^{(n)}+\left(U_{I-1}^{(n)}-U_{I}^{(n)}\right)^{2} \frac{p(p-1)}{2 h^{2}}\left(\theta_{I}^{(n)}\right)^{p-2},
\end{aligned}
$$

where $p \geq 2, \theta_{0}^{(n)}$ is an intermediate value between $U_{0}^{(n)}$ and $U_{1}^{(n)}, \theta_{i}^{(n)}$ is an intermediate value between $U_{i-1}^{(n)}$ and $U_{i}^{(n)}, 1 \leq i \leq I-1$, $\theta_{I}^{(n)}$ is an intermediate value between $U_{I-1}^{(n)}$ and $U_{I}^{(n)}$,
$\xi_{i}^{(n)}$ is an intermediate value between $U_{i}^{(n)}$ and $U_{i+1}^{(n)}, 1 \leq i \leq I-1$.
The result follows taking into account the fact that $U_{h}^{(n)}>0$.
Lemma 2.10. Let $U_{h}^{(n)}, n \geq 0$, be the solution of the discrete problem (7)-(10). Then, we have for $1 \leq i \leq I-1$,

$$
-U_{i}^{(n)} \delta^{0}\left(U_{i}^{(n)}\right)^{p} \geq-p\left(U_{i}^{(n)}\right)^{p} \delta^{0} U_{i}^{(n)}-p(p-1) h\left(\delta^{0} U_{i}^{(n)}\right)^{2} U_{i}^{(n)}\left(U_{i-1}^{(n)}\right)^{p-2}
$$

Proof. Using Taylor's expansion, we get for $1 \leq i \leq I-1$ and $p=2$,

$$
\delta^{0}\left(U_{i}^{(n)}\right)^{p}=p\left(U_{i-1}^{(n)}\right)^{p-1} \delta^{0} U_{i}^{(n)}+\left(U_{i+1}^{(n)}-U_{i-1}^{(n)}\right)^{2} \frac{p(p-1)}{4 h}\left(U_{i-1}^{(n)}\right)^{p-2},
$$

for $1 \leq i \leq I-1$ and $p \geq 3$,

$$
\begin{aligned}
\delta^{0}\left(U_{i}^{(n)}\right)^{p}= & p\left(U_{i-1}^{(n)}\right)^{p-1} \delta^{0} U_{i}^{(n)}+\left(U_{i+1}^{(n)}-U_{i-1}^{(n)}\right)^{2} \frac{p(p-1)}{4 h}\left(U_{i-1}^{(n)}\right)^{p-2}+ \\
& \left(U_{i+1}^{(n)}-U_{i-1}^{(n)}\right)^{3} \frac{p(p-1)(p-2)}{12 h}\left(\zeta_{i}^{(n)}\right)^{p-3},
\end{aligned}
$$

where $\zeta_{i}^{(n)} \in\left(U_{i+1}^{(n)}, U_{i-1}^{(n)}\right)$. From Lemma 2.5 and the fact that $U_{h}^{(n)}>0$, we obtain the desired result.

3. Discrete Blow-up solutions

In this section under some assumptions, we show that the solution $U_{h}^{(n)}$ of the discrete problem (7)-(10) blows up in a finite time and estimate its numerical blow-up time.

Theorem 3.1. Let $U_{h}^{(n)}$ be the solution of the discrete problem (7)-(10). Suppose that there exists a positive integer $\lambda \in(0,1)$ such that

$$
\begin{equation*}
\delta^{2} \varphi_{i}-\varphi_{i} \delta^{0} \varphi_{i}+\varphi_{i}^{p} \geq \lambda \varphi_{i}^{p}, \quad 0 \leq i \leq I \tag{17}
\end{equation*}
$$

Then, the solution $U_{h}^{(n)}$ blows up in a finite time $T_{h}^{\Delta t}$ and we have the following estimate

$$
T_{h}^{\Delta t} \leq \frac{\tau\left(1+\tau^{\prime}\right)^{p-1}}{\left\|\varphi_{h}\right\|_{\infty}^{p-1}\left(\left(1+\tau^{\prime}\right)^{p-1}-1\right)},
$$

where

$$
\tau^{\prime}=\lambda \min \left\{\frac{h^{2}\left\|\varphi_{h}\right\|_{\infty}^{p-1}}{2}, \tau\right\}, 0<\tau<1
$$

Proof. Consider the vector $J_{h}^{(n)}, n \geq 0$, such that

$$
\begin{equation*}
J_{i}^{(n)}=\delta_{t} U_{i}^{(n)}-\lambda\left(U_{i}^{(n)}\right)^{p}, 0 \leq i \leq I . \tag{18}
\end{equation*}
$$

A straightforward calculation gives

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}+U_{i}^{(n)} \delta^{0} J_{i}^{(n)}+\left(\delta^{0} U_{i}^{(n)}-p\left(U_{i}^{(n)}\right)^{p-1}\right) J_{i}^{(n)}= \\
(1-\lambda) \delta_{t}\left(U_{i}^{(n)}\right)^{p}+\lambda \delta^{2}\left(U_{i}^{(n)}\right)^{p}-\lambda U_{i}^{(n)} \delta^{0}\left(U_{i}^{(n)}\right)^{p}-\lambda\left(U_{i}^{(n)}\right)^{p} \delta^{0} U_{i}^{(n)} \\
-p\left(U_{i}^{(n)}\right)^{p-1} \delta_{t} U_{i}^{(n)}+p \lambda\left(U_{i}^{(n)}\right)^{p-1}\left(U_{i}^{(n)}\right)^{p}, 1 \leq i \leq I-1, \\
\delta_{t} J_{0}^{(n)}-\delta^{2} J_{0}^{(n)}-p\left(U_{0}^{(n)}\right)^{p-1} J_{0}^{(n)}=(1-\lambda) \delta_{t}\left(U_{0}^{(n)}\right)^{p} \\
+\lambda \delta^{2}\left(U_{0}^{(n)}\right)^{p}-p\left(U_{0}^{(n)}\right)^{p-1} \delta_{t} U_{0}^{(n)}+\lambda p\left(U_{0}^{(n)}\right)^{p-1}\left(U_{0}^{(n)}\right)^{p}, \\
\delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)}-p\left(U_{I}^{(n)}\right)^{p-1} J_{I}^{(n)}=(1-\lambda) \delta_{t}\left(U_{I}^{(n)}\right)^{p} \\
+\lambda \delta^{2}\left(U_{I}^{(n)}\right)^{p}-p\left(U_{I}^{(n)}\right)^{p-1} \delta_{t} U_{I}^{(n)}+\lambda p\left(U_{I}^{(n)}\right)^{p-1}\left(U_{I}^{(n)}\right)^{p} .
\end{gathered}
$$

From Lemma 2.4, $\delta_{t}\left(U_{i}^{(n)}\right)^{p} \geq p\left(U_{i}^{(n)}\right)^{p-1} \delta_{t} U_{i}^{(n)}, 0 \leq i \leq I$ and the fact that $0<\lambda<1$, we have $(1-\lambda) \delta_{t}\left(U_{i}^{(n)}\right)^{p} \geq(1-\lambda) p\left(U_{i}^{(n)}\right)^{p-1} \delta_{t} U_{i}^{(n)}, 0 \leq i \leq I$. Using also Lemma 2.9, $\delta^{2}\left(U_{i}^{(n)}\right)^{p} \geq p\left(U_{i}^{(n)}\right)^{p-1} \delta^{2} U_{i}^{(n)}, 0 \leq i \leq I$, we arrive at

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}+U_{i}^{(n)} \delta^{0} J_{i}^{(n)}+\left(\delta^{0} U_{i}^{(n)}-p\left(U_{i}^{(n)}\right)^{p-1}\right) J_{i}^{(n)} \\
\geq \lambda p\left(U_{i}^{(n)}\right)^{p-1}\left(-\delta_{t} U_{i}^{(n)}+\delta^{2} U_{i}^{(n)}+\left(U_{i}^{(n)}\right)^{p}\right)-\lambda U_{i}^{(n)} \delta^{0}\left(U_{i}^{(n)}\right)^{p} \\
-\lambda\left(U_{i}^{(n)}\right)^{p} \delta^{0} U_{i}^{(n)}, 1 \leq i \leq I-1,
\end{gathered}
$$

$$
\begin{aligned}
& \delta_{t} J_{0}^{(n)}-\delta^{2} J_{0}^{(n)}-p\left(U_{0}^{(n)}\right)^{p-1} J_{0}^{(n)} \geq \lambda p\left(U_{0}^{(n)}\right)^{p-1}\left(-\delta_{t} U_{0}^{(n)}+\delta^{2} U_{0}^{(n)}+\left(U_{0}^{(n)}\right)^{p}\right), \\
& \delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)}-p\left(U_{I}^{(n)}\right)^{p-1} J_{I}^{(n)} \geq \lambda p\left(U_{I}^{(n)}\right)^{p-1}\left(-\delta_{t} U_{I}^{(n)}+\delta^{2} U_{I}^{(n)}+\left(U_{I}^{(n)}\right)^{p}\right) .
\end{aligned}
$$

Using (7)-(9), we have these equalities

$$
\begin{gathered}
-\delta_{t} U_{i}^{(n)}+\delta^{2} U_{i}^{(n)}+\left(U_{i}^{(n)}\right)^{p}=U_{i}^{(n)} \delta^{0} U_{i}^{(n)}, 1 \leq i \leq I-1 \\
-\delta_{t} U_{0}^{(n)}+\delta^{2} U_{0}^{(n)}+\left(U_{0}^{(n)}\right)^{p}=0 \\
-\delta_{t} U_{I}^{(n)}+\delta^{2} U_{I}^{(n)}+\left(U_{I}^{(n)}\right)^{p}=0
\end{gathered}
$$

We get,

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}+U_{i}^{(n)} \delta^{0} J_{i}^{(n)}+\left(\delta^{0} U_{i}^{(n)}-p\left(U_{i}^{(n)}\right)^{p-1}\right) J_{i}^{(n)} \\
\geq \lambda\left(-U_{i}^{(n)} \delta^{0}\left(U_{i}^{(n)}\right)^{p}+p\left(U_{i}^{(n)}\right)^{p} \delta^{0} U_{i}^{(n)}-\left(U_{i}^{(n)}\right)^{p} \delta^{0} U_{i}^{(n)}\right), 1 \leq i \leq I-1, \\
\delta_{t} J_{0}^{(n)}-\delta^{2} J_{0}^{(n)}-p\left(U_{0}^{(n)}\right)^{p-1} J_{0}^{(n)} \geq 0, \\
\delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)}-p\left(U_{I}^{(n)}\right)^{p-1} J_{I}^{(n)} \geq 0 .
\end{gathered}
$$

Using the Lemma 2.10, for $1 \leq i \leq I-1$,

$$
-U_{i}^{(n)} \delta^{0}\left(U_{i}^{(n)}\right)^{p} \geq-p\left(U_{i}^{(n)}\right)^{p} \delta^{0} U_{i}^{(n)}-p(p-1) h\left(\delta^{0} U_{i}^{(n)}\right)^{2} U_{i}^{(n)}\left(U_{i-1}^{(n)}\right)^{p-2}
$$

we have

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}+U_{i}^{(n)} \delta^{0} J_{i}^{(n)}+\left(\delta^{0} U_{i}^{(n)}-p\left(U_{i}^{(n)}\right)^{p-1}\right) J_{i}^{(n)} \\
\geq-\lambda U_{i}^{(n)} \delta^{0} U_{i}^{(n)}\left(\left(U_{i}^{(n)}\right)^{p-1}+p(p-1) h\left(\delta^{0} U_{i}^{(n)}\right)\left(U_{i-1}^{(n)}\right)^{p-2}\right), \\
\delta_{t} J_{0}^{(n)}-\delta^{2} J_{0}^{(n)}-p\left(U_{0}^{(n)}\right)^{p-1} J_{0}^{(n)} \geq 0 \\
\delta_{t} J_{I}^{(n)}-\delta^{2} J_{I}^{(n)}-p\left(U_{I}^{(n)}\right)^{p-1} J_{I}^{(n)} \geq 0
\end{gathered}
$$

From Lemma 2.8, $\left(U_{i}^{(n)}\right)^{p-1}>-p(p-1) h\left(\delta^{0} U_{i}^{(n)}\right)\left(U_{i-1}^{(n)}\right)^{p-2}, \quad 1 \leq i \leq I-1$, and using the fact that $-\lambda U_{h}^{(n)} \delta^{0} U_{h}^{(n)} \geq 0$, we get

$$
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}+U_{i}^{(n)} \delta^{0} J_{i}^{(n)}+\left(\delta^{0} U_{i}^{(n)}-p\left(U_{i}^{(n)}\right)^{p-1}\right) J_{i}^{(n)} \geq 0,1 \leq i \leq I-1
$$

$$
\begin{gathered}
\delta_{t} J_{0}^{(n)}-\frac{\left(2 J_{1}^{(n)}-2 J_{0}^{(n)}\right)}{h^{2}}-p\left(U_{0}^{(n)}\right)^{p-1} J_{0} \geq 0, \\
\delta_{t} J_{I}^{(n)}-\frac{\left(2 J_{I-1}^{(n)}-2 J_{I}^{(n)}\right)}{h^{2}}-p\left(U_{I}^{(n)}\right)^{p-1} J_{I}^{(n)} \geq 0 .
\end{gathered}
$$

From (17), we observe that

$$
J_{i}^{(0)}=\delta^{2} \varphi_{i}-\varphi_{i} \delta^{0} \varphi_{i}+\varphi_{i}^{p}-\lambda \varphi_{i}^{p} \geq 0, \quad 0 \leq i \leq I .
$$

We deduce from Lemma 2.2 that $J_{h}^{(n)} \geq 0$ for $n \geq 0$, which implies that

$$
\begin{equation*}
\delta_{t} U_{i}^{(n)} \geq \lambda\left(U_{i}^{(n)}\right)^{p}, \quad 0 \leq i \leq I \tag{19}
\end{equation*}
$$

which is equivalent to

$$
U_{i}^{(n+1)} \geq U_{i}^{(n)}+\lambda \Delta t_{n}\left(U_{i}^{(n)}\right)^{p}, 0 \leq i \leq I
$$

Therefore

$$
\begin{equation*}
U_{i}^{(n+1)} \geq U_{i}^{(n)}\left(1+\lambda \Delta t_{n}\left(U_{i}^{(n)}\right)^{p-1}\right), 0 \leq i \leq I, \tag{20}
\end{equation*}
$$

which implies that

$$
\left\|U_{h}^{(n+1)}\right\|_{\infty} \geq\left\|U_{h}^{(n)}\right\|_{\infty}\left(1+\lambda \Delta t_{n}\left\|U_{h}^{(n)}\right\|_{\infty}^{p-1}\right)
$$

From Lemma 2.7, $\left\|U_{h}^{(n+1)}\right\|_{\infty} \geq\left\|U_{h}^{(n)}\right\|_{\infty}$. By induction, we obtain

$$
\left\|U_{h}^{(n)}\right\|_{\infty} \geq\left\|U_{h}^{(0)}\right\|_{\infty}=\left\|\varphi_{h}\right\|_{\infty}
$$

Then, we have

$$
\left\|U_{h}^{(n)}\right\|_{\infty}^{p-1} \geq\left\|\varphi_{h}\right\|_{\infty}^{p-1}
$$

and with $\lambda \Delta t_{n}\left\|U_{h}^{(n)}\right\|_{\infty}^{p-1} \geq \tau^{\prime}$, we arrive at

$$
\left\|U_{h}^{(n+1)}\right\|_{\infty} \geq\left\|U_{h}^{(n)}\right\|_{\infty}\left(1+\tau^{\prime}\right)
$$

By induction, we get

$$
\left\|U_{h}^{(n)}\right\|_{\infty} \geq\left\|U_{h}^{(0)}\right\|_{\infty}\left(1+\tau^{\prime}\right)^{n}, n \geq 0
$$

which leads us to

$$
\left\|U_{h}^{(n)}\right\|_{\infty} \geq\left\|\varphi_{h}\right\|_{\infty}\left(1+\tau^{\prime}\right)^{n}, n \geq 0
$$

Since the term on the right hand side of the above inequality tends to infinity as n approaches infinity, we conclude that $\left\|U_{h}^{(n)}\right\|_{\infty}$ tends to infinity. Now, let us estimate the numerical blow-up time. It is not hard to see that

$$
\sum_{n=0}^{+\infty} \Delta t_{n} \leq \sum_{n=0}^{+\infty} \frac{\tau}{\left\|U_{h}^{(n)}\right\|_{\infty}^{p-1}} \leq \frac{\tau}{\left\|\varphi_{h}\right\|_{\infty}^{p-1}} \sum_{n=0}^{+\infty}\left(\frac{1}{\left(1+\tau^{\prime}\right)^{p-1}}\right)^{n}
$$

Using the fact that the series $\frac{\tau}{\left\|\varphi_{h}\right\|_{\infty}^{p-1}} \sum_{n=0}^{+\infty}\left(\frac{1}{\left(1+\tau^{\prime}\right)^{p-1}}\right)^{n}$ converges towards

$$
\frac{\tau\left(1+\tau^{\prime}\right)^{p-1}}{\left\|\varphi_{h}\right\|_{\infty}^{p-1}\left(\left(1+\tau^{\prime}\right)^{p-1}-1\right)}
$$

we deduce that

$$
T_{h}^{\Delta t}=\sum_{n=0}^{+\infty} \Delta t_{n} \leq \frac{\tau\left(1+\tau^{\prime}\right)^{p-1}}{\left\|\varphi_{h}\right\|_{\infty}^{p-1}\left(\left(1+\tau^{\prime}\right)^{p-1}-1\right)},
$$

and we conclude the proof.
Remark 3.2. Using Taylor's expansion, we get

$$
\left(1+\tau^{\prime}\right)^{p-1}=1+(p-1) \tau^{\prime}+o\left(\tau^{\prime}\right)
$$

which implies that

$$
\frac{\tau}{\left(1+\tau^{\prime}\right)^{p-1}-1}=\frac{\tau}{\tau^{\prime}} \frac{1}{(p-1+o(1))} \leq \frac{2 \tau}{\tau^{\prime}(p-1)} .
$$

If we take $\tau=\frac{h^{2}}{2}$, we have

$$
\frac{\tau^{\prime}}{\tau}=\lambda \min \left\{\frac{\left\|\varphi_{h}\right\|_{\infty}^{p-1}}{2}, 1\right\}
$$

and therefore

$$
\frac{\tau}{\tau^{\prime}}=\frac{1}{\lambda} \min \left\{2\left\|\varphi_{h}\right\|_{\infty}^{1-p}, 1\right\}
$$

Then

$$
\frac{\tau}{\left(1+\tau^{\prime}\right)^{p-1}-1} \leq \frac{2 \tau}{\tau^{\prime}(p-1)}=\frac{2}{\lambda(p-1)} \min \left\{2\left\|\varphi_{h}\right\|_{\infty}^{1-p}, 1\right\}
$$

We conclude that $\frac{\tau}{\left(1+\tau^{\prime}\right)^{p-1}-1}$ is bounded.

Remark 3.3. From

$$
\left\|U_{h}^{(n+1)}\right\|_{\infty} \geq\left\|U_{h}^{(n)}\right\|_{\infty}\left(1+\tau^{\prime}\right)
$$

we get

$$
\left\|U_{h}^{(n)}\right\|_{\infty} \geq\left\|U_{h}^{(q)}\right\|_{\infty}\left(1+\tau^{\prime}\right)^{n-q} \text { for } n \geq q
$$

which implies that

$$
\sum_{n=q}^{+\infty} \Delta t_{n} \leq \frac{\tau}{\left\|U_{h}^{(q)}\right\|_{\infty}^{p-1}} \sum_{n=q}^{+\infty}\left(\frac{1}{\left(1+\tau^{\prime}\right)^{p-1}}\right)^{n-q} .
$$

We deduce that

$$
T_{h}^{\Delta t}-t_{q} \leq \frac{\tau}{\left\|U_{h}^{(q)}\right\|_{\infty}^{p-1}} \frac{\left(1+\tau^{\prime}\right)^{p-1}}{\left(1+\tau^{\prime}\right)^{p-1}-1} \text { with } \Delta t_{q}=\sum_{j=0}^{q-1} \Delta t_{j} .
$$

In the sequel, we take $\tau=\frac{h^{2}}{2}$.

4. Convergence of the numerical blow-up time

In this section, under some assumptions, we show that the discrete solution blows up in a finite time and its numerical blow-up time converges to the real one when the mesh size goes to zero. In order to obtain the convergence of the numerical blow-up time, we firstly prove the following theorem about the convergence of the discrete scheme.

Theorem 4.1. Assume that the continuous problem (1)-(3) has a solution $u \in C^{4,2}([0,1] \times$ $[0, T])$ and the initial condition at (10) satisfies

$$
\begin{equation*}
\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}=o(1) \text { as } h \rightarrow 0 \tag{21}
\end{equation*}
$$

Then, for h sufficiently small, the discrete problem (7)-(10) has a solution $U_{h}^{(n)}, 0 \leq$ $n \leq J$, and we have the following relation

$$
\begin{equation*}
\max _{0 \leq n \leq J}\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty}=O\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+h^{2}\right) \text { as } h \rightarrow 0 . \tag{22}
\end{equation*}
$$

where J is such that $\sum_{j=0}^{J-1} \Delta t_{j} \leq T$ and $t_{n}=\sum_{j=0}^{n-1} \Delta t_{j}$.
Proof. For each h, the discrete problem (7)-(10) has a solution $U_{h}^{(n)}$. Let $N \leq J$, the greatest value of n such that

$$
\begin{equation*}
\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty}<1 \text { for } n<N . \tag{23}
\end{equation*}
$$

We know that $N \geq 1$ because of (21). Due to the fact $u \in C^{4,2}([0,1] \times[0, T])$, there exists a positive constant K such that $\|u\|_{\infty} \leq K$. Using the triangle inequality, we have

$$
\begin{equation*}
\left\|U_{h}^{(n)}\right\|_{\infty} \leq\left\|u_{h}\left(t_{n}\right)\right\|_{\infty}+\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty} \leq K+1, n<N \tag{24}
\end{equation*}
$$

Since $u \in C^{4,2}([0,1] \times[0, T])$. Applying Taylor's expansion, we obtain

$$
\begin{gathered}
\delta_{t} u\left(x_{i}, t_{n}\right)-\delta^{2} u\left(x_{i}, t_{n}\right)+u\left(x_{i}, t_{n}\right) \delta^{0} u\left(x_{i}, t_{n}\right)-u^{p}\left(x_{i}, t_{n}\right)= \\
\frac{h^{2}}{6} u\left(x_{i}, t_{n}\right) u_{x x x}\left(\widetilde{x}_{i}, t_{n}\right)+\frac{\Delta t_{n}}{2} u_{t t}\left(x_{i}, \widetilde{t}_{n}\right), 1 \leq i \leq I-1, \\
\delta_{t} u\left(x_{0}, t_{n}\right)-\delta^{2} u\left(x_{0}, t_{n}\right)-u^{p}\left(x_{0}, t_{n}\right)=-\frac{h^{2}}{12} u_{x x x x}\left(\widetilde{x}_{0}, t_{n}\right)+\frac{\Delta t_{n}}{2} u_{t t}\left(x_{0}, \widetilde{t}_{n}\right), \\
\delta_{t} u\left(x_{I}, t_{n}\right)-\delta^{2} u\left(x_{I}, t_{n}\right)-u^{p}\left(x_{I}, t_{n}\right)=-\frac{h^{2}}{12} u_{x x x x}\left(\widetilde{x}_{I}, t_{n}\right)+\frac{\Delta t_{n}}{2} u_{t t}\left(x_{I}, \widetilde{t}_{n}\right),
\end{gathered}
$$

Let $e_{h}^{(n)}=U_{h}^{(n)}-u_{h}\left(t_{n}\right)$ be the error of discretization, for $n<N$,

$$
\begin{gathered}
\delta_{t} e_{i}^{(n)}-\delta^{2} e_{i}^{(n)}+u\left(x_{i}, t_{n}\right) \delta^{0} e_{i}^{(n)}+\left(\delta^{0} u\left(x_{i}, t_{n}\right)-p\left(\beta_{i}^{(n)}\right)^{p-1}\right) e_{i}^{(n)}= \\
-\frac{h^{2}}{6} u\left(x_{i}, t_{n}\right) u_{x x x}\left(\widetilde{x}_{i}, t_{n}\right)-\frac{\Delta t_{n}}{2} u_{t t}\left(x_{i}, \widetilde{t}_{n}\right), 1 \leq i \leq I-1, \\
\delta_{t} e_{0}^{(n)}-\frac{\left(2 e_{1}^{(n)}-2 e_{0}^{(n)}\right)}{h^{2}}-p\left(\beta_{0}^{(n)}\right)^{p-1} e_{0}^{(n)}=\frac{h^{2}}{12} u_{x x x x}\left(\widetilde{x}_{0}, t_{n}\right)-\frac{\Delta t_{n}}{2} u_{t t}\left(x_{0}, \widetilde{t}_{n}\right), \\
\delta_{t} e_{I}^{(n)}-\frac{\left(2 e_{I-1}^{(n)}-2 e_{I}^{(n)}\right)}{h^{2}}-p\left(\beta_{I}^{(n)}\right)^{p-1} e_{I}^{(n)}=\frac{h^{2}}{12} u_{x x x x}\left(\widetilde{x}_{I}, t_{n}\right)-\frac{\Delta t_{n}}{2} u_{t t}\left(x_{I}, \widetilde{t}_{n}\right),
\end{gathered}
$$

where $\beta_{i}^{(n)}$ is intermediate value between $U_{i}^{(n)}$ and $u\left(x_{i}, t_{n}\right)$ for $i \in\{0, \ldots, I\}$. Since $u_{x x x}(x, t), u_{x x x x}(x, t), u_{t t}(x, t)$ are bounded and $\Delta t_{n}=O\left(h^{2}\right)$, then there exists a positive constant $M>0$ such that

$$
\begin{gather*}
\delta_{t} e_{i}^{(n)}-\delta^{2} e_{i}^{(n)}+u\left(x_{i}, t_{n}\right) \delta^{0} e_{i}^{(n)} \leq c_{i}^{(n)} e_{i}^{(n)}+M h^{2}, 1 \leq i \leq I-1, \tag{25}\\
\delta_{t} e_{0}^{(n)}-\frac{\left(2 e_{1}^{(n)}-2 e_{0}^{(n)}\right)}{h^{2}} \leq c_{0}^{(n)} e_{0}^{(n)}+M h^{2}, \tag{26}\\
\delta_{t} e_{I}^{(n)}-\frac{\left(2 e_{I-1}^{(n)}-2 e_{I}^{(n)}\right)}{h^{2}} \leq c_{I}^{(n)} e_{I}^{(n)}+M h^{2}, \tag{27}
\end{gather*}
$$

where

$$
\begin{gathered}
c_{i}^{(n)}=p\left(\beta_{i}^{(n)}\right)^{p-1}-\delta^{0} u\left(x_{i}, t_{n}\right), 1 \leq i \leq I-1, \\
c_{0}^{(n)}=p\left(\beta_{0}^{(n)}\right)^{p-1}, c_{I}^{(n)}=p\left(\beta_{I}^{(n)}\right)^{p-1} .
\end{gathered}
$$

Set $L=\max _{0 \leq i \leq I}\left\{c_{i}^{(n)}\right\}$ and introduce the vector $W_{h}^{(n)}$ defined as follows

$$
W_{i}^{(n)}=e^{(L+1) t_{n}}\left(\left\|\varphi_{h}-u_{h}(0)\right\|+M h^{2}\right), 0 \leq i \leq I, n<N
$$

A straightforward computations reveals that

$$
\begin{gather*}
\delta_{t} W_{i}^{(n)}-\delta^{2} W_{i}^{(n)}+u\left(x_{i}, t_{n}\right) \delta^{0} W_{i}^{(n)}>c_{i}^{(n)} W_{i}^{(n)}+M h^{2}, 1 \leq i \leq I-1, \tag{28}\\
\delta_{t} W_{0}^{(n)}-\frac{\left(2 W_{1}^{(n)}-2 W_{0}^{(n)}\right)}{h^{2}}>c_{0}^{(n)} W_{0}^{(n)}+M h^{2} \tag{29}\\
\delta_{t} W_{I}^{(n)}-\frac{\left(2 W_{I-1}^{(n)}-2 W_{I}^{(n)}\right)}{h^{2}}>c_{I}^{(n)} W_{I}^{(n)}+M h^{2} \tag{30}\\
W_{i}^{(0)}>e_{i}^{(0)}, \quad 0 \leq i \leq I . \tag{31}
\end{gather*}
$$

It follows from Lemma 2.3 that

$$
W_{i}^{(n)}>e_{i}^{(n)}, \quad 0 \leq i \leq I
$$

By the same way, we also prove that

$$
W_{i}^{(n)}>-e_{i}^{(n)}, \quad 0 \leq i \leq I,
$$

which implies that

$$
W_{i}^{(n)}>\left|e_{i}^{(n)}\right|, \quad 0 \leq i \leq I
$$

We deduce that

$$
\begin{equation*}
\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty} \leq e^{(L+1) t_{n}}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+M h^{2}\right), n<N . \tag{32}
\end{equation*}
$$

Now, let us show that $N=J$. Suppose that $N<J$. If we replace n by N in (32), and taking into account the inequality (23), we obtain

$$
\begin{equation*}
1 \leq\left\|U_{h}^{(N)}-u_{h}\left(t_{N}\right)\right\|_{\infty} \leq e^{(L+1) T}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+M h^{2}\right) \tag{33}
\end{equation*}
$$

Since $e^{(L+1) T}\left(\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}+M h^{2}\right) \rightarrow 0$ as $h \rightarrow 0$, we deduce from (33) that $1 \leq 0$, which is impossible. Consequently $N=J$, and we conclude the proof.

Now, we are in a position to state the main theorem of this section.
Theorem 4.2. Suppose that the solution u of the continuous problem (1)-(3) blows up in a finite time T_{b} such that $u \in C^{4,2}\left([0,1] \times\left[0, T_{b}\right), \mathbb{R}\right)$ and the initial condition at (10) satisfies

$$
\begin{equation*}
\left\|\varphi_{h}-u_{h}(0)\right\|_{\infty}=o(1) \quad \text { as } \quad h \rightarrow 0 \tag{34}
\end{equation*}
$$

Under the assumptions of the Theorem 3.1, the discrete problem (7)-(10) has a solution $U_{h}^{(n)}$ which blows up in a finite time $T_{h}^{\Delta t}$ and the following relation holds

$$
\begin{equation*}
\lim _{h \rightarrow 0} T_{h}^{\Delta t}=T_{b} \tag{35}
\end{equation*}
$$

Proof. The Remark 3.2 allows us to say that $\frac{\tau}{\left(1+\tau^{\prime}\right)^{p-1}-1}$ is bounded. Letting $0<$ $\varepsilon<\frac{T_{b}}{2}$. Then, there exists a constant $R>0$ such that

$$
\begin{equation*}
\frac{\tau y^{1-p}}{\left(1+\tau^{\prime}\right)^{p-1}-1}<\frac{\varepsilon}{2} \quad \text { for } \quad y \in[R, \infty) \tag{36}
\end{equation*}
$$

Since u blows up at the time T_{b}. There exists $T_{1} \in\left(T_{b}-\frac{\varepsilon}{2}, T_{b}\right)$ and $h_{0}(\varepsilon)>0$ such that

$$
\left\|u\left(., t_{n}\right)\right\|_{\infty} \geq 2 R \quad \text { for } \quad t_{n} \in\left[T_{1}, T_{b}\right), h \leq h_{0}(\varepsilon)
$$

Let $T_{2}=\frac{T_{1}+T_{b}}{2}$ and q be a positive integer such that

$$
t_{q}=\sum_{n=0}^{q-1} \Delta t_{n} \in\left[T_{1}, T_{2}\right] \quad \text { for } \quad h \leq h_{0}(\varepsilon) .
$$

We have

$$
0<\left\|u_{h}\left(t_{n}\right)\right\|_{\infty}<\infty \quad \text { for } \quad n \leq q, h \leq h_{0}(\varepsilon) .
$$

It follows from Theorem 4.1 that the discrete problem (7)-(10) has a solution $U_{h}^{(n)}$, which verifies

$$
\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty}<R \quad \text { for } \quad n \leq q, h \leq h_{0}(\varepsilon)
$$

which implies

$$
\left\|U_{h}^{(n)}\right\|_{\infty} \geq\left\|u_{h}\left(t_{n}\right)\right\|_{\infty}-\left\|U_{h}^{(n)}-u_{h}\left(t_{n}\right)\right\|_{\infty} \geq R \quad \text { for } \quad h \leq h_{0}(\varepsilon) .
$$

From Theorem 3.1, $U_{h}^{(n)}$ blows up at the time $T_{h}^{\Delta t}$. It follows from Remark 3.3 and (36) that

$$
\left|T_{h}^{\Delta_{t}}-t_{q}\right| \leq \frac{\tau\left(1+\tau^{\prime}\right)^{p-1}\left\|U_{h}^{(q)}\right\|_{\infty}^{1-p}}{\left(1+\tau^{\prime}\right)^{p-1}-1}<\frac{\varepsilon}{2}
$$

because, we have $\left\|U_{h}^{(q)}\right\|_{\infty} \geq R$ for $h \leq h_{0}(\varepsilon)$. We deduce that for $h \leq h_{0}(\varepsilon)$,

$$
\left|T_{h}^{\Delta_{t}}-T_{b}\right| \leq\left|T_{h}^{\Delta_{t}}-t_{q}\right|+\left|t_{q}-T_{b}\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

which leads us to the desired result.

5. Numerical experiments

In this section, we present some numerical approximations to the blow-up time of the problem (1)-(3). We use the following explicit scheme

$$
\begin{gathered}
\frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}}=\frac{U_{i+1}^{(n)}-2 U_{i}^{(n)}+U_{i-1}^{(n)}}{h^{2}}-U_{i}^{(n)} \frac{U_{i+1}^{(n)}-U_{i-1}^{(n)}}{2 h}+\left(U_{i}^{(n)}\right)^{p} \\
1 \leq i \leq I-1, \quad t \in(0, T) \\
\frac{U_{0}^{(n+1)}-U_{0}^{(n)}}{\Delta t_{n}}=\frac{2 U_{1}^{(n)}-2 U_{0}^{(n)}}{h^{2}}+\left(U_{0}^{(n)}\right)^{p}, \\
\frac{U_{I}^{(n+1)}-U_{I}^{(n)}}{\Delta t_{n}}=\frac{2 U_{I-1}^{(n)}-2 U_{I}^{(n)}}{h^{2}}+\left(U_{I}^{(n)}\right)^{p} \\
U_{i}^{(0)}>0, \quad 0 \leq i \leq I
\end{gathered}
$$

where $n \geq 0, p \geq 2, \Delta t_{n}=\min \left(\frac{h^{2}}{2}, \tau\left\|U_{h}^{(n)}\right\|_{\infty}^{1-p}\right)$ with $\tau \in(0,1)$.
Also we use the implicit scheme

$$
\begin{aligned}
& \frac{U_{i}^{(n+1)}-U_{i}^{(n)}}{\Delta t_{n}}= \frac{U_{i+1}^{(n+1)}-2 U_{i}^{(n+1)}+U_{i-1}^{(n+1)}}{h^{2}}-U_{i}^{(n)} \frac{U_{i+1}^{(n+1)}-U_{i-1}^{(n+1)}}{2 h}+\left(U_{i}^{(n)}\right)^{p} \\
& 1 \leq i \leq I-1, t \in(0, T) \\
& \frac{U_{0}^{(n+1)}-U_{0}^{(n)}}{\Delta t_{n}}=\frac{2 U_{1}^{(n+1)}-2 U_{0}^{(n+1)}}{h^{2}}+\left(U_{0}^{(n)}\right)^{p}
\end{aligned}
$$

$$
\frac{U_{I}^{(n+1)}-U_{I}^{(n)}}{\Delta t_{n}}=\frac{2 U_{I-1}^{(n+1)}-2 U_{I}^{(n+1)}}{h^{2}}+\left(U_{I}^{(n)}\right)^{p},
$$

$$
U_{i}^{(0)}>0, \quad 0 \leq i \leq I,
$$

where $n \geq 0, p \geq 2, \Delta t_{n}=\tau\left\|U_{h}^{(n)}\right\|_{\infty}^{1-p}$ with $\tau \in(0,1)$.
In the tables $1-10$, in rows, we present the numerical blow-up times, numbers of iterations, the CPU times and the orders of the approximations corresponding to meshes of $16,32,64,128,256,512,1024$. The numerical blow-up time $T^{n}=\sum_{j=0}^{n-1} \Delta t_{j}$ is computed at the first time when $\Delta t_{n}=\left|T^{n+1}-T^{n}\right| \leq 10^{-16}$. The order(s) of the method is computed from

$$
s=\frac{\log \left(\left(T_{4 h}-T_{2 h}\right) /\left(T_{2 h}-T_{h}\right)\right)}{\log (2)} .
$$

First case: $U_{i}^{(0)}=\frac{1}{2}, p=2$ and $\tau=\frac{h^{2}}{2}$.

Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the explicit Euler method

I	T^{n}	n	$C P U$ time	s
16	2.003306	15788	-	-
32	2.000827	60265	-	-
64	2.000207	229656	2	1.99
128	2.000052	873150	9	1.99
256	2.000013	3310849	63	2.00
512	2.000003	12516533	464	2.00
1024	2.000001	47158825	3458	2.00

Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method.

I	T^{n}	n	CPU time	s
16	2.003906	15631	-	-
32	2.000977	59637	-	-
64	2.000244	227142	2	2.00
128	2.000061	863093	12	2.00
256	2.000015	3270629	89	2.00
512	2.000004	12355655	672	2.00
1024	2.000001	46515309	5159	2.00

Second case: $U_{i}^{(0)}=2, p=2$ and $\tau=\frac{h^{2}}{2}$.

Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the explicit Euler method

I	T^{n}	n	CPU time	s
16	0.500977	15631	-	-
32	0.500244	59637	1	-
64	0.500061	227142	2	2.00
128	0.500015	863093	9	2.00
256	0.500004	3270629	62	2.00
512	0.500001	12355655	457	2.00
1024	0.500000	46515309	3407	2.00

Table 4: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method

I	T^{n}	n	$C P U$ time	s
16	0.500977	15631	-	-
32	0.500244	59637	-	-
64	0.500061	227142	2	2.00
128	0.500015	863093	12	2.00
256	0.500004	3270629	90	2.00
512	0.500001	12355655	674	2.00
1024	0.500000	46515309	5070	2.00

Third case: $U_{i}^{(0)}=2, p=4$ and $\tau=\frac{h^{2}}{2}$.

Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the explicit Euler method

I	T^{n}	n	CPU time	s
16	0.041830	4872	-	-
32	0.041707	18527	-	-
64	0.041677	70305	-	2.00
128	0.041669	266066	4	2.00
256	0.041667	1003680	30	2.00
512	0.041667	3772429	223	2.00
1024	0.041667	14120612	1659	2.00

Table 6: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method

I	T^{n}	n	$C P U$ time	s
16	0.041830	4872	-	-
32	0.041707	18527	1	-
64	0.041677	70305	1	2.00
128	0.041669	266066	8	2.00
256	0.041667	1003680	57	2.00
512	0.041667	3772429	422	2.00
1024	0.041667	14120612	3185	2.00

Fourth case: $U_{i}^{(0)}=\left(\frac{1}{2}\right)^{3-p}+\left(1-(i h)^{2}\right)^{2}, p=2$ and $\tau=\frac{h^{2}}{2}$.

Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the explicit Euler method

I	T^{n}	n	CPU time	s
16	0.861878	16031	-	-
32	0.860194	60831	-	-
64	0.859773	231919	1	2.00
128	0.859668	882201	9	2.00
256	0.859641	3347050	66	2.00
512	0.859635	12661342	488	2.00
1024	0.859633	47738061	3670	2.00

Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method

I	T^{n}	n	CPU time	s
16	0.861680	15961	-	-
32	0.860144	60832	-	-
64	0.859761	231919	2	2.00
128	0.859665	882201	13	2.00
256	0.859641	3347052	93	2.00
512	0.859635	12661342	699	2.00
1024	0.859633	47738061	5294	2.00

Fifth case: $U_{i}^{(0)}=\left(\frac{1}{2}\right)^{3-p}+\left(1-(i h)^{2}\right)^{2}, p=4$ and $\tau=\frac{h^{2}}{2}$.

Table 9: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the explicit Euler method

I	T^{n}	n	CPU time	s
16	0.012839	4693	-	-
32	0.012798	17825	-	-
64	0.012788	67544	-	1.98
128	0.012786	255190	3	1.99
256	0.012785	960804	18	1.99
512	0.012785	3603268	135	1.99
1024	0.012785	13452596	1002	1.99

Table 10: Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations obtained with the implicit Euler method

I	T^{n}	n	CPU time	s
16	0.012841	4694	-	-
32	0.012799	17825	-	-
64	0.012788	67545	1	1.98
128	0.012786	255190	4	1.99
256	0.012785	960804	27	1.99
512	0.012785	3603268	197	1.99
1024	0.012785	13452596	1490	1.99

Remark 5.1. We observe that the blow-up phenomenon occurs faster for the large values of the initial data and the exponent p. In the case where the initial data is a constant, the solution of our problem blows up in a finite time for all $p \geq 2$, but slowly. This slowness is due to the absence of the turbulence effect, generated by the convection term. Therefore the blow-up only depends on the reaction term. When the initial data is not a constant, the convection term, head of turbulence, accelerates the blow-up created by the reaction term.

In the following, we also give some plots to illustrate our analysis. For the different plots, we used both explicit and implicit schemes in the case where $I=16$ and $p=4$. In Figures 1, 2, 3 and 4, we can appreciate that the discrete solution blows up in a finite time when the initial data is a constant or no. In Figures 3 and 4, we see that the blow-up is faster when the initial data is not a constant. The Figures 5, 6, 7 and 8 show the effect of the convection term on the evolution of the solution. In Figures 9, 10, 11 and 12, we observe that the solution of our problem blows up in a finite time $t \simeq 0.04$ when the initial data is 2 and $t \simeq 0.01$ when the initial data is $\left(\frac{1}{2}\right)^{3-p}+\left(1-(i h)^{2}\right)^{2}$.

Figure 1: Evolution of the discrete solution (explicit scheme), $U_{i}^{(0)}=2, p=4$.

Figure 3: Evolution of the discrete solution (explicit scheme), $U_{i}^{(0)}=\left(\frac{1}{2}\right)^{3-p}+$ $\left(1-(i h)^{2}\right)^{2}, p=4$.

Figure 2: Evolution of the discrete solution (implicit scheme), $U_{i}^{(0)}=2, p=4$.

Figure 4: Evolution of the discrete solution (implicit scheme), $U_{i}^{(0)}=\left(\frac{1}{2}\right)^{3-p}+$ $\left(1-(i h)^{2}\right)^{2}, p=4$.

Figure 5: Evolution of $\mathrm{U}(\mathrm{x}, \mathrm{t})$ according to the node (explicit scheme), $U_{i}^{(0)}=2$, $p=4$.

Figure 7: Evolution of $U(x, t)$ according to the node (explicit scheme), $U_{i}^{(0)}=$ $\left(\frac{1}{2}\right)^{3-p}+\left(1-(i h)^{2}\right)^{2}, p=4$.

Figure 6: Evolution of $\mathrm{U}(\mathrm{x}, \mathrm{t})$ according to the node (implicit scheme), $U_{i}^{(0)}=2$, $p=4$.

Figure 8: Evolution of $\mathrm{U}(\mathrm{x}, \mathrm{t})$ according to the node (implicit scheme), $U_{i}^{(0)}=$ $\left(\frac{1}{2}\right)^{3-p}+\left(1-(i h)^{2}\right)^{2}, p=4$.

Figure 9: Evolution of norm of $\mathrm{U}(\mathrm{x}, \mathrm{t})$ according to the time (explicit scheme), $U_{i}^{(0)}=2, p=4$.

Figure 11: Evolution of norm of $\mathrm{U}(\mathrm{x}, \mathrm{t})$ according to the time (explicit scheme), $U_{i}^{(0)}=\left(\frac{1}{2}\right)^{3-p}+\left(1-(i h)^{2}\right)^{2}, p=4$.

Figure 10: Evolution of norm of $\mathrm{U}(\mathrm{x}, \mathrm{t})$ according to the time (implicit scheme), $U_{i}^{(0)}=2, p=4$.

Figure 12: Evolution of norm of $\mathrm{U}(\mathrm{x}, \mathrm{t})$ according to the time (implicit scheme), $U_{i}^{(0)}=\left(\frac{1}{2}\right)^{3-p}+\left(1-(i h)^{2}\right)^{2}, p=4$.

References

[1] L. Abia, J. C. López-Marcos and J. Martínez, On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 26, (1998), 399-414.
[2] J. Bec, K. Khanin, Burgers turbulence, Physics Reports, 447, (2007), 1-66.
[3] J. von Below, An existence result for semilinear parabolic network equations with dynamical node conditions, Progress in partial Differential equations : elliptic and parabolic problems, Pitman Research Notes in Math. Ser. Longman Harlow Essex, 266, (1992), 274-283.
[4] J. von Below, Parabolic network equations. Tubingen, 2 dition, (1994).
[5] J. von Below, C. De Coster, A Qualitative Theory for Parabolic Problems under Dynamical Boundary Conditions, Journal of Inequalities and Applications, 5, (2000), 467-486.
[6] J. von Below, S. Nicaise, Dynamical interface transition in ramified media with diffusion, Comm. Partial Differential Equations, 21, (1996), 255-279.
[7] J. von Below, G. Pincet-Mailly, Blow up for Reaction Diffusion Equations Under Dynamical Boundary Conditions, Communications in Partial Differential Equations, 28, (2003), 223-247.
[8] J. von Below, G. Pincet-Mailly, Blow-up for some nonlinear parabolic problems with convection under dynamical boundary conditions, Discrete and Continuous Dynamical Systems, Supplement Volume, (2007), 1031-1041.
[9] J. von Below, G. Pincet-Mailly, J-F. Rault, Growth order and blow-up points for the parabolic Burgers' equation under dynamical boundary conditions, Discrete contin. Dyn. Syst. Ser. S., 6(3), (2013), 825-836.
[10] T. K. Boni, H. Nachid and D. Nabongo, Blow-up for discretization of a localized semilinear heat equation, Annals of the Alexandru loan Cuza UniversityMathematics, 56(1), (2010), 385-406.
[11] S. Chen, Global existence and blow-up of solutions for a parabolic equation with a gradient term, Proc. Amer. Math. Soc., 129, (2001), 975-981.
[12] M. Chipot, F.B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal., 20, (1989), 886-907.
[13] M. Chlebik, M. Fila, P. Quittner, Blow-up of positive solutions of a semilinear parabolic equation with a gradient term, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10, (2003), 525-537.
[14] J. Ding, Blow-up solutions for a class of nonlinear parabolic equations with Dirichlet boundary conditions, Nonlinear Anal., 52, (2003), 1645-1654.
[15] J. Ding, B.-Z. Guo, Global and blow-up solutions for nonlinear Parabolic equations with a gradient term, Houston Journal of Mathematics, 37 (4), (2011), 12651277.
[16] J. Ding, B.-Z. Guo, Global existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term, Applied Mathematics Letters, 24, (2011), 936-942.
[17] M. Fila, Remarks on blow-up for a nonlinear parabolic equation with a gradient term, Proc. Amer. Math. Soc, 111, (1991), 795-801.
[18] U. Frisch, Turbulence: The legacy of A.N. Kolmogorov, Cambridge University Press, (1995).
[19] O. Ladyzenskaya, V. Solonnikov, N. Uraltseva, Linear and quasilinear equations of parabolic type, Trans. of Math. Monographs, 23, (1968).
[20] K. N'Guessan, D. Nabongo and A. K. Toure, Blow-up for semidiscretizations of some semilinear parabolic equations with a convection Term, Journal of Progressive Research in Mathematics (JPRM), 5(2), (2015), 499-518.
[21] G. Pincet-Mailly, J-F. Rault, Nonlinear convection in reaction-diffusion equations under dynamical boundary conditions, Electronic Journal of Differential Equations, 2013(10), (2013), 1-14.
[22] J-F. Rault, Phnomne d'explosion et existence globale pour quelques problmes paraboliques sous les conditions au bord dynamiques, PhD thesis, Universit du Littoral Cte d'Opale, (2010).
[23] J-F. Rault, A Bifurcation for a Generalized Burgers' Equation in Dimension One, Discrete contin. Dyn. Syst. Ser. S., 5(3), (2012), 683-706.
[24] P. Souplet, Finite time blow-up for a non-linear parabolic equation with a gradient term and applications, Math. Methods Appl. Sci., 19, (1996), 1317-1333.
[25] P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electronic Journal of Differential Equations, 2001(20), (2001), 119.
[26] P. Souplet, F. Weissler, Self-Similar Subsolutions and Blow-up for Nonlinear Parabolic equations, Journal of Mathematical Analysis and Applications, 212, (1997), 60-74.
[27] P. Souplet, S. Tayachi, F. B. Weissler, Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term, Indiana Univ. Math. J., 45, (1996), 655-682.
[28] M. M. Taha, A. K. Tour and P. E. Mensah, Numerical approximation of the blowup time for a semilinear parabolic equation with nonlinear boundary conditions, Far East journal of Mathematical Sciences (FJMS), 60(45), (2012), 125-167.
[29] F. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation. Israel Journal of Mathematics, 38, (1981), 29-40.

