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Abstract

This paper concerns the study of the numerical approximation for the following
parabolic equations with a convection term

ur(z,t) = ugg(x,t) —u(x, t)ug(x, t) + uP(z,t), 0<z<1,t>0,
{ uzy(0,t) =0, wux(l,t) =0, t>0,
u(z,0) =up(z) >0, 0<ux<l,
wherep > 1.

We obtain some conditions under which the solution of the discrete form of the
above problem blows up in a finite time and estimate its numerical blow-up time.
We also prove that the numerical blow-up time converges to the real one, when the
mesh size goes to zero. Finally, we give some numerical experiments to illustrate
ours analysis.
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3368 N’Guessan Koff, et al.

1. Introduction

Consider the following boundary value problem

ur(z,t) = uge(x,t) — u(z, t)uy(z, t) +uP(z,t), 0<zx <1, t>0, (1)
u(0,8) =0, ua(1,8) =0, >0, @)
u(z,0) =up(x) >0, 0<a <1, (3)

wherep > 1, uy € C?([0,1]), uo is decreasing on (0,1) and verifies

u0(0> = 07 uo(l) = 07 (4)
ug (x) — uo(x)ug(x) +uf(x) >0, 0<z<1, (5)
up(z) > —p(p — Dug(z), 0<z<1. (6)

Definition 1.1. We say that the solution of (1)—(3) blows up in a finite time if there
exists a finite timel}, such that||u(., t)||. < oo fort € [0,T}) but

i f[u(., )]} = o0.

The timeT, is called the blow-up time of the solutian

The above problem models viscous Burgers’ equation in one dimension with a re-
action term. The solution(z,t) represents the motion field of the fluid in space and
time. The termuu, IS called convection term. It's a nonlinear term that ensures the
movement, generates instability and also responsible for the turbulent appearance (here
we'll refer to it as intermittent since we are in one dimension) when it happens. The
termu,, is the diffusion term. In the general case the terynis replaced byu,, with
v > 0. The termvu,, is the viscous term, which has the opposite effect of slicking
and making it appear laminar that is ordered. The constarnefficient of the viscous
term, is called the kinematic viscosity (normalized by the density) of the fluid. The
fluid’s flow ability is inversely proportional to the size of the viscosity. The tefin
(the reaction term) is the external force which is generally a white and Gaussian noise
within the time scale which forces the fluid to flow faster, slower or make it mill around.
It's the quantitative relation between the convection term and viscous, called Reynolds
number that will condition the appearance of the flow in the case when there is no ex-
ternal force. Burger’s equation occurring in various areas applied mathematics, such
as nonlinear acoustics, gas dynamics, traffic flow and fluid mechanics. At the end of
the thirties, the Dutch scientist J. M. Burger, introduced a one dimensional model for
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pressure less gas dynamics. He was hoping that the use of a simple model having much
in common with the Navier-Stokes equation would significantly contribute to the study
of fluid turbulence(see [2], [25]).

The theoretical study of blow-up solutions for the parabolic equations with a con-
vection term has been the subject of investigations of many authors (see [3], [6], [7],
[8], [9], [21], [22], [23] and the references cited therein). Local in time existence and
uniqueness of the solution have been proved(see [4], [5], [26], [28] and the references
cited therein). Here, we are interesting in the numerical study using a discrete form of
(2)—(3). We give some assumptions under which the solution of a discrete form of (1)—
(3) blows up in a finite time and estimate its numerical blow-up time. We also show that
the numerical blow-up time converges to the theoretical one when the mesh size goes to
zero. A similar study has been undertaken in [10] and [28].

The paper is organized as follows. In the next section, we present a discrete scheme
of (1)—(3) and give some lemmas which will be used throughout the paper. In the third
section, under some conditions, we prove that the solution of the discrete form of (1)—
(3) blows up in a finite time. In the fourth section, we study the convergence of the
numerical blow-up time. Finally, in last section, we give some numerical experiments.

2. Properties of the discrete scheme

In this section, we give some lemmas which will be used later. We start by the con-
struction of the discrete scheme. Liebe a positive integer and lét = 1/1. Define
the gridx; = ¢h, 0 < ¢ < I and approximate the solutianof (1)—(3) by the solution

U™ = Wi, o™, UM of the following discrete equations
5tUZ‘(n) _ 52Uz‘(n) o Ui(n)(SOUi(n) + (Ui(”))p’ 1<i<I-—1, (7)
Uy = U + (U, (8)
U = 82U + (UMY, 9)
U =g, >0, 0<i<I, (10)
where
n=>0, p=>2
e+ _
s U™ = Zi J 0<i<I
tYyq Atn ) 1 s
(n) (n) (n)
SORNY 4 (
52Ul(n) _ Uz+1 Uz + Uz—l 1<i<I-— 1’
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n n (n) (n)
52U(") _ 2U1( ) — 20U, : 52U(n) _ 20,4 —20;
0o - h2 ’ I h2 ’
Ul - o
U = L 1<i<T -

Sus =0, U =0,
0 p; <0, 0<i<I—1,

ol > —plp = DA o)), 1<i<I-1.

In order to permit the discrete solution to reproduce the properties of the continuous one
when the timeg approaches the blow-up tin1g , we need to adapt the size of the time
step. We choose

2

h .
At, = min(?,THU,(ln)ng) with 7 € (0,1).

Let us notice that the restriction on the time step ensures the nonnegativity of the discrete
solution when this one is decreasing. To facilitate our discussion, we need to define the
notion of numerical blow-up.

Definition 2.1. We say that the solutiofi™, n > 0, of the discrete problem (7)—(10)
blows up in a finite time, if
lim [|U™]|s = o0,

and

n—1

T = lim Y At; < 0.
=0

The numbef[! is called the numerical blow-up time of the discrete solution.
The following Lemma is a discrete form of the maximum principle.

Lemma 2.2. Let o\, b and V" be three sequences, with> 0, a!” < 0 and

b6V < 0, such that

sV — 62V 4 oMV oMV >0, 0<i < 1, (11)

)

v >0, (12)
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Then, we have

V"W >0, 0<i<I, n>0uwhen At < =

Proof. A straightforward computation shows that foK ¢ < I — 1,

o s (1228 1 B vl PV — st

: At,, | 280, .
1/0”1’2(1— h)VO h2v1 _ At a®V

VI( o = ( h? )VI( ) h? V t al VI( )'

If V ) > 0, then using an argument of recursion, we easily sed/;ﬁétl) > 0, because

2A
1-— h—t >0,b ")50\/(” < 0and a(” < 0. This ends the proof. [

A direct consequence of the above result is the following comparison Lemma.

Lemma 2.3. Let aﬁl"), Vh(") and W,E") be three sequences, with > 0, ai”) < 0,
8V < 0 andd®w,™ < 0, such that

SV — g2y 4 oy gy 5y
W+ W™ L MW 0 <i<1, (13)

vO <w® o<i<I (14)
Then, we have

h2
Vi(")<m(”)’0§i§[7 n>0 when At<§

Proof. Define the sequencﬁé,ﬁ”) = W,ﬁ") — V™. A straightforward calculation gives
5,27 — 827" 4 WPW W — sy 4oz S o 0 <i<T,
which is equivalent to

20— L L WOR L+ 4 VO Z 50, 0 i< T
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Knowing thatZ” > 0, from Lemma 2.2, we hav&" > 0, which implies that/," <
Wf’”, 0 < i < I and the proof is complete. |

We need the following result about the operator
Lemma 2.4. Let U,(L”), n > 0, be a sequence such th[aﬁf‘) > (. Then
S (UMY > p(uyp-ts,u™ 0 <i<I.
Proof. Using Taylor's expansion, we get

@(Uf"’)”=p<U§">>P—15tU}”>me (SUM2(0M )2, 0 < i < I,

whered™ is an intermediate value betweg\i” andU""™, 0 < i < I.
Next, we use the fact théI,(L") > 0,n > 0, to complete the proof. |

The following lemma shows the decreasing in space of the discrete solution.
Lemma 2.5. Let U,(L”), n > 0, be the solution of the discrete problem (7)—(10). Then
Ut <™ 0<i<I—1. (15)
Proof. Define the vector\" such thatz™ = U™ — U),0 < i < I — 1. We have

ZM=u" —ul, 1<i<I -2,

Z§ﬁ1 - Ul(i)l - Ul(n)'
A straightforward computations reveals that

5,2 — 822 4 UMz 4 20U — (B ZM =0, 1<i <1 -2,
5tzé”) o 522871) _ Ul(n)é‘OUln) _ p(ﬁon))p—lzén) — 0’

5tZ§11)1 - 52Z§ﬁ)1 + Ul(i)léoUI(T—L)l - p(ﬁﬁ)l)pilzﬁ)l =0,
which are equivalent to

5tZi(n) - 522@'(”) + Uz‘(n)(so (50Uz+1 (ﬁ(n )p 1)Z(n) =0,1<i<I-2,
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025" = 825" + U8 Zg" — (3" P 25 = 0,

5752}”1 - 62 I 1 + UI(nlaoz}nl ( (n) )p 1Z(nl - 0

where3" is an intermediate value betwegf") andU™, 0 < i < I — 1.
Knowing thatZ\” > 0, from Lemma 2.2, we hav&\™ > 0, which implies that/\?] <
UZ.(”), 0 <1 < I —1, and we obtain the desired result. [

The lemma below reveals the positivity of the discrete solution.
Lemma 2.6. Let U,E”), n > 0, be the solution of the discrete problem (7)—(10). Then

h2
Ui(n) >0, 0<i<I when At,< ox (16)

Proof. A routine calculation reveals that far< i < I — 1,

At 2At,
(n+1) n (n)

U — (1 = =2!

( h? Ui h?

)

=W+ ) = AU U™ + A, (UM,

" 2At, QAtn n n
Ué = ( 12 ) UO 2 Ul( )+Atn(UO ))p’

2AL, 2AL,
Uty = (1 = )U(” . “U™ 4+ At (UM

If U ) > 0, then using an argument of recursion, we easily se@tﬁéﬁl) > 0, because
At U™ <o, u

The following lemma gives the increasing in time of the discrete solution.

Lemma 2.7. Let U,(L”), n > 0, be the solution of the discrete problem (7)—(10). Then
5tU >0, 0<:i:<I.

Proof. Consider the vectoZ,(L") such thaiZZ.("):cStUZ.(”), 0<i<I.
A straightforward calculation gives

52" = 522" — UMz — ZM Ut + s(UM, 1 <i < T -1,

5,2\ = 827 4+ s, (Ui,
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5,2 =527z 4 s, (UM,
Using Lemma 2.4, We finally have

5.2 — 827 4 UM Z® L (U _ P20 > 0, 1<i <1 -1,

0,257 — 6225" — p(Ug" 1 25" > 0,

5,2y — 82z — pU =tz > .

Knowing thatZ,(lo) > 0, from Lemma 2.2, we hav@,(l”) > 0, which implies that
§U™ > 0,0 <i < I. We have the wished result. |

The following lemma is a discrete generalization of the condition (6).
Lemma 2.8. Let U,E”), n > 0, be the solution of the discrete problem (7)—(10). Then
(U™t > —p(p = DA U (UM 1<i<T—1,p>2.

Proof. Consider the vectorg\™”, K™ and V" such thatz™ = K™ — v\ with
K™ = @™ andV,"™ = —p(p — 1)U (UM))P2. We have

5,2 = 622" 4 KMz + 20V — p(p™Myrtz™ =0, 1<i <1 -1,
which is equivalent to
5,2 — 22" + KMz + (8o — p(BM Pz =0, 1<i<T—1,

wheres™ is an intermediate value betwegf” and K™, 1 < i < I — 1. Knowing
that Z\” > 0, from Lemma 2.2, we hav&\™ > 0, which implies thaf;"” < K™,
1 <i <1 -1, and we obtain the desired result. |

We need the following result about the operatar

Lemma 2.9. Let U,S"), n > 0, be a sequence such tl{é,i”) > 0. Then, we have for
0<i<,
U 2 pU YR U).

Proof. Applying Taylor's expansion, we obtain

PO = pUp1eu 1 ) - pyPP D gy
% % % i—1 % 2h2

+HU - UM™)? (%2 Sy if 1<i<r-1,
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n n)\p— n n n pp_l n)\p—
PO = U P80+ f — oD gy

n n — n n n pp_l n —
POy = p0 )y eUP + o, - U D gy

wherep > 2, 6" is an intermediate value betwegf{"” and

U™, 6™ is an intermediate value betwel’) andU™, 1 <i <1 -1,

6\ is an intermediate value betwe&l"”, andU\™,

¢ is an intermediate value betweg” andU[), 1 <i < I — 1.

The result follows taking into account the fact thgf” > 0. |

Lemma 2.10. Let U,(L”), n > 0, be the solution of the discrete problem (7)—(10). Then,
we haveforl << —1,

_Uz'(n)éo(Uz’(n))p > —p(Ui(n))p(SOUi(n) - p(p - 1)h(50Uz’(n))2Uz’(n)(Uz(ﬂ)piz-

Proof. Using Taylor's expansion, we getfor<: < [ — 1 andp = 2,

n n _ n n n p\p— 1 n -
POy = pUOy0Ue + U - v 2

11—

A A 4h
forl1 <i¢<I-—1andp > 3,
n n — n n n pp_l n —
PO = pUEp U + U - U D g eey
n n pp—l p_2 n —
W) - v =D =2) (s

12h

where¢!™ e (U], U™). From Lemma 2.5 and the fact thdf" > 0, we obtain the

desired result. [ |

3. Discrete Blow-up solutions

In this section under some assumptions, we show that the soMﬂ&mf the discrete
problem (7)—(10) blows up in a finite time and estimate its numerical blow-up time.

Theorem 3.1. Let U,E") be the solution of the discrete problem (7)—(10). Suppose that
there exists a positive integere (0, 1) such that

i — pid®pi+ @ = Mgl 0<i< . (17)
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Then, the solutioﬂf,ﬁ”) blows up in a finite img}>* and we have the following estimate

At 7'(1 + Tl)pil
" el (Y — 1)

, h2 p—1
T :)\min{mﬂ'}, 0<7<l.

where

2

Proof. Consider the vectof,ﬁ”), n > 0, such that
JM = su™ — UMY, 0<i< I (18)
A straightforward calculation gives

5 Ji(n) _ 52 Jz’(n) + Ui(n) 50 Jz'(n) + ( 50 Uz’(n) B p<Ui(n))p71) Ji(n) _
(1= NS (U™MY £ AZUD)P — AU U™ — A UD)Ps0U™
—p(Ui("))p’létUi(") +p)\(Ui("))p’1(Ui("))p, 1<i<I-—1,
5 — 62 J — p(UE P = (1= A5, (UL
AU )P = p(US )P Lo US™ + Ap(USV)PH (USV)P,

0 Iy = 6201 — p(U LI = (1= N)a(U)”

FAS(UY = p(UF YU+ (U]

From Lemma 2. 4<5t( mye > p(U N1, U(” 0 <i<landthefactthal < A <1,
we have(1 — N6, (U™ > (1 — Np(U™)P~'6,U™, 0 < i < I. Using also Lemma
2.9,62(UMy > p(U(" )P 1520 ™ 0 <i< I, we arrive at

5t<]i(n> . 52J.(n) + Ui(n)(SOJZ-(n) + (50Uz‘(n) _ p(Ui("))p—l)Ji(”)

2

> (U P (=60 + 80+ (U)7) = AU )

— 7

—AUMyPS UM 1 <i<I -1,
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6" = 825" = p(U PN 2 (U (=6 U5 + 60" + (UG,

6Ty = 801 —p(U P = ap(U P (U + U 4 (UF)).
Using (7)—(9), we have these equalities

~5,U" + 82U + (UM = UMeU, 1<i <11,
~5,U5" + 8205 + (U =0,

U™ +82U™ + (UM = 0.
We get,

5" — 62 UM T 4 (82U — p(UM )
05" = I — p(Ug g = 0,

5,7 — 6218 — pU LI > 0.
Using the Lemma 2.10, far<i <1 — 1,
—US UM = —p(U U — p(p — DS UM )PU (U,

we have

60" = 02" + UM T + (00U — p(U ety
> AU ST (U (e — DREUS)U)),
8y — 625 — p(US LI > 0,

5,1 — 2 _ (Uit > o,

From Lemma 2.8(U™)"~" > —p(p — DA(SCUM)YU™M)P2 1 <i < -1, and
using the fact that- AU\ 6°U™ > 0, we get

5tJ,‘(n) _ 52Ji(n) + Ui(”)(;OJi(”) + (50Ui(n) _ p(Ui(”))pfl>Ji(") > 0’ 1<i< I — 1’
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(21" = 2J5")
h2

8, g\ — — p(US™ =1y > 0,

(2J7) —2J)

5t<][(n) - h2

_ p(UI("))p—ljl(") > 0.

From (17), we observe that
Ji(o) = 0%p; — i’ + o — Al >0, 0<i<I.
We deduce from Lemma 2.2 thaf"” > 0 for n > 0, which implies that
s U™ > U™, 0<i<I, (19)
which is equivalent to
Ut > U™ 4 AAL UMY, 0<i < T
Therefore
U™ > UM (1 4 AL (UMY, 0 < < (20)
which implies that
102 oo = 10 oo (1AM TR [257):
From Lemma 2.7) U™ > |U™ || By induction, we obtain
100 = 1T oo = llnlloc-
Then, we have
10715 = Nlenlize ™,
and with Az, ||[U™|221 > 7, we arrive at
10" oo 2 10, oo (1 +7)-
By induction, we get
102 oo = 10U llso(1 + )", 1 > 0,
which leads us to

U oo > Nlnllao(1 + 7", 7> 0.
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Since the term on the right hand side of the above inequality tends to infinity as

approaches infinity, we conclude thldf,i") || tends to infinity. Now, let us estimate the
numerical blow-up time. It is not hard to see that

+00 - +00 1 n
nz:% n_ZHU Bt ||s0 [ 12((1+T’)p‘1> '

n=0

Using the fact that the series——— | ||p : Z ( T 1) converges towards
©h )

(17 )Pt
lenll2t (147t = 1)

we deduce that

’ p—1
ThAt ZAtn < - 1(1+7')/ ’
lenllse (L +7)P~1 = 1)

and we conclude the proof. |
Remark 3.2. Using Taylor’'s expansion, we get

Q+7 )Pt =1+@p—-17 +o(r),
which implies that

T T 1 2T
(I+7pt=1 7 (p—1+0(1) =~ 7(p-1)

h2
If we taker = > we have

’ p—1
7 Amm{n%nm 71}7
T 2

T 1
— = —min{2|¢n|| 7, 1}.
= 3 min{2 57, 1)

and therefore

Then

T - 2T B 2
(I+7p1—1"7(p-1) Ap-—1)

min2l|nl|7, 1}

We conclude that ,T is bounded.
(1+7 w1 -1
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Remark 3.3. From
n+1 n /
U oo > U o(1 47,
we get
U oo = 1UR2 oo (1 + 7)) for n > g,
which implies that

ZA = U Hp 1§(ﬁ)n_q.

n=q

We deduce that

At 4o T (A7) ith A qzim
h T g > 1 Np—1 _ q — J
U@t (L)t =1 =

h2
In the sequel, we take = oR

4. Convergence of the numerical blow-up time

In this section, under some assumptions, we show that the discrete solution blows up in
a finite time and its numerical blow-up time converges to the real one when the mesh
size goes to zero. In order to obtain the convergence of the numerical blow-up time, we
firstly prove the following theorem about the convergence of the discrete scheme.

Theorem 4.1. Assume that the continuous problem (1)—(3) has a solutierC*?([0, 1] x
[0, 77) and the initial condition at (10) satisfies

lon — un(0)[loo = o(1) as b — 0. (21)

Then, for h sufficiently small, the discrete problem (7)—(10) has a solm;(ﬁh 0<
n < J, and we have the following relation

max 10" = un(ta) | = Olllen — un(0)lloc +5*) as h — 0. (22)
J—-1 n—1
where.J is such tha} ~ At; < T andt, = » At
j=0 =

Proof. For eachh, the discrete problem (7)—(10) has a solutl@ﬁ). Let N < J, the
greatest value af such that

IO — wp(tn)]lse < 1 for n < N. (23)
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We know thatN > 1 because of (21). Due to the facte C**([0, 1] x [0,T7), there
exists a positive constarit’ such that||u||,, < K. Using the triangle inequality, we
have

U oo < Nln(ta) oo + 1USY = un(ta)]lo < K +1, n < N, (24)

Sinceu € C*2([0,1] x [0, T]). Applying Taylor’s expansion, we obtain
Seu(Ti, tn) — O2u(wy, ty) 4+ u(wy, t,) 0 u(zi, tn) — uP (24, t,) =

h2

gu(l‘zatn)ummx(l‘zatn) + Tutt(xiatn)7 1 S 1 S I - ]-7

h? ~

~ Aty
5tu(x07 tn) - 52U(ZL'Q, tn) - Up(%, tn) - _Euxxxx(xm tn) + Tutt(xm tn)a

) h? ~ At,, ~
52&“(37[7 tn) -0 U(.’L‘[, tn) - up<~rlu tn) - _Eu:v:v:vx<xla tn) + Tutt<xl7 tn>7

Lete!™ = U™ — u,(t,) be the error of discretization, for < N,

el — 2™ -+ ulwi, 1)0%" + (0 u(wi, tn) — p(B Vel =

h? ~ At,, ~
_gu(xzutn)u:vx:v<xzatn) - Tutt<xi7tn>7 1 S { S [ - 17

n 2¢{™ _ 9¢™ 1 (n h? - At, ~
51568 ) B (1}7,—20) o p<ﬁé ))p 16(() : - Eummm”(x(]vtn) - 2 utt(%,tn)’
(n) (26311)1 - 2€§n)) (n)\p—1 _(n) h2 ~ Atn -~
5t6] - 2 - p(ﬁ[ ) er’ = Eumxmm(xla tn) - 9 utt(xfa tn)7

where™ is intermediate value betweé{™ andu(z;, t,) for i € {0,...,I}. Since
Upaa (T, 1), Ugzae (T, 1), uy(x,t) are bounded andt,, = O(h?), then there exists a posi-
tive constant\/ > 0 such that

5te§") — 5262@ + u(:ci,tn)éoegn) < cgn)ez(") +Mh?, 1<i<I—1, (25)

2 (n) -9 (n)
e - 292 ) = ) < el 4 MR, (26)

(2ef) — 2¢87)
h2

S — <Ml 4 vn?, (27)
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where

" = (") = Pulws ), 10 <1,

7

o = p(B5yt, Y = p(ayt.

SetL = max {c!™} and introduce the vectat, defined as follows

W = eE D0 (|0, — un(0)|| + MA?), 0<i < I, n<N.
A straightforward computations reveals that

SW ™ — W ou(ay, t,)0W ™ > W L MR 1<i<T—1, (28)

(2" — 205"

s — e > MW + Mp?, (29)

(n) 2w, —2w;") (n)yy/(n)
sW — - > AW M2, (30)
WO > o<i<I (31)

It follows from Lemma 2.3 that

which implies that
W s e 0<i<I.
We deduce that
10" = wn(ta)lloe < e (|l on — un(0) oo + MA?), n < N. (32)

Now, let us show thalv = J. Suppose thaV < J. If we replacen by N in (32), and
taking into account the inequality (23), we obtain

1< U = un(tw)lloo < VT ([ — un(0) [l + MA2). (33)
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sincee " VT (||¢n — un(0)]|os + Mh?) — 0 ash — 0, we deduce from (33) that< 0,
which is impossible. Consequently = J, and we conclude the proof. |

Now, we are in a position to state the main theorem of this section.

Theorem 4.2. Suppose that the solution u of the continuous problem (1)—(3) blows up
in a finite timeT;, such that: € C*?([0, 1] x [0, 73),R) and the initial condition at10)
satisfies

lon — un(0)]|oo = 0(1) as h — 0. (34)

Under the assumptions of the Theorem 3.1, the discrete problem (7)—(10) has a solution
U,(L”) which blows up in a finite tim@}** and the following relation holds

. At

Proof. The Remark 3.2 allows us to say thﬂitJr is bounded. Letting <

-

-t —1
T )

e < 51) Then, there exists a constaRt> 0 such that

Tyl=P
P il

< - for yeR, ). (36)

N ™

Sinceu blows up at the timé&,. There existg} € (T}, — g, T,) andhy(e) > 0 such that

u(.,t) e = 2R for t, € [T1,T3), h < ho(e).

T+ T,

LetT, = and g be a positive integer such that

—

q—

tq = Atn € [Tl,TQ] for h < hQ(E).

i
o

We have
0 < [Jup(tn)]loo < oo for n <gq, h < hg(e).

It follows from Theorem 4.1 that the discrete problem (7)—(10) has a solmﬁﬁh
which verifies

1O — up(ty)lle < R for n<gq, h<hg(e),
which implies

U oo > un(ta)lloo = 1US” — un(ta)]lo = R for — h < ho(e).
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From Theorem 3.1U,§”) blows up at the tim& ™. It follows from Remark 3.3 and (36)
that

7oy < TAETPIONET
S |

Y

DO ™M

because, we ha\«e(],gq)nOO > Rfor h < hy(e). We deduce that fat < hy(e),

€

3
T = T < T = tgl + [t = Tl < 5 + 5

:5’

which leads us to the desired result. [ |

5. Numerical experiments

In this section, we present some numerical approximations to the blow-up time of the
problem (1)—(3). We use the following explicit scheme

(n+1) (n) (n) (n) (n) (n) (n)
U; - U _ Ui-‘,—l — 2077 + UL . U(n) Ui+1 - Ui + (U(n))p
Atn h2 7 2h 7 ’

1<i<I—1, te(0,T),

Ut —ug? 20 —2ug

At h2 T (Uon) "

oty — o 2o - 20
At, E

+ UMy,

v >0, 0<i<I,

h? . .
wheren > 0,p > 2, Af, = min(. 7| U™|17) with 7 € (0, 1).

Also we use the implicit scheme

n n n+1 n+1 n+1 n+1 n+1
Uz'( +1) Uz'( ) B Uj&f ) 2Ui( +1) + Ui(ff ) (n) Ui(JrIr ) Ui(izr ) "

At, h?2
1<i<I-—1,1te(0,7),

U0(n+1) - Uon) ~ 2U1(n+1) - 2U0(n+1)

At h2 + (Uén) )"




Semilinear Parabolic Equations with a Convection Term 3385

U[(n—i—l) - U[(n) _ 2Ul(ri41r1) . 2U[(n+1)
At, h?

+ (UM,

wheren > 0, p > 2, At, = 7||U||127 with 7 € (0, 1).

In the tables 1-10, in rows, we present the numerical blow-up times, numbers of
iterations, the CPU times and the orders of the approximations corresponding to meshes

n—1
of 16, 32, 64, 128, 256, 512, 1024. The numerical blow-up tiffte= ZAtj is
j=0
computed at the first time whefrt, = |7"" — T"| < 107'°. The order(s) of the
method is computed from

_ log((Tun — Ton) /(Ton — Th))

’ log(2)

. 1 h?
First case: U”) = 5 =2andr = —.

Table 1: Numerical blow-up times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the explicit Euler method

1 ™ n CPU time | s
16 2.003306| 15788 - -
32 2.000827| 60265 - -
64 2.000207| 229656 | 2 1.99
128 | 2.000052| 873150 | 9 1.99
256 | 2.000013| 3310849 | 63 2.00
512 | 2.000003| 12516533| 464 2.00
1024 | 2.000001| 47158825| 3458 2.00
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Table 2: Numerical blow-up times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the implicit Euler method.

1 ™ n CPU time | s
16 2.003906| 15631 - -
32 2.000977| 59637 - -
64 2.000244| 227142 |2 2.00
128 | 2.000061| 863093 12 2.00
256 | 2.000015| 3270629 | 89 2.00
512 | 2.000004| 12355655| 672 2.00
1024 | 2.000001| 46515309 5159 2.00

h
Second casel/'”) = 2, p = 2 andr = 5

Table 3: Numerical blow-up times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the explicit Euler method

2

I A n CPU time | s
16 0.500977| 15631 - -
32 0.500244| 59637 1 -
64 0.500061| 227142 2 2.00
128 | 0.500015| 863093 9 2.00
256 | 0.500004| 3270629 | 62 2.00
512 | 0.500001| 12355655 457 2.00
1024 | 0.500000| 46515309 3407 2.00

Table 4. Numerical blow-up times, numbers of iterations, Githks (seconds) and
orders of the approximations obtained with the implicit Euler method

1 ™ n CPU time | s
16 0.500977| 15631 - -
32 0.500244| 59637 - -
64 0.500061| 227142 |2 2.00
128 | 0.500015| 863093 12 2.00
256 | 0.500004| 3270629 | 90 2.00
512 | 0.500001| 12355655| 674 2.00
1024 | 0.500000| 46515309 5070 2.00
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. h
Third case: Ui(o) =2,p=4andr = 5

Table 5: Numerical blow-up times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the explicit Euler method

2

I A n CPU time | s
16 0.041830| 4872 - -
32 0.041707| 18527 - -
64 0.041677| 70305 - 2.00
128 | 0.041669| 266066 | 4 2.00
256 | 0.041667| 1003680 | 30 2.00
512 | 0.041667| 3772429 | 223 2.00
1024 | 0.041667| 14120612 1659 2.00

Table 6: Numerical blow-up times, numbers of iterations, Githks (seconds) and
orders of the approximations obtained with the implicit Euler method

I A n CPU time | s
16 0.041830| 4872 - -
32 0.041707| 18527 1 -
64 0.041677| 70305 1 2.00
128 | 0.041669| 266066 8 2.00
256 | 0.041667| 1003680 | 57 2.00
512 | 0.041667| 3772429 | 422 2.00
1024 | 0.041667| 14120612 3185 2.00

Fourth case: U\") = (5

Table 7: Numerical blow-up times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the explicit Euler method

3—p h2
) + (1 — (ih)*)?, p =2 andr = 5

1 ™ n CPU time | s
16 0.861878| 16031 - -
32 0.860194| 60831 - -
64 0.859773| 231919 1 2.00
128 | 0.859668| 882201 | 9 2.00
256 | 0.859641| 3347050 | 66 2.00
512 | 0.859635| 12661342 488 2.00
1024 | 0.859633| 47738061 3670 2.00
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Table 8: Numerical blow-up times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the implicit Euler method

N’Guessan Koff, et al.

1 ™ n CPU time | s
16 0.861680| 15961 - -
32 0.860144| 60832 - -
64 0.859761| 231919 |2 2.00
128 | 0.859665| 882201 13 2.00
256 | 0.859641| 3347052 | 93 2.00
512 | 0.859635| 12661342 699 2.00
1024 | 0.859633| 47738061 5294 2.00

1

3—p
Fifth case: U") = (5) + (1= (ih)*)*,p =4 andr = h

Table 9: Numerical blow-up times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the explicit Euler method

2

1 ™ n CPU time | s
16 0.012839| 4693 - -
32 0.012798| 17825 - -
64 0.012788| 67544 - 1.98
128 | 0.012786| 255190 | 3 1.99
256 | 0.012785| 960804 | 18 1.99
512 | 0.012785| 3603268 | 135 1.99
1024 | 0.012785| 13452596 1002 1.99
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Table 10: Numerical blow-up times, numbers of iterations, CPU times (seconds) and
orders of the approximations obtained with the implicit Euler method

I ™ n CPU time | s
16 0.012841| 4694 - R
32 0.012799| 17825 - R

64 0.012788| 67545 1 1.98
128 | 0.012786| 255190 | 4 1.99
256 | 0.012785| 960804 | 27 1.99
512 | 0.012785| 3603268 | 197 1.99
1024 | 0.012785| 13452596, 1490 1.99

Remark 5.1. We observe that the blow-up phenomenon occurs faster for the large val-
ues of the initial data and the exponentn the case where the initial data is a constant,
the solution of our problem blows up in a finite time for all> 2, but slowly. This
slowness is due to the absence of the turbulence effect, generated by the convection
term. Therefore the blow-up only depends on the reaction term. When the initial data is
not a constant, the convection term, head of turbulence, accelerates the blow-up created
by the reaction term.

In the following, we also give some plots to illustrate our analysis. For the different
plots, we used both explicit and implicit schemes in the case wherd 6 andp = 4.
In Figures 1, 2, 3 and 4, we can appreciate that the discrete solution blows up in a finite
time when the initial data is a constant or no. In Figures 3 and 4, we see that the blow-up
is faster when the initial data is not a constant. The Figures 5, 6, 7 and 8 show the effect
of the convection term on the evolution of the solution. In Figures 9, 10, 11 and 12, we
observe that the solution of our problem blows up in a finite time 0.04 when the

- . - 1\
initial data is2 and¢ ~ 0.01 when the initial data |<§) + (1 — (ih)*)%
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Figure 2: Evolution of the discrete solu-

Figure 1: Evolution of the discrete solu-
tion (implicit scheme)[/(”) = 2, p = 4.

tion (explicit scheme)/\” = 2, p = 4.

)

)

Figure 3: Evolution of the discrete solu- Figure 4: Evolution of the discrete solu-

3—p 3—p
tion (explicit scheme)Ui(O) = (%) + tion (implicit scheme)UZ.(O) = (%) +
(1—(h)*)*,p = 4.

(1= (ih)*)*, p = 4.



Semilinear Parabolic Equations with a Convection Term 3391

2.6891 X 1t 2.6891 X 1t
2.689 2.6891
i 2.6891 i 2.6891
g 26897 g 2680
2.6889 2.6889
2.6889 . . . L ! 2.6889 . . . L !
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
node node
Figure 5: Evolution of U(x,t) according Figure 6: Evolution of U(x,t) according
to the node (explicit schemel)f,i(o) = 2, to the node (implicit schemeyi(o) = 2,
3xlO 3xlO
O‘.2 014 D.‘G O.‘B i O‘.2 014 D.‘G O.‘B i
node node

Figure 7: Evolution of U(x,t) according Figure 8: Evolution of U(x,t) according
to the node (explicit schemel/i(o) = to the node (implicit scheme)Ui(O) =

(;) (1= ()R p =4 G) (1= () p =4
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Figure 9: Evolution of norm of U(x,t) Figure 10: Evolution of norm of U(x,t)

according to the time (explicit scheme), according to the time (implicit scheme),
U =2, p=4. U =2, p=4.
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numerical time numerical time
Figure 11: Evolution of norm of U(x,t) Figure 12: Evolution of norm of U(x,t)

according to the time (explicit scheme), according to the time (implicit scheme),

Ul = (%)Bp + (1= (ih)?)?% p=4. Ul = G)” + (1= (ih)?)? p = 4.
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