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Abstract

Let K be a non-archimedean valued field whose residue class field is formally real,
let l∞ be the space of all bounded sequences of elements of K and let c0 be the
linear subspace of l∞ of all null-convergence sequences. Under this condition, the
supremun norm of c0 is coming from an inner product and its dual is l∞. In this
paper the authors define a locally convex topology on c0 such that the dual of this
locally convex space is just itself. Many properties of such topology are study.
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1. Introduction and Notations

Throughout this paper K is a non-Archimedean valued field, complete with respect to
the ultrametric induced by the nontrivial valuation |·| .

Recall that the residue class field of K is the field

k = B (0, 1) /B− (0, 1) ,

where B(0, 1) = {λ ∈ K : |λ| ≤ 1} and B−(0, 1) = {λ ∈ K : |λ| < 1} .

Let E be a vector space over K. By a non-Archimedean inner product we mean a
map 〈·, ·〉 : E × E → K which satisfies for all a, b ∈ K and x, y, z ∈ E

I.1 x �= 0 ⇒ 〈x, x〉 �= 0;
I.2 〈ax + by, z〉 = a 〈x, z〉 + b 〈y, z〉 ;
I.3 |〈x, y〉|2 ≤ |〈x, x〉| |〈y, y〉| (Cauchy-Schwarz type inequality)

A vector space E with 〈·, ·〉 is called a non-Archimedean inner product space. If
〈x, y〉 = 〈y, x〉 for all x, y ∈ E, then 〈·, ·〉 is called a symmetric inner product.

In what follows we omit “non-Archimedean” in “non-Archimedean inner product”
in order to simplify the reading of this article.

We already know that each infinite-dimensional Banach space is linearly homeo-
morphic to c0 (see [10] , Th. 3.16, pp.70). Therefore, to study these kind of spaces is
equivalent to study c0, the space of all sequences in K which are convergent to 0. c0 is a
Banach space with the supremum norm ‖·‖∞ . In c0 there is a natural symmetric bilinear
form 〈·, ·〉 : c0 × c0 → K, defined by

〈x, y〉 =
∑
n∈N

xnyn. (1.1)

It is easy to see that |〈x, y〉| ≤ ‖x‖∞ ‖y‖∞ . But, it may happen that |〈x, x〉| < ‖x‖2∞
for some x ∈ c0. In order to avoid the last strict inequality, we need an extra algebraic
condition on K.

Definition 1.1. A field F is formally real if for any finite subset {a1, . . . , an} of F that

satisfies
n∑

i=1

a2
i = 0 implies each ai = 0.

According to this definition, R is formally real and C is not. Examples of non-
archimedean fields which are not formally real are Qp and Cp; however, the Levi-Civita
field given in [8] is formally real. If we take R instead of F in [10] Th.1.3, page 9, then
we can have many examples of non-archimedean field whose respective “residual class
fields” are formally real.

Now, in the non-Archimedean context, we have the following alternative condition
for a formally real field:
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Proposition 1.2. Let K be a non-archimedean valued field. Then, k is formally real if,
and only if, for each finite subset {λ1, λ2, . . . , λn} of K,∣∣λ2

1 + λ2
2 + · · · + λ2

n

∣∣ = max
{∣∣λ2

1

∣∣ , ∣∣λ2
2

∣∣ , . . . , ∣∣λ2
n

∣∣} .

Proof. (⇐) Suppose that k is formally real. Then, by [6] , Corollary 6.3,

|〈x, x〉 + 〈y, y〉| = max {|〈x, x〉| , 〈y, y〉} ,

for x, y ∈ c0. In particular, if

x = (λ1, 0, . . .) , y = (λ2, 0, . . .) ∈ c0,

then ∣∣λ2
1 + λ2

2

∣∣ = max
{|λ1|2 , |λ2|2

}
The rest of the proof follows by induction
(⇒) Let us suppose now that k is not formally real, that means, there exists a finite subset
{λ1, λ2, . . . , λn} ⊂ K so that

λ
2
1 + λ

2
2 + · · · + λ

2
n = 0

and
λi �= 0. (1.2)

Now, λ
2
1 + λ

2
2 + · · · + λ

2
n = 0 implies∣∣λ2

1 + λ2
2 + · · · + λ2

n

∣∣ < 1

and since ∣∣λ2
1 + λ2

2 + · · · + λ2
n

∣∣ = max
{|λ1|2 , |λ2|2 , . . . , |λn|2

}
we have

|λi | < 1

for each i ∈ {1, 2, . . . , n} , which is equivalent to

λi = 0

This is a contradiction to (2). �

The following theorem was one of the main results proved in [6], (Th.6.1, p. 194):

Theorem 1.3. The symmetric bilinear form given in (1.1) is an inner product on c0
which induces the original norm if and only if the residue class field k of K is formally
real.

We already know that the dual of (c0, ‖·‖∞) is just l∞. The main goal of this paper
is to define a locally convex topology ν0 on c0 such that (c0, ν0)

′ = c0 and each closed
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subspace has a normal complemented, that is, if M is a v0-closed subspace, then there
exists a v0−closed subspace N such that c0 = M ⊕ N and 〈m, n〉 = 0 for every m ∈ M

and n ∈ N. In other words, (c0, v0) is orthomodular with respect to this inner product.
Another concept that we will need to know is the following:

Definition 1.4. Let
(
xn

)
be a sequence of nonzero elements of c0. Then, we will say that(

xn
)

has the Riemann-Lebesgue Property (RLP in short) if for any y ∈ c0 we have that

〈
xn, y

〉 → 0.

Of course, every base of c0 have the RLP.

It is well-known that if X is a zero dimensional Hausdorff topological space, then
there are some special locally convex topologies, so-called strict topologies, defined in
Cb(X, K), the space of all continuous and bounded functions from X into K. One of
them, which will be the topology that will be used in this paper, is constructed as follows
(see [2] and [4]):

A function v : X → K is said to be vanish at infinity if it is bounded and for each
ε > 0 there exists a compact K of X such that ‖v‖X\K < ε. Let us call B (X, K) the
collection of all functions on X which are vanish at infinity. Given v ∈ B (X, K) , we
define the semi-norm

pv (f ) = sup
x∈X

|f (x) v (x)| ; for f ∈ Cb(X, K).

The family {pv}ν∈B(X,K) generates a locally convex topology which is denotes by β0.

This topology has many properties that was proved in [4] and we will only mention
those that will be useful in this paper. Let us denote by τu the uniform topology on
Cb(X, K), that is, the topology generated by the supremum norm on Cb(X, K), and by
τc the compact-open topology on Cb(X, K).

1. β0 coincides with τc on each τu−bounded set.

2. τc ≤ β0 ≤ τu

3. β0 and τu have the same bounded sets.

4. A sequence (fn) in Cb(X, K) is β0−convergent to f iff it is τu−bounded and
fn → f in τc.

5. If C0(X, K) denotes the space of those function v ∈ B (X, K) which are continuous
and X is locally compact, then C0(X, K) is β0−dense in Cb(X, K).

Now, in order to describe the dual of (Cb(X, K), β0) , we need to introduce a space
of measures. Let us denote by S (X) the ring of clopen subsets of X; we will understand
by a measures on X to any finitely-additive set-function m : S (X) → K such that it is
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m (S (X)) is bounded in K. The space of all these functions will be denoted by M (X)

and it is normed by |m| = |m| (X), where

|m| (A) = sup {|m (B)| : B ⊂ A; B ∈ S (X)}
for any A ∈ S (X) . Mt (X) will denote the subspace of all measures m ∈ M (X)

such that for any positive real number ε, there exists a compact subset K of X such
that |m| (X − K) < ε. It is well-known that (Cb(X, K), β0)

′ = Mt (X) and for any
m ∈ Mt (X) , each f ∈ BC (X) is m-integrable. These two facts will be also used in
this work.

2. Definition of a locally convex topology on c0

We already know that the dual of (c0, ‖·‖) is l∞, the space of all bounded sequences in
K. In this dual we can distinguish two kind of linear functionals: linear functional of
the type 〈·, y〉 : c0 → K, defined by x → 〈x, y〉 , for any y ∈ c0, and linear functional
of the type f : c0 → K, defined by x → f (x) =

∑
n∈N

xnan, where (an) ∈ l∞ \ c0. The

first ones are call Riesz functional and this collection forms a normed space that we will
denote by

R = {
f ∈ c′

0 : f = 〈·, y〉 for some y ∈ c0
}
.

Clearly, R is algebraically isomorphic to c0. The next lemma will give us conditions for
a continuous linear functional can be a Riesz functional. Here, en will denote the nth

canonical elements of c0.

Lemma 2.1. A continuous linear functional f is a Riesz functional if and only if
lim

n→∞ f (en) = 0. In other words, en → 0 in the weak topology with respect to the

duality 〈c0, R〉.
Proof. (⇒) Let f be an element of R. Then, there exists y ∈ c0 such that f = 〈·, y〉 .

Now, by the fact that {en : n ∈ N} has the RLP, we have

lim
n→∞ f (en) = lim

n→∞ 〈en, y〉 = 0.

(⇐) On the other hand, if lim
n→∞ f (en) = 0, then y = (f (en)) ∈ c0. We claim that

f = 〈·, y〉 , in fact,

x ∈ c0 ⇒ x =
∞∑

n=1

xnen

⇒ f (x) = f

( ∞∑
n=1

xnen

)
=

∞∑
n=1

xnf (en) = 〈x, y〉 .

�
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Definition 2.2. A locally convex topology ν on c0 is said to be admissible if (c0, ν)′ = R.

The locally convex topology generated by the family of semi-norms {qy (·) = |〈·, y〉|
: y ∈ c0} is admissible. It is clear that this topology is the weak topology σR respect to the
duality 〈c0, R〉 . By the fact that this topology is Hausdorff, every admissible topology
is also Hausdorff.

Theorem 2.3. Let ν be an admissible topology. Then,

1. if K is spherically complete, then en
ν→ 0.

2. if ν is of countable type, then en
ν→ 0.

Proof. Both results follow from the fact that each weakly convergent sequence is con-
vergent, since ν is strongly polar (see [9] Th.4.4 and Prop. 4.11 pages 197 and 200).

�

For each y ∈ c0, we define

py (x) = max {|xnyn| : n ∈ N} .

It is clear that py is a semi-norm. Let us denote by ν0 the locally convex topology
generated by this family of semi-norms.

Lemma 2.4. For y ∈ c0,

lim
n→∞ py (en) = 0.

Proof. This is immediately consequence of

py (en) = |yn| .
�

Lemma 2.5. ν0 is of countable type.

Proof. We need to prove that
(
c0, py

)
is of countable type, for each y ∈ c0. We claim

that
c0 = [{e1, e2, . . .}]py

.

In fact, let x ∈ c0 and consider the following sequence

(
n∑

i=1

xiei

)
. Since

py

(
x −

n∑
i=1

xiei

)
= py (0, 0, . . . , 0, xn+1, xn+2, . . .)

= max {|xkyk| : k ≥ n + 1}
≤ ‖y‖ max {|xk| : k ≥ n + 1} n→∞→ 0
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we conclude that

(
n∑

i=1

xiei

)
is py-convergent to x, which is enough to prove the lemma.

�

Proposition 2.6. ν0 is admissible.

Proof. Let us take f ∈ (c0, ν0)
′ . Then, there exists a positive constant C and a finite

collection y1, y2, . . . , yk ∈ c0 such that

|f (x)| ≤ C max
{
pyl (x) : l = 1, . . . , k

}
.

By Lemma 2.4,
pyl (en) → 0,

which implies that
f (en) → 0.

Thus, f ∈ R.

Let us take now f ∈ R and prove that f is ν0−continuous. Since f ∈ R, there exists
y ∈ c0 such that f = 〈·, y〉 . Consider the semi-norm

py (x) = max {|xnyn| : n ∈ N} .

We claim that
|f (x)| ≤ py (x) .

In fact,

|f (x)| = |〈x, y〉| =
∣∣∣∣∣

∞∑
n=1

xnyn

∣∣∣∣∣ ≤ max {|xnyn| : n ∈ N} = py (x) .

Thus, f is ν0-continuous. Therefore,

R = (c0, ν0)
′ .

�

Theorem 2.7. ν0 is the finest locally convex topology of countable type which is admis-
sible.

Proof. Let ν be an admissible locally convex topology of countable type and let p be a
v-continuous semi-norm. By Th.2.3, en

ν→ 0, and then

p (en) → 0.

Choose y = (yn) ∈ c0 such that
|yn| ≥ p (en)



8 José Aguayo, et al.

and consider the semi-norm py (x) = max {|xnyn| : n ∈ N} . Note that
∞∑

n=1

xnen is p-

convergent, since p (xnen) → 0. Then,

p (x) = p

( ∞∑
n=1

xnen

)
≤ max {|xnyn| : n ∈ N} = py (x) .

It is enough to show that
ν ≤ ν0.

�

3. ν0 as a strict topology

Assuming that N has the discrete topology (which is a zero-dimensional topological
space), we will have that l∞ = {x = (xn) : ‖x‖∞ < ∞} is precisely Cb (N, K) .

According to the first section, a function whose vanishes at infinity is a function
η : N → K which satisfies that for a given ε > 0, there exists a compact K in N such
that

‖η (x)‖N\K < ε,

Now, compact sets in N are just the finite subsets, therefore the above condition is
equivalent to say that

lim
n→∞ η (n) = 0,

that is, η ∈ c0. Thus, we have proved that

B (K (X) , K) = {η : N → K : η vanish at infinity} = c0

The first section tell us that the strict topology β0 defined on
Cb (N, K) = l∞ is the topology generated by the family of semi-norms

{
pη

}
η∈c0

. In
this case, each pη has the following form:

pη ((ai)) = sup
i∈N

|aiηi |

Also, the spaces
(
l∞, ‖·‖∞

)
and

(
l∞, β0

)
have the same bounded sets. Note that

C0 (N, K) is just c0 and hence c0 is β0-dense in l∞. At the same time, the topology
ν0 defined in the second section is just the induced topology by β0; hence we have the
following corollary:

Corollary 3.1. The spaces (c0, ν0) and (c0, ‖·‖∞) have the same bounded sets.

Proof. Let B be a ν0-bounded set, hence

∀y ∈ c0 = B (K (X)) : max
x∈B

py (x) < ∞.
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Therefore,
∀η ∈ B (K (X)) = c0 : max

x∈B
pη (x) < ∞,

that is, B is β0-bounded and then B is ‖·‖∞-bounded. �

Remark 3.2. The Ascoli theorem type proved in [5] tells us that the compactoid sets of
(c0, ν0) are precisely the bounded sets. In other words, (c0, ν0) is a semi-montel space.

Proposition 3.3. Let (xn) be a bounded sequence in c0. Then, (xn) is ν0-convergent to
0 if and only if (xn) has the Riemann-Lebesgue Property.

Proof. Since the condition for a sequence must have the Riemann–Lebesgue Property
is equivalent that this sequence convergent to 0 in the weak topology respect to the
duality 〈c0, R〉 and by the fact that bounded sets are compactoid, the proposition follows
applying Th. 4.4 and Prop. 4.11 in [9]. �

Remark 3.4. Let us mention some properties of the spaces
(
l∞, β0

)
and (c0, ν0) . Since

N is a small set, is not a compact space, is a k-space, is a locally compact space and is
an infinity set, we have

1.
(
l∞, β0

)
is not a barrelled space, Th. 7.2.14 in [9]

2.
(
l∞, β0

)
is not a reflexive space, Th. 7.5.10 in [9].

3.
(
l∞, β0

)
is a complete space, Th. 9 in [5] .

4. c0 is β0−dense in
(
l∞, β0

)
and then (c0, ν0) is not a complete space.

4. Duality

Now, by the fact that c0 is β0-dense in
(
l∞, β0

)
, we have that

R = (c0, v0)
′ = (

l∞, β0
)′ = Mt (N, K) .

Let us describe the elements of the space Mt (N). Here, the ring of subsets of N is
S (N) = P (N) and if m ∈ Mt (N) , then m for a given ε > 0, there exists a compact
set K of N such that |m| (N \ K) < ε. Since compact sets in N are finite, we have that
K = {n1, n2, . . . , nk} ⊂ N such that

|m| (N \ {n1, n2, . . . , nk}) < ε,

which this means that

|m| (N \ {n1, n2, . . . , nk}) = max {|m (B)| : B ∩ {n1, n2, . . . , nk} = ∅} < ε
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On the other hand, m ∈ Mt (N) is equivalent to say that for each sequence {Gn} of

subsets of N such that Gn ∩ Gk = ∅ for n �= k, m (∪Gn) =
∞∑

n=1

m (Gn) which implies

that (m (Gn)) ∈ c0. Now, since each function f ∈ l∞ is m-integrable, we have∫
N

f dm ∈ K

But, by properties of the integral, we have

∫
N

f dm =
∫

∪{n}
f dm =

∞∑
n=1

∫
{n}

f dm =
∞∑

n=1

xnm ({n}) = 〈f, (m ({n}))〉 ,

and then we can define a linear homomorphism

� : Mt (N) → R

f → � (m) = 〈·, (m ({n}))〉
We claim that � is an isomorphism, even more, it is a linear isometry. In fact, let 〈·, y〉 be
an element of R, for some y = (yn) ∈ c0. We define m : P (N) → K by m (A) =

∑
i∈A

yi.

Clearly, m is well-defined and is finite additive set-function. Moreover, since

|m (A)| =
∣∣∣∣∣
∑
i∈A

yi

∣∣∣∣∣ ≤ max {|yi | : i ∈ A} ≤ ‖y‖

we conclude that m ∈ M (N) . Now, for a given ε > 0, there exists N ∈ N such that
|yn| < ε, for any n ≥ N. Let us take K = {1, 2, . . . , N − 1} which is compact in N;
hence

|m| (N \ K) = max {|m (B)| : B ⊂ N \ K} < ε,

that is, m ∈ Mt (N) . Now, take m ∈ Mt (N) ; then

‖� (m)‖ = |〈·, (m ({n}))〉| = ‖(m ({n}))‖ = sup {|m ({n})| : n ∈ N}
≤ sup {|m (B)| : B ∈ P (N)} = |m| (N) = |m|

On the other hand, since |m (B)| ≤ ‖y‖ , for all B ∈ P (N) , we conclude that ‖� (m)‖ =
|m| .

5. ν0-Closed subspaces

In this section we will study the ν0−closed subspaces of c0. Let us start with a Kernel of
a ν0−linear functional f. By sections 3, there exists y ∈ c0 such that f = 〈·, y〉 and then
its Kernel N (f ) has the Riemann-Lebesgue Property. Conversely, if f is a continuous
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linear functional and its Kernel has the Riemann-Lebesgue Property, then there exists
y ∈ c0 such that f = 〈·, y〉 (see [6]). From this facts, we have the following proposition.

Proposition 5.1. Let M be an one-codimensional and ‖·‖-closed subspaces of c0. Then,
M is ν0-closed if and only if M has the Riemann–Lebesgue Property.

Proof. Let us denote by N its complemented of M, that is, c0 = M ⊕N and N = [{y}] ,

for some y ∈ c0. Thus, there exists a unique pair {u, v} in c0 such that x = u + v,

with u ∈ M and v ∈ N . We define f : c0 → K by f (x) = α, where v = αy.

Clearly, f is a linear functional whose N (f ) = M. Now, if M is ν0−closed, then f is
ν0-continuous which implies that f = 〈·, z〉 for some z ∈ c0. Now, invoking Th.5 in [1] ,

we conclude that N (f ) = M has the Riemann–Lebesgue Property. Conversely, since
M is ‖·‖-closed, we have that the above f is ‖·‖-continuous and its kernel N (f ) has the
Riemann-Lebesgue Property; then by Cor. 9.2 in [6] , we have that there exists y ∈ c0
such that f = 〈·, y〉 and conclude that M = N (f ) is ν0-closed, since f = 〈·, y〉 ∈ R.

�

Corollary 5.2. Let M be a finite-codimensional and ‖·‖-closed subspaces of c0. Then,
M is ν0-closed if and only if M has the Riemann–Lebesgue Property.

Proposition 5.3. Let M be a ‖·‖-closed subspace of c0. Then, if M has the Riemann–
Lebesgue Property, then M is ν0-closed.

Proof. Since M has the Riemann-Lebesgue Property, there exists a normal complement
N in c0, that is, c0 = M ⊕ N and 〈x, y〉 = 0 for any x ∈ M and y ∈ N (see Cor. 3 in
[1]). Under this condition we can sure the existence of a normal projection P such that
N (P ) = N and R (P ) = M. Now, by Th. 5 in [3], there exists an orthonormal basis
{y1, y2, . . .} in N with the Riemann–Lebesgue Property such that

P =
∞∑

n=1

〈·, yn〉
〈yn, yn〉yn.

Now, each fn = 〈·, yn〉
〈yn, yn〉 is a Riesz functional and then is ν0-continuous which implies

that N (fn) is ν0-closed. By the fact that M = ∩∞
n=1N (fn) we conclude that M is

ν0-closed. �

Remark 5.4. If we M = {M : M ≤ c0, M is ‖·‖ − closed and M has RLP} and N =
{M : M ≤ c0 and is ν0 − closed}, then Prop. 5 tells us that M ⊂ N . On the other hand,
Prop. 4 and Cor. 2 show that there exist ν0−closed subspaces which have the RLP. The
open question here is: M = N ?

Our sincere thanks to the professors Wim Schikhof (RIP) and Lawrence Narici for
the suggestions that they gave us to attack the problems in this paper.
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