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Abstract

In quantile regression there should be no multicollinearity in predictor variables.
The lasso or ridge regularization can overcome the problem of multicollinearity.
An optimum lasso or ridge coefficient can be estimated through cross validation
method. However, this method is unstable when the cross validation process is re-
peated. Percentile method is a method to stabilize cross validation but is not the best
method to predict an extreme value. This paper discusses the use of lasso and ridge
regularizations in quantile regression with a modified percentile cross validation.
The optimum lasso and ridge coefficients are determined based on cross validation
error minimum. The results show that the quantile regression with ridge regular-
ization was better than that with lasso regularization to estimate extreme rainfall.
The values of RMSEP (Root Mean Square Error of Prediction) of ridge regular-
ization are 16.53, 18.36, and 26.26 at Q(0.75), Q(0.90), and Q(0.95) respectively,
while those of lasso regularization are 15.16, 21.19, and 37.24 at the same quantiles.
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1. Introduction

Global circulation model (GCM) output such as precipitation which is global scale or
low resolution data cannot be used directly to describe the condition in a local area.
GCM output can be used as a source of information in statistical downscaling (SD). A
model in SD relates functionally the precipitation of GCM output as predictor variables
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with rainfall data as response variable. The model can be written as multiple regression,
y = f(X), with y and X are the rainfall data and GCM precipitation respectively.

The distribution of rainfall data is asymmetric and heavy right tail. To predict ex-
treme rainfall is not the best way using ordinary least square regression that provides a
convenient method of estimating such conditional mean model [9]. Quantile regression
fits to describe the extreme rainfall because it can explain the nature of rainfall in any
quantile. Quantile regression can provide satisfactory results as least square regression
on the condition of the entire assumptions are fulfilled [11].

High dimension of precipitation of GCM output leads to multicollinearity [14] that
makes the solution of quantile regression becomes not unique. The solution to handle that
problem is to reduce the dimension [1], to select variables [2][4][13], and to shrinkage
coefficient [5] [6][12]. In recent years, much interest has focused on shrinkage methods
such as lasso and ridge methods [11]. A method commonly used is cross validation (CV)
to determined lasso and ridge coefficients. The CV is used because of the limited amount
of data that can be used in an analysis. One set of data is divided into modeling data
and validation data [3]. Simulations carried out by [10] to build generalized linier model
with lasso regularization. It was found that the process of CV is not stable in choosing a
lasso coefficient when the processes are repeated. Some variation is expected because the
grouping of data in the CV process is random [8]. Lasso percentile method was proposed
to deal with the instability CV [10] and found that from a hundred replicates the best
lasso coefficient to build linear model is over than P(0.75). However, the selection lasso
coefficient over than P(0.75) is not the best to predict extreme value in quantile regression.
So, this paper concerns with finding the best criteria not only lasso coefficient but also
ridge coefficient to predict extreme value in quantile regression model using a modified
percentile method. The main focus is on the extreme values at Q(0.75), Q(0.90), and

Q(0.95).

2. Methodology

2.1. Quantile Regression

Quantile regression introduced by Koenker and Bassett in 1978 is an extension of the
quantile function. Quantile regression built a comprehensive strategy to capture the
whole picture regression [9]. Quantile regression coefficients, B;, are predicted based
on [7]:
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Quantile regression with lasso and ridge regularization used lasso and ridge coefficients
to build quantile regression model. Solution of lasso coefficient can be written in La-
grangian form as shown below:

n p
mgn Z P (Vi — x,‘Tﬁr) + Alasso Z |,8r,j| (2.3)
i=1

j=l1

and solution of ridge coefficient can be written in Lagrangian form as follows:

n P
min > o (v = X Bo) + hridge ) (Be.j)’ (2.4)
i=l1

j=1
2.2. Percentile Method

Basically, the percentile method is CV process that repeated in more than once. There
are two algorithms of percentile method that proposed by Roberts and Nowak in 2013.
Both algorithms are simple modification of standard lasso, called percentile lasso. One
of them was applied in this research. The algorithm is as follows [10]:

1. Form =1to M do

* Randomly assign observations to folds for cross validation.

* Fit the standard-lasso using this fold assignment.

2. Let )A»m denote the optimal tuning parameter (lasso coeficient) obtained from
standard-lasso

3. Let A = ()A»], )A\]OO) denote the 100 values of )A»m with CVE for each A
4. Compute A(6), the 8-percentile of A(M)

5. The percentile lasso solution is the solution of the standard-lasso fitted with A =
A(0).

Roberts and Nowak proposed to choose & > 0.75. In prediction extreme rainfall,
6 > 0.75 is not optimal because contain a largest root mean square error prediction
(RMSEP). Beside that, it is difficult to choose fixed I, that has minimum of RMSEP. It
make modifications carried out on point (3). Each X in A (M) have a cross validation
error (CVE). The modifications are choose A that has a minimum CVE in A(M). In
this research, percentile method not only applied on standard lasso but also on ridge.
We assign value of M as 100. This computation used software R with aboehqregat.z
packages. The modification of algorithms as shown below:

1. Form =1 to 100 do

* Randomly assign observations to folds for cross validation.
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Table 1: Models with Data are Built.
Model Modeling Data (Year) Actual Quantil Data (Year)

Ml 1981-2009 1981-2009
M2 1981-2010 1981-2010
M3 1981-2011 1981-2011
M4 1981-2012 1981-2012

* Fit the standard-lasso or ridge using this fold assignment.

2. Let A, denote the optimal lasso coeficient or ridge coeficient obtained from
standard-lasso or ridge.

3. Let A = ():1, 5\100) denote the 100 values of im with CVE for each A

4. Solution for lasso or ridge coeficient is A in A that has a minimum of CVE.

3. Data

Data used in this research are local monthly rainfall and precipitation of GCM data.
Local monthly data in 1981-2013 at Indramayu, Indonesia, is the average of four weather
stations Krangkeng, Sukadana, Karangkendal, and Gegesik. Precipitation of GCM data
are consists of monthly rainfall data Climate Model Intercomparison Project (CMIP5)
issued by the Dutch KNMI, from the website http://www.climatexp.knmi.nl/ in 1981-
2013 with the region’s position 18.75°-1.25° South Latitude and 101.25°-116.25°East
Longitude. The observed area is a square shaped area of 8-8 grid, which resulting in 64
predictor variables.

There are four models are built to know the consistency quantile regression model.
Each model devided rainfall and precipitation of GCM data to modeling data. Actual
quantile data are built from rainfall data that grouped by month in Q(0.75), Q(0.9), and
Q(0.95). Actual quantile data will compared with predictied of quantile regression model
to measure RMSE and RMSEP. The models are shown below:

4. Results

4.1. Modeling

Lasso and ridge quantile regression models established by lasso and ridge coefficients.
These coefficients are selected based on modified percentile method for each quantiles
and each models. In order to know which regularization gives more influence to model.
In Table 2 shows that for each quantile the optimum lasso coefficients are not very much
different and that of ridge are also not different. These lasso coefficients are greater
than those of ridge coefficients. This means lasso regularization gives more influence
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Table 2: List of A based on Modified Percentile Method

. Lasso Ridge

Quantile Model e CVE Fridge g CVE
Ml 274107 21.78 1.1010~° 2223

Q(0.75) M2 3.121072  22.15 1.11107%2 2251
M3 3.311072  22.13 1.221072  22.61
M4 2.881072  22.09 1.121072 2256

M1 2.621072 12.78 1.83107° 12.97

20.9) M2 1.92107%2  12.92 2.31073 13.15
' M3 2.331072 12.91 3.51073 13.18

M4 2.031072 13.01 3.41073 13.18

M1 2.5107° 7.52 3107% 7.61

M2 1.61073 7.68 610~* 7.82

Q(0-95) M3 2.61073 7.72 3107 7.82
M4 1.61073 7.84 1.21073 7.83
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on quantile regression model than ridge regularization. Both lasso or ridge coefficents
shows that the greater quantile give the smallest influence.

The models are then used to predict extreme rainfall. The predicted rainfall are
compare to the actual quantile data. Figure 1 shows the comparison of RMSE values
of all models. Lasso and ridge regularization in Q(0.75) had consistently the smallest
RMSE. The highest RMSE occured in Q(0.95) on every model. The values of RMSE
that less than 40 for all models show that quantile regression models with lasso and ridge
regularization are consistently good. However, quantile regression models with ridge
regularization were better than that with lasso regularization.

Lasso Lasso Lasso Lasso Gulud Gulud Gulud Gulud
Ml M2 M3 M4 ML M2 M3 M4

Q0075 BQEO.9) QOS5

Figure 1: RMSE of Lasso and Ridge Quantile Regression Models
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4.2. Extreme Rainfall Prediction

A hundred of lasso and ridge coefficients from I> used for built quantile regression model
to predict extreme rainfall. Model 1 (M1) is used to predict rainfall in 2010, M2 in 2011,
M3in 2012, and M4 in 2013. Predicted extreme rainfall from each models are compared
with actual quantile data to get RMSEP, so we have a hundred RMSEP. Lasso and ridge
coefficients from modified percentile method is better than percentile method based on
RMSEP. Table 3 and Table 4 shows that coefficients from modified percentile method at
each quantile are between the minimum and maximum RMSEDP, beside that it is never
reach maximum RMSEP. This conditions are different with coefficients from percentile
method that contain the maximum RMSEP. Although minimum percentile method reach
minimum RMSEP in some quantile, it is difficult to draw conclusions the best -percentile
for the next prediction because minimum and maximum of RMSEP not consistently in the
same percentile. This shows the modified percentile method is good enough to determine
optimal lasso and ridge coefficients in establishing a quantile regression model. Figure 2
shows RMSEP and correlation between the predicted and actual quantile data for each
model. The results shows RMSEP of each quantile in each models are not very much
different. The models with RMSEP smaller than 50 with correlation more than 0.95 can
predict extreme rainfall for each quantile accurately. Quantile regression models with
ridge regularization are better than those lasso regularization because of the smallest
RMSEP and the highest correlation.
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2010 2011 2012 2013 2010 2011 2012 2013 010 2011 2012 2013 2010 2011 2012 2013
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Figure 2: RMSEP and Correlation of Lasso and Ridge Quantile Regression Models

4.3. Prediction of Extreme Rainfall in 2013

The prediction of extreme rainfall use model M4 which is more consistent in term of
RMSE, RMSEDP, and correlation of predicted and actual data quantile. The predicted
values are also compare to validation data in 2013. Figure 3 shows that the actual
rainfall in January is close to the predicted rainfall with lasso regularization in Q(0.75)
but is exactly the same the predicted rainfall with ridge regularization. While extreme
rainfall in December is between predicted rainfall with lasso regularization in Q(0.75)
and Q(0.9) on but is exactly the same the predicted rainfall with ridge regularization
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Table 3: Comparison of RM SE PF¢7¢¢il®) pased on Criteria of A in Lasso Quantile

Regression
Quantile Year Prediction Modified Min RM?\EZ(IH
Percentile Percentile Percentile Min A Max A
Method Method Method
2010 16.85®) 162809 17.277  16.28®Y  18.621D
Q(0.75) 2011 14.4099 143207 17.06°D  14.3207  20.9767
2012 15.5092 153142 42480100 14,9408 47 48(100)
2013 13.88069 13,5709 242900 12,4929 24 2906
2010 23.98) 22,607 558590  17.32%9 558509
Q(09) 2011 222079 222079 432690 166332 43.2609
2012 21.380Y 204779 47,027 18.200Y  47.020%
2013 17.2189  1578@2 49 63090 107617 49 63100
2010 31.930D 253000 3556100 253000 35 56100
Q(0.95) 2011 46.23®  21.8980 58 388D 21 8986 58 388D
2012 352609 17.6677  25.76190  17.667" 2576190
2013 35.53® 16748 66.77%0  16.737Y  66.7787

Table 4: Comparison of RM SE PP¢¢¢nile) haged on Criteria of A in Ridge Quantile

Regression
Quantile Year Prediction Modified M RMl\iff n
Percentile Percentile Percentile Min A Max A
Method Method Method
2010 15207 16.27%  16.83100 146109 21.580D
Q(0.75) 2011 17.6919 17720760 17.88(100) 1728 17 88(100)
2012 17.2847 172908 17.4209  17.28@?  18.07V
2013 15.942 162409 16.63°9  15.45%) 193109
2010 17.840 18,957  21.101%  17.841 21,1019
Q0.9) 2011 19.28®  19.687Y  20.55100  1921® 2055100
2012 20.487  20.557%  21.0319  20.43CGD 21,0300
2013 15.8519  17.2482 18,5819 1546017 18.58(100)
2010 27.23©® 2058000 23 267 2058090 29 51D
Q(0.95) 2011 28.54(19 23 5301000 94 23076) 23 5301000 35 45D
2012 29.74% 1941100 20 6670 1941100 37 943
2013 19.533D  18.007?  18.7577  18.007?  27.80BY
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in Q(0.9. Therefore, extreme rainfall in 2013 is better predicted by quantile regression
model with ridge regularization than that with lasso regularization.
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Figure 3: Plot Actual Rainfall 2013 in Lasso and Ridge Quantile Regression Models

Quantile regression with ridge regularization is the best in the prediction of rainfall
in 2013 is supported also by the confidence interval (CI) of predicted rainfall. Confi-
dence interval gets from I, v £ (1.96 x S;) with i, V¢ is rainfall prediction from M4 in
Q(0.75), Q(0.9), and Q(0.95), S; for standard deviation of all rainfall prediction from M4
Q(0.75), Q(0.9), and Q(0.95). Figure 4 depict a comparison of CI with lasso and ridge
regularization. Through the CI plot lasso regularization seen that the higher quantile,
the wider the CI of predicted extreme rainfall. This occurs because the value of the
standard deviation of the predicted rainfall increases as the increasing the quantile. This
case is similar to ridge regularization, but it is not really significant because the standard
deviation is too small. The actual quantile data are between upper and lower limit at CI
in lasso regularization but close to upper and lower limit at CI in ridge regularization.
Therefore, quantile regression with ridge regularization performs better than that lasso
regularization because it has the narrow intervals than lasso regularization.

5. Conclusion

The criteria of selection optimum lasso and ridge coefficients based on modified per-
centile method give good prediction extrem rainfall on either lasso quantile regression
and ridge quantile regression. This is indicated by RMSEP is around average of RMSEP
for whole coefficients. Value of RMSEP that small and correlation more than 0.9, indi-
cate that the quantile regression with lasso and ridge regularization good at predicting
extreme rainfall. In the other hand, the quantile regression with ridge regularization
gives better prediction than the lasso regularization. Quantile regression with rigde reg-
ularization can capture extreme rainfall in 2013, such as extreme rainfall in January and
December at Q(0.75) and Q(0.9).
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Figure 4: Confidence Interval of Rainfall Prediction in Lasso and Ridge Quantile Re-
gression M4
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