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Abstract

Let f be a C* real valued function on R3, and ¢ a real number. Let M be the
subset of R® such that M = {(x, y,z) € R*|f(x,y,z) = c}. On some teaching
materials pertinent to Differential Geometry, a necessary and sufficient condition
for M to be a surface in R® is written as follows: M is a surface in R? if and only if
the differential df is not zero for each point of M. In this note, the authors find the
following: the condition df # 0 for each point of M is a sufficient condition for M
to be a surface in R?, but the condition df # 0 for each point of M is not a necessary
condition for M to be a surface. And then, at an arbitrarily given point p which
belongs to a surface M embedded isometrically in R?, we precisely make an ex-
plication the principal curvatures of M at p, considering M as a hypersurface of R>.
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1. Introduction

Let E? be three dimensional Euclidean space (R3, <, >) with the usual Riemannian
metric <, > on R3, f C® real valued function, and ¢ a real number. Let M f = ¢
the set of all points g such that f(g) = c. Then, on some teaching materials [3, 4, 7]
pertinent to Differential Geometry, is written as follows: M is a surface in R? if and only
if the differential df is not zero for each point of M.

In this paper, we find the fact that the condition df # 0 for every point of M is a
sufficient condition for M to be a surface in R>, but the condition is not a necessary
condition for M to be a surface (cf. Proposition 2.1, Theorem 2.2).

Moreover, at an arbitrarily given point p which belongs to a surface M embedded
isometrically in E3 = R <, >), we precisely make an explication the principal
curvatures of M at p, considering M as a hypersurface of R? (cf. Propositions 3.1
and 3.4).

2. A surface in R?

Let f be a C* real valued function defined on R3 , and ¢ a real number. Let M be the
subset of R3 such that

M ={(x,y,2) e R} f(x,y,2) = c}.

Now, assume the differential d f of the function f is not zero at every point of M, and p is
an arbitrarily given point of M. Then, from the hypothesis ond f is equivalent to assuming
that at least one of three partial derivatives is not zero at the point p = (p1, p2, p3) € M,
say (af/9z)(p) # 0. In this case, by the help of inverse function theorem we obtain the
following:

there exist open neighborhoods D(C ]RZ) of (p1, p2), I(C R) of p3 and J(C R) of
the constant ¢ such that

®:Dx1>3((q1,92),93) —> ((q1.92), f(q1.92,93)) € D x J

is a C*° diffeomorphism.

Putting ®~! = W = (Y1, Y2, ¥3), ¥3(q1, 92, ¢) =: h(qi, g2) for each (g1, q2) €
D, we get

(1,92, ¢) = (P o W)(q1, g2, ¢) = P(q1., 92, h(q1, 92))
= (91,92, f(q1, 92, h(q1, 42)))
for each (g1, g2) € D. So, around the point p(= (p1, p2, p3)) of M,

{(q1, 92, h(q1,92)|(q1, q2) € D}

is a simple surface (2-dimensional C*° manifold embedded isometrically) in E (=
(R3, <, >)). Since pis an arbitrarily given point of M, we can easily find the fact that
M is a surface (2-dimensional C*° manifold embedded isometrically) in E3.
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Proposition 2.1. Let f be a C* real valued function defined on R?, and ¢ a real number.
Let M be the subset of R? such that M = {(x, y, z) € R?|f(x, y, z) = c}. Then, if the
differential df of f is not zero for each point of M, M is a surface (2-dimensional C*
manifold embedded isometrically) in E3.

On the other hand, the converse of Proposition 2.1 is not true. In fact, putting
f,y,2) =x*+y*" —Zand M = {(x,y,2) € R)f(x,y,2) = ¢}, then p =
(0,0,0) € M and (df), = 2xdx + 2ydy — 2zdz), = 0. But, M is a surface (2-
dimensional C* manifold embedded) in R?.

Thus, by virtue of Proposition 2.1 and the above fact, we obtain

Theorem 2.2. Let f be a C* real valued function defined on R3, and ¢ a real number.
Let M be the subset of R? such that M = {(x, v, 2) € R3|f(x, v, z) = c}. Then, the
condition df # 0 for every point of M is a sufficient condition for M to be a surface in
RR3, but the condition df # 0 for every point of M is not a necessary condition for M to
be a surface in R>.

Remark 2.3. On [3, Theorem 1.4, p.127; 4, Theorem 4.1, p.127], a necessary and
sufficient condition for M to be a surface (two dimensional C*° manifold embedded
isometrically) in R? is written as follows:

M is a surface in R? if and only if the differential df is not zero for each point of M.
But, by the help of Proposition 2.1 and Theorem 2.2, we get the fact that the condition
df # 0for every point of M is a sufficient condition for M to be a surface in R?, but the
condition is not a necessary condition for M to be a surface.

3. Principal curvatures of a surface M at a point p belonging to M

In this section, we make a minute and detailed explication concerning principal directions
of a surface M (in the 3-dimensional Euclidean space) at a point p which belongs to M.

Let E? be the three dimensional Euclidean space (R3, <, >), M a surface (2-
dimensional C*° manifold embedded isometrically) in 3, and ¢ the inclusion map of M
into R>. And, let g(:=t*(<, >)) be the Riemannian metric on M which is induced by
tand <, >), and D the Levi-Civita connection on 3.

Let E := ~'TR? be the induced bundle over M of TR> (the tangent bundle over
R3) by the map ¢, that is,

E:={x,u)lxeM, uecT y/yM=T,M)}

Then, the C°°(M)-module of all smooth sections of E (= ! TR3), denotedby I'(M; E),
is as follows:

I'(M;E)y={V|V:M— TR>
is a C°° — mapping such that V (x) € T, R}*(= T,R?) (x € M)).
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The induced connection D on the induced bundle E(= L_ITR3) is defined as follows
(I8, p. 126]):

For X € X(M) and V € I'(M; E), we define DxV € I'(M; E) by

. d -
(3.1 (DxV)(x) = (D, xV)(x) = EIIZODP(LOU)(I) Ve (e,

where t — o(t) € M is a C®-curve in M satisfying 0 (0) = x, o'(0) = X, €
T.(M), and
PPty : TR’ — Tooy R’

is the parallel transport along the curve (too)(¢) with respect to the canonical Levi-Civita
connection D on (R3, <, >).

Then, the formulas of Gauss and Weingarten [1, 5, 6] are

Dxi.Y = ,(VxY) + h(X,Y)U (X,Y € X(M)),

(3.2) ~
DxU = 1(=8(X)) (X € X(M)),

where £ is the second fundamental form of M for the unit normal vector field U, and S is
the shape operator of M (derived from U). And, the following lemma about the induced
connection D is well known ([8, Lemma 1.16, p.129], [6, Theorem 7.5, p.154]).

Lemma 3.1. For X, Y € X(M),
Dxt,Y — Dyt X — . (IX, YD) =T (X, ,Y) =0 (X,Y € X(M)),
where T2 is the torsion tensor field on (E>, D).

Since D is the Riemannian connection on E> (= (]R3 , <, >)), by the help of (3.2)
and Lemma 3.1 we see that V is the Riemannian connection on (M, g(:= * <, >))
and for X, Y € X(M)

(3.3) h(X,Y)=hY,X), gX),Y)=nrX,7Y).

Let M be a surface (2-dimensional C*°-manifold) which is isometrically embedded
inE'(= R <, >)), p an arbitrarily given point of M, and (x', x?) the standard
coordinates of R%. For a local coordinate neighborhood (V, ¢) around the point p,
where ¢ : V — ¢ (V)(C Rz), we define local coordinates x' (i = 1, 2) by

xi=xlop:V—R (i=1,2).

Then each point of V can be uniquely expressed by the coordinate system (x!, x2).
Putting
ol =:x and ¢(V)=:D,
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we get a C°°-mapping x of D into RR? such that
x:D > (u,v) — x(u,v) € V(C M C R).

Here, we may also regard x(u, v), (u,v) € D, as x(u, v) = (x(u, v), y(u, v), z(u, v))

which belong to R3.
Let u be a unit vector tangent to M at the point p. Then, the number
(3.4) ky (@) := g(S(u), u)

is called the normal curvature of M in the u direction, where S is the shape operator of
M (derived from the normal vector field U on M). The maximum and minimum values
of the normal curvature ky (u) of M at p are called the principal curvatures of M at p.
Unit vectors in these directions are called principal vectors of M at the point p.

Now, we put

d dx dy 0z d dx dy 0z
L* B — = —, T, — = Xu, L* - - PN =: XU’
ou ou Jou Ju dv v dv Jv

and consider the quantity
(3.5)
I=<d(ox),d(loXx) > (=< dx,dx >)

=< X, Xy, >du @du+ <x,,Xy > (du @ dv+dv & du)+ < Xy, Xy > dv ® dv.

0 d
Since t, | — )| =xXu, | — ) =xy and * <, >= g, we get from (3.5)
ou av
(3.6)
a 0 a 0 a 0
I=g|—, — |du®du+g| —, — |du®dv+dv@du) +g| —, — |dv®dv
ou Jdu du dv dv dv
=" (<, >)=g.
Moreover, since the symmetric product 8 of two 1-forms « and 8 is given by

3.7) af:=2""a®p+BRa).
By the help of (3.6)and (3.7), we get

5 5 0 3 o
I=g(—,— )du’+2¢|—., — ) dud —, — | dv?
(3.8) g(au au) Wt g<8u 8v) ! ”+g<au 8v) v
="(<, >)=g.

The tensor field I (= *(<, >) = g) of type (0,2) on the surface M is said to be the first
fundamental form of X = x(u, v).
And then, we consider the quantity

3.9 II=—<d(ox),dU >= — < x,du + x,dv, U,du + Uydv > .
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Since < x,, U >=< Xy, U >= 0 and x,,, = Xy, we get

(3.10) <X, U, >=— <X, U >, <Xx,,U,>=— <Xy, U >

<X, U, >=<xp,U, >=— <X, U >.

From (3.9) and (3.10), we have
(3.11)
H=<x,,,U >du®@du+ <x,p, U > ([du@dv+dvQdu)+ < Xy, U > dv@dv.

By virtue of (3.2), (3.3) and (*(< , >= g, we get

U o) S d I a 0
<X ) >= — -, —_— = — —_—, — R
S & ou ou ou ou
o] 0 a 0
(312) < Xu» UU >=< XU’ Uu >= _g (5, S (%)) == —h <£, a) ,

U 0 S 0 I d 0
< Xy, >=—g (| —, — =—h|l—,—|.
v 5 v ov v Jv

By the help of (3.9), (3.10), (3.11) and (3.12), we obtain
(3.13)
0o 0 o 0 0o 0
N=h1|—,— |du®du+h | —, — | (du@dv+dv@du)+h | —, — | dv®dv = h.
ou ou ou 0dv dv Jdv

By the help of (3.7) and (3.13), (3.11) is written as

d 0 2 a 0 d 0 )
(3.14) H=h|—,— )du"+2h|—,— |dudv+h | —, — |dv° =h.
u Jdu du Jv v dv

The tensor field II (= &) of type (0,2) on the surface M is said to be the second funda-
mental form of X = x(u, v).
The tangent space of M at the point p(€ M) is

d 9
(3.15) T,M = {s (a_u>p+t(%>pls’ teR}.

By virtue of (3.4), we obtain the fact that the normal curvature of M in a direction

0 0
s (—) +t (—) =:v(s, 1)(€ T, M) at the point p(€ M) is
ou » v »

(3.16)  kn(s, 1) = en(IV(s, Dl v (s, 1) = [v(s, D)2 (S(V(s, 1)), (s, 1)).

So, ky is a C* function of R x R into R.
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(), (2),)
Fo:=g ((e;iu)p (;_v>p>
3 ovme((2)(2))

(3.17) v(s, z)||§ — Eps? + 2Fyst + Got>.

And, putting

and

we obtain from (3.3)
(3.18) g(S(v(s, 1)), v(s, 1)) = h(v(s, 1), v(s, 1)) = Los? + 2Most + Not>.
By the help of (3.16), (3.17) and (3.18), we have

Los? + 2Myst + Not2

3.19 , 1) = .
( ) en (s, 1) Eos? 4+ 2Fyst + Got?

Proposition 3.2. The normal curvature of M in a direction

0 0
v(s,t) =35 (E)p +t <%)p (e T,M)

at the point p(e M) is

L0S2 + 2Myst + N0t2
E()S2 + 2Fyst + G()l‘2 '

KN(S’ t) =



8 Joon-Sik Park, Hyun Woong Kim, and Ju-Wan Han

From the above proposition, we find the fact that «y (s, t) only depends upon the ratio
s 1.

Remark 3.3. There is the statement in [4, p. 143 ~ p. 150] such that the normal curvature
function «y defined on T, (M) depends only upon the ratio du : dv, where

KN ° h(au Bu)du +2h(8u 88v)dudv +h(8v av)dv h
N - = —.
g(au g du? +2g (5, ) dudv + g(2, av)dv2 8

But, the above statement is not appropriate, since {du, dv} is the (locally defined)

0
dual frame of {—, —}.
du v

Moreover, we get the fact that a necessary and sufficient condition for ||v(s, ) || ¢ ! v(s, 1),
(s, 1) # (0, 0), to be a principal vector of M at the point p(€ M) is

okn(s,t)  Okn(s,t)
as ot
And, the condition (3.20) is equivalent to the following:
(Lo — kn(s,t)Ep)s + (Mo — kn (s, t)Fy)t =0, and
(Mo — kn (s, 1) Fo)s + (No — kn (s, )Go)t = 0.
Remark 3.4. In [2, Theorem 9.5, p. 183], a necessary and sufficient condition for «x to

be a principal curvature of M is presented as follows: A real number ky is a principal
curvature at p in the direction du : dv if and only if kn, du and dv satisfy

(Lo —kn(s,t)Eg)du + (Mo — kn (s, t)Fy)dv = 0, and
(Mo — kn(s, t)Fo)du + (Ng — kn(s, 1)Go)dv = 0.

The ratio du : dv at the phrase ‘a principal curvature at p in the direction du : dv’ of

the above theorem is not appropriate, since {du, dv} is the (locally defined) dual frame
d
of
{au v 0
Moreover, the homogeneous system (3.21) of equations has a nontrivial solution

(s, t) if and only if

(3.20)

(3.21)

Lo—«kn(s,t)Ey Mo —«n(s,t)Fy
Moy —«kn(s,t)Fy No—«n(s,1)Go

So, the principal curvature «y (s, #) of M at p is a solution of the equation
(3.23) (EoGo—F)un(s, 1)*—(EoNo+GoLo—2FoMo)kn (s, 1)+(LoNo—Mg) = 0.

Thus we obtain

(3.22) = 0.

Proposition 3.5. A number « is a principal curvature if and only if « is a solution of the
equation

(EG — Fkn?> — (EN + GL —2FM)kn + (LN — M%) = 0.
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