On surfaces in \mathbb{R}^{3}

Joon-Sik Park
Department of Mathematics, Busan University of Foreign Studies, Busan 46234, Korea.
Hyun Woong Kim
Department of Mathematics, Pukyong National University, Busan 608-737, Korea.
Ju-Wan Han
Department of Mathematics, Pukyong National University, Busan 608-737, Korea.

Abstract

Let f be a C^{∞} real valued function on \mathbb{R}^{3}, and c a real number. Let M be the subset of \mathbb{R}^{3} such that $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=c\right\}$. On some teaching materials pertinent to Differential Geometry, a necessary and sufficient condition for M to be a surface in \mathbb{R}^{3} is written as follows: M is a surface in \mathbb{R}^{3} if and only if the differential $d f$ is not zero for each point of M. In this note, the authors find the following: the condition $d f \neq 0$ for each point of M is a sufficient condition for M to be a surface in \mathbb{R}^{3}, but the condition $d f \neq 0$ for each point of M is not a necessary condition for M to be a surface. And then, at an arbitrarily given point p which belongs to a surface M embedded isometrically in \mathbb{R}^{3}, we precisely make an explication the principal curvatures of M at p, considering M as a hypersurface of \mathbb{R}^{3}.

AMS subject classification: 53A10, 53C23, 53C42, 53C43.
Keywords: Surface in \mathbb{R}^{3}, inverse (implicit) function theorem, normal (principal) curvature.

1. Introduction

Let \mathbb{E}^{3} be three dimensional Euclidean space $\left(\mathbb{R}^{3},<,>\right)$ with the usual Riemannian metric $<,>$ on $\mathbb{R}^{3}, f C^{\infty}$ real valued function, and c a real number. Let $M f=c$ the set of all points q such that $f(q)=c$. Then, on some teaching materials $[3,4,7]$ pertinent to Differential Geometry, is written as follows: M is a surface in \mathbb{R}^{3} if and only if the differential df is not zero for each point of M.

In this paper, we find the fact that the condition $d f \neq 0$ for every point of M is a sufficient condition for M to be a surface in \mathbb{R}^{3}, but the condition is not a necessary condition for M to be a surface (cf. Proposition 2.1, Theorem 2.2).

Moreover, at an arbitrarily given point p which belongs to a surface M embedded isometrically in $\mathbb{E}^{3}\left(=\left(\mathbb{R}^{3},<,>\right)\right.$, we precisely make an explication the principal curvatures of M at p, considering M as a hypersurface of \mathbb{R}^{3} (cf. Propositions 3.1 and 3.4).

2. A surface in \mathbb{R}^{3}

Let f be a C^{∞} real valued function defined on \mathbb{R}^{3}, and c a real number. Let M be the subset of \mathbb{R}^{3} such that

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=c\right\}
$$

Now, assume the differential $d f$ of the function f is not zero at every point of M, and p is an arbitrarily given point of M. Then, from the hypothesis on $d f$ is equivalent to assuming that at least one of three partial derivatives is not zero at the point $p=\left(p_{1}, p_{2}, p_{3}\right) \in M$, say $(\partial f / \partial z)(p) \neq 0$. In this case, by the help of inverse function theorem we obtain the following:
there exist open neighborhoods $D\left(\subset \mathbb{R}^{2}\right)$ of $\left(p_{1}, p_{2}\right), I(\subset \mathbb{R})$ of p_{3} and $J(\subset \mathbb{R})$ of the constant c such that

$$
\Phi: D \times I \ni\left(\left(q_{1}, q_{2}\right), q_{3}\right) \longmapsto\left(\left(q_{1}, q_{2}\right), f\left(q_{1}, q_{2}, q_{3}\right)\right) \in D \times J
$$

is a C^{∞} diffeomorphism.
Putting $\Phi^{-1}=: \Psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right), \psi_{3}\left(q_{1}, q_{2}, c\right)=: h\left(q_{1}, q_{2}\right)$ for each $\left(q_{1}, q_{2}\right) \in$ D, we get

$$
\begin{aligned}
\left(q_{1}, q_{2}, c\right) & =(\Phi \circ \Psi)\left(q_{1}, q_{2}, c\right)=\Phi\left(q_{1}, q_{2}, h\left(q_{1}, q_{2}\right)\right) \\
& =\left(q_{1}, q_{2}, f\left(q_{1}, q_{2}, h\left(q_{1}, q_{2}\right)\right)\right)
\end{aligned}
$$

for each $\left(q_{1}, q_{2}\right) \in D$. So, around the point $p\left(=\left(p_{1}, p_{2}, p_{3}\right)\right)$ of M,

$$
\left\{\left(q_{1}, q_{2}, h\left(q_{1}, q_{2}\right)\right) \mid\left(q_{1}, q_{2}\right) \in D\right\}
$$

is a simple surface (2 -dimensional C^{∞} manifold embedded isometrically) in \mathbb{E}^{3} (= $\left(\mathbb{R}^{3},<,>\right)$). Since p is an arbitrarily given point of M, we can easily find the fact that M is a surface (2-dimensional C^{∞} manifold embedded isometrically) in \mathbb{E}^{3}.

Proposition 2.1. Let f be a C^{∞} real valued function defined on \mathbb{R}^{3}, and c a real number. Let M be the subset of \mathbb{R}^{3} such that $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=c\right\}$. Then, if the differential $d f$ of f is not zero for each point of M, M is a surface (2-dimensional C^{∞} manifold embedded isometrically) in \mathbb{E}^{3}.

On the other hand, the converse of Proposition 2.1 is not true. In fact, putting $f(x, y, z):=x^{2}+y^{2}-z^{2}$ and $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=c\right\}$, then $p=$ $(0,0,0) \in M$ and $(d f)_{p}=(2 x d x+2 y d y-2 z d z)_{p}=0$. But, M is a surface (2dimensional C^{∞} manifold embedded) in \mathbb{R}^{3}.

Thus, by virtue of Proposition 2.1 and the above fact, we obtain
Theorem 2.2. Let f be a C^{∞} real valued function defined on \mathbb{R}^{3}, and c a real number. Let M be the subset of \mathbb{R}^{3} such that $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=c\right\}$. Then, the condition $d f \neq 0$ for every point of M is a sufficient condition for M to be a surface in \mathbb{R}^{3}, but the condition $d f \neq 0$ for every point of M is not a necessary condition for M to be a surface in \mathbb{R}^{3}.

Remark 2.3. On [3, Theorem 1.4, p.127; 4, Theorem 4.1, p.127], a necessary and sufficient condition for M to be a surface (two dimensional C^{∞} manifold embedded isometrically) in \mathbb{R}^{3} is written as follows:
M is a surface in \mathbb{R}^{3} if and only if the differential df is not zero for each point of M. But, by the help of Proposition 2.1 and Theorem 2.2, we get the fact that the condition $d f \neq 0$ for every point of M is a sufficient condition for M to be a surface in \mathbb{R}^{3}, but the condition is not a necessary condition for M to be a surface.

3. Principal curvatures of a surface M at a point p belonging to M

In this section, we make a minute and detailed explication concerning principal directions of a surface M (in the 3-dimensional Euclidean space) at a point p which belongs to M.

Let \mathbb{E}^{3} be the three dimensional Euclidean space $\left(\mathbb{R}^{3},<,>\right), M$ a surface (2dimensional C^{∞} manifold embedded isometrically) in \mathbb{E}^{3}, and ι the inclusion map of M into \mathbb{R}^{3}. And, let $g\left(:=\iota^{\star}(<,>)\right)$ be the Riemannian metric on M which is induced by ι and $<,>$), and D the Levi-Civita connection on \mathbb{E}^{3}.

Let $E:=\iota^{-1} T \mathbb{R}^{3}$ be the induced bundle over M of $T \mathbb{R}^{3}$ (the tangent bundle over \mathbb{R}^{3}) by the map ι, that is,

$$
E:=\left\{(x, u) \mid x \in M, u \in T_{l(x)} M\left(=T_{x} M\right)\right\} .
$$

Then, the $C^{\infty}(M)$-module of all smooth sections of $E\left(=\iota^{-1} T \mathbb{R}^{3}\right)$, denoted by $\Gamma(M ; E)$, is as follows:

$$
\begin{aligned}
& \Gamma(M ; E)=\left\{V \mid V: M \rightarrow T \mathbb{R}^{3}\right. \\
&\text { is a } \left.C^{\infty}-\text { mapping such that } V(x) \in T_{\iota(x)} \mathbb{R}^{3}\left(=T_{x} \mathbb{R}^{3}\right) \quad(x \in M)\right\} .
\end{aligned}
$$

The induced connection \tilde{D} on the induced bundle $E\left(=\iota^{-1} T \mathbb{R}^{3}\right)$ is defined as follows ([8, p. 126]):

For $X \in \mathfrak{X}(M)$ and $V \in \Gamma(M ; E)$, we define $\tilde{D}_{X} V \in \Gamma(M ; E)$ by

$$
\begin{equation*}
\left(\tilde{D}_{X} V\right)(x)=\left(D_{l_{\star} X} V\right)(x)=\left.\frac{d}{d t}\right|_{t=0} ^{D} P_{(\iota \sigma)(t)}{ }^{-1} V(\sigma(t)) \quad(x \in M), \tag{3.1}
\end{equation*}
$$

where $t \mapsto \sigma(t) \in M$ is a C^{∞}-curve in M satisfying $\sigma(0)=x, \quad \sigma^{\prime}(0)=X_{x} \in$ $T_{x}(M)$, and

$$
{ }^{D} P_{(เ \circ \sigma)(t)}: T_{\iota(x)} \mathbb{R}^{3} \longrightarrow T_{(\iota \sigma \sigma)(t)} \mathbb{R}^{3}
$$

is the parallel transport along the curve $(\iota \sigma)(t)$ with respect to the canonical Levi-Civita connection D on ($\left.\mathbb{R}^{3},<,>\right)$.

Then, the formulas of Gauss and Weingarten $[1,5,6]$ are

$$
\begin{align*}
& \tilde{D}_{X} \iota_{\star} Y=\iota_{\star}\left(\nabla_{X} Y\right)+h(X, Y) U \quad(X, Y \in \mathfrak{X}(M)) \\
& \tilde{D}_{X} U=\iota_{\star}(-S(X)) \quad(X \in \mathfrak{X}(M)) \tag{3.2}
\end{align*}
$$

where h is the second fundamental form of M for the unit normal vector field U, and S is the shape operator of M (derived from U). And, the following lemma about the induced connection \tilde{D} is well known ([8, Lemma 1.16, p.129], [6, Theorem 7.5, p.154]).

Lemma 3.1. For $X, Y \in \mathfrak{X}(M)$,

$$
\tilde{D}_{X} \iota_{\star} Y-\tilde{D}_{Y} \iota_{\star} X-\iota_{\star}([X, Y])=T^{D}\left(\iota_{\star} X, \iota_{\star} Y\right)=0 \quad(X, Y \in \mathscr{X}(M))
$$

where T^{D} is the torsion tensor field on $\left(\mathbb{E}^{3}, D\right)$.
Since D is the Riemannian connection on $\mathbb{E}^{3}\left(=\left(\mathbb{R}^{3},<,>\right)\right)$, by the help of (3.2) and Lemma 3.1 we see that ∇ is the Riemannian connection on $\left(M, g\left(:=\iota^{\star}<,>\right)\right)$ and for $X, Y \in \mathfrak{X}(M)$

$$
\begin{equation*}
h(X, Y)=h(Y, X), \quad g(S(X), Y)=h(X, Y) . \tag{3.3}
\end{equation*}
$$

Let M be a surface (2-dimensional C^{∞}-manifold) which is isometrically embedded in $\mathbb{E}^{3}\left(=\left(\mathbb{R}^{3},<,>\right)\right), p$ an arbitrarily given point of M, and $\left(x^{1}, x^{2}\right)$ the standard coordinates of \mathbb{R}^{2}. For a local coordinate neighborhood (V, ϕ) around the point p, where $\phi: V \rightarrow \phi(V)\left(\subset \mathbb{R}^{2}\right)$, we define local coordinates $x^{i}(i=1,2)$ by

$$
x^{i}:=x^{i} \circ \phi: V \longrightarrow \mathbb{R} \quad(i=1,2)
$$

Then each point of V can be uniquely expressed by the coordinate system $\left(x^{1}, x^{2}\right)$. Putting

$$
\phi^{-1}=: \mathbf{x} \quad \text { and } \quad \phi(V)=: D
$$

we get a C^{∞}-mapping \mathbf{x} of D into \mathbb{R}^{3} such that

$$
\mathbf{x}: D \ni(u, v) \longrightarrow \mathbf{x}(u, v) \in V\left(\subset M \subset \mathbb{R}^{3}\right)
$$

Here, we may also regard $\mathbf{x}(u, v),(u, v) \in D$, as $\mathbf{x}(u, v)=(x(u, v), y(u, v), z(u, v))$ which belong to \mathbb{R}^{3}.

Let \mathbf{u} be a unit vector tangent to M at the point p. Then, the number

$$
\begin{equation*}
\kappa_{N}(\mathbf{u}):=g(S(\mathbf{u}), \mathbf{u}) \tag{3.4}
\end{equation*}
$$

is called the normal curvature of M in the \mathbf{u} direction, where S is the shape operator of M (derived from the normal vector field U on M). The maximum and minimum values of the normal curvature $\kappa_{N}(\mathbf{u})$ of M at p are called the principal curvatures of M at p. Unit vectors in these directions are called principal vectors of M at the point p.

Now, we put

$$
\iota_{\star}\left(\frac{\partial}{\partial u}\right)=\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)=: \mathbf{x}_{u}, \quad \iota_{\star}\left(\frac{\partial}{\partial v}\right)=\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)=: \mathbf{x}_{v},
$$

and consider the quantity

(3.5)

$$
\begin{aligned}
\mathbf{I} & =<d(\iota \circ \mathbf{x}), d(\iota \circ \mathbf{x})>(=<d \mathbf{x}, d \mathbf{x}>) \\
& =<\mathbf{x}_{u}, \mathbf{x}_{u}>d u \otimes d u+<\mathbf{x}_{u}, \mathbf{x}_{v}>(d u \otimes d v+d v \otimes d u)+<\mathbf{x}_{v}, \mathbf{x}_{v}>d v \otimes d v .
\end{aligned}
$$

Since $\iota_{\star}\left(\frac{\partial}{\partial u}\right)=\mathbf{x}_{u}, \iota_{\star}\left(\frac{\partial}{\partial v}\right)=\mathbf{x}_{v}$ and $\iota^{\star}<,>=g$, we get from (3.5)

$$
\begin{align*}
\mathbf{I} & =g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right) d u \otimes d u+g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right)(d u \otimes d v+d v \otimes d u)+g\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) d v \otimes d v \tag{3.6}\\
& =\iota^{\star}(<,>)=g
\end{align*}
$$

Moreover, since the symmetric product $\alpha \beta$ of two 1 -forms α and β is given by

$$
\begin{equation*}
\alpha \beta:=2^{-1}(\alpha \otimes \beta+\beta \otimes \alpha) . \tag{3.7}
\end{equation*}
$$

By the help of (3.6)and (3.7), we get

$$
\begin{align*}
\mathbf{I} & =g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right) d u^{2}+2 g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right) d u d v+g\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) d v^{2} \tag{3.8}\\
& =\iota^{\star}(<,>)=g .
\end{align*}
$$

The tensor field $\mathbf{I}\left(=\iota^{\star}(<,>)=g\right)$ of type $(0,2)$ on the surface M is said to be the first fundamental form of $\mathbf{x}=\mathbf{x}(u, v)$.

And then, we consider the quantity

$$
\begin{equation*}
\mathbf{I I}=-<d(\iota \circ \mathbf{x}), d U>=-<\mathbf{x}_{u} d u+\mathbf{x}_{v} d v, U_{u} d u+U_{v} d v>. \tag{3.9}
\end{equation*}
$$

Since $\left.\left\langle\mathbf{x}_{u}, U\right\rangle=<\mathbf{x}_{v}, U\right\rangle=0$ and $\mathbf{x}_{u v}=\mathbf{x}_{v u}$, we get

$$
\begin{align*}
& <\mathbf{x}_{u}, U_{u}>=-<\mathbf{x}_{u u}, U>, \quad<\mathbf{x}_{v}, U_{v}>=-<\mathbf{x}_{v v}, U> \tag{3.10}\\
& <\mathbf{x}_{u}, U_{v}>=<\mathbf{x}_{v}, U_{u}>=-<\mathbf{x}_{u v}, U>.
\end{align*}
$$

From (3.9) and (3.10), we have
$\mathbf{I I}=<\mathbf{x}_{u u}, U>d u \otimes d u+<\mathbf{x}_{u v}, U>(d u \otimes d v+d v \otimes d u)+<\mathbf{x}_{v v}, U>d v \otimes d v$.
By virtue of (3.2), (3.3) and $\iota^{\star}(<,>=g$, we get

$$
\begin{align*}
& <\mathbf{x}_{u}, U_{u}>=-g\left(\frac{\partial}{\partial u}, S\left(\frac{\partial}{\partial u}\right)\right)=-h\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right), \\
& <\mathbf{x}_{u}, U_{v}>=<\mathbf{x}_{v}, U_{u}>=-g\left(\frac{\partial}{\partial u}, S\left(\frac{\partial}{\partial v}\right)\right)=-h\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right), \tag{3.12}\\
& <\mathbf{x}_{v}, U_{v}>=-g\left(\frac{\partial}{\partial v}, S\left(\frac{\partial}{\partial v}\right)\right)=-h\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) .
\end{align*}
$$

By the help of (3.9), (3.10), (3.11) and (3.12), we obtain
$\mathbf{I I}=h\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right) d u \otimes d u+h\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right)(d u \otimes d v+d v \otimes d u)+h\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) d v \otimes d v=h$.
By the help of (3.7) and (3.13), (3.11) is written as

$$
\begin{equation*}
\mathbf{I I}=h\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right) d u^{2}+2 h\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right) d u d v+h\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) d v^{2}=h . \tag{3.14}
\end{equation*}
$$

The tensor field II (=h) of type (0,2) on the surface M is said to be the second fundamental form of $\mathbf{x}=\mathbf{x}(u, v)$.

The tangent space of M at the point $p(\in M)$ is

$$
\begin{equation*}
T_{p} M=\left\{\left.s\left(\frac{\partial}{\partial u}\right)_{p}+t\left(\frac{\partial}{\partial v}\right)_{p} \right\rvert\, s, t \in \mathbb{R}\right\} . \tag{3.15}
\end{equation*}
$$

By virtue of (3.4), we obtain the fact that the normal curvature of M in a direction $s\left(\frac{\partial}{\partial u}\right)_{p}+t\left(\frac{\partial}{\partial v}\right)_{p}=: \mathbf{v}(s, t)\left(\in T_{p} M\right)$ at the point $p(\in M)$ is

$$
\begin{equation*}
\kappa_{N}(s, t):=\kappa_{N}\left(\|\mathbf{v}(s, t)\|_{g}^{-1} \mathbf{v}(s, t)\right)=\|\mathbf{v}(s, t)\|_{g}^{-2} g(S(\mathbf{v}(s, t)), \mathbf{v}(s, t)) . \tag{3.16}
\end{equation*}
$$

So, κ_{N} is a C^{∞} function of $\mathbb{R} \times \mathbb{R}$ into \mathbb{R}.

Putting

$$
\begin{aligned}
E_{0} & :=g\left(\left(\frac{\partial}{\partial u}\right)_{p},\left(\frac{\partial}{\partial u}\right)_{p}\right), \\
F_{0} & :=g\left(\left(\frac{\partial}{\partial u}\right)_{p},\left(\frac{\partial}{\partial v}\right)_{p}\right)
\end{aligned}
$$

and

$$
G_{0}:=g\left(\left(\frac{\partial}{\partial v}\right)_{p},\left(\frac{\partial}{\partial v}\right)_{p}\right),
$$

we get

$$
\begin{equation*}
\|\mathbf{v}(s, t)\|_{g}^{2}=E_{0} s^{2}+2 F_{0} s t+G_{0} t^{2} \tag{3.17}
\end{equation*}
$$

And, putting

$$
\begin{aligned}
L_{0} & :=h\left(\left(\frac{\partial}{\partial u}\right)_{p},\left(\frac{\partial}{\partial u}\right)_{p}\right), \\
M_{0} & :=h\left(\left(\frac{\partial}{\partial u}\right)_{p},\left(\frac{\partial}{\partial v}\right)_{p}\right)
\end{aligned}
$$

and

$$
N_{0}:=h\left(\left(\frac{\partial}{\partial v}\right)_{p},\left(\frac{\partial}{\partial v}\right)_{p}\right),
$$

we obtain from (3.3)

$$
\begin{equation*}
g(S(\mathbf{v}(s, t)), \mathbf{v}(s, t))=h(\mathbf{v}(s, t), \mathbf{v}(s, t))=L_{0} s^{2}+2 M_{0} s t+N_{0} t^{2} \tag{3.18}
\end{equation*}
$$

By the help of (3.16), (3.17) and (3.18), we have

$$
\begin{equation*}
\kappa_{N}(s, t)=\frac{L_{0} s^{2}+2 M_{0} s t+N_{0} t^{2}}{E_{0} s^{2}+2 F_{0} s t+G_{0} t^{2}} \tag{3.19}
\end{equation*}
$$

Proposition 3.2. The normal curvature of M in a direction

$$
\mathbf{v}(s, t):=s\left(\frac{\partial}{\partial u}\right)_{p}+t\left(\frac{\partial}{\partial v}\right)_{p}\left(\in T_{p} M\right)
$$

at the point $p(\in M)$ is

$$
\kappa_{N}(s, t)=\frac{L_{0} s^{2}+2 M_{0} s t+N_{0} t^{2}}{E_{0} s^{2}+2 F_{0} s t+G_{0} t^{2}}
$$

From the above proposition, we find the fact that $\kappa_{N}(s, t)$ only depends upon the ratio $s: t$.

Remark 3.3. There is the statement in [4, p. $143 \sim$ p. 150] such that the normal curvature function κ_{N} defined on $T_{p}(M)$ depends only upon the ratio $d u: d v$, where

$$
\kappa_{N}:=\frac{h\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right) d u^{2}+2 h\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right) d u d v+h\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) d v^{2}}{g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right) d u^{2}+2 g\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right) d u d v+g\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) d v^{2}}=\frac{h}{g} .
$$

But, the above statement is not appropriate, since $\{d u, d v\}$ is the (locally defined) dual frame of $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$.

Moreover, we get the fact that a necessary and sufficient condition for $\|\mathbf{v}(s, t)\|_{g}^{-1} \mathbf{v}(s, t)$, $(s, t) \neq(0,0)$, to be a principal vector of M at the point $p(\in M)$ is

$$
\begin{equation*}
\frac{\partial \kappa_{N}(s, t)}{\partial s}=\frac{\partial \kappa_{N}(s, t)}{\partial t}=0 . \tag{3.20}
\end{equation*}
$$

And, the condition (3.20) is equivalent to the following:

$$
\begin{align*}
& \left(L_{0}-\kappa_{N}(s, t) E_{0}\right) s+\left(M_{0}-\kappa_{N}(s, t) F_{0}\right) t=0, \text { and } \tag{3.21}\\
& \left(M_{0}-\kappa_{N}(s, t) F_{0}\right) s+\left(N_{0}-\kappa_{N}(s, t) G_{0}\right) t=0 .
\end{align*}
$$

Remark 3.4. In [2, Theorem 9.5, p. 183], a necessary and sufficient condition for κ_{N} to be a principal curvature of M is presented as follows: A real number κ_{N} is a principal curvature at p in the direction $d u: d v$ if and only if $\kappa_{N}, d u$ and $d v$ satisfy

$$
\left(\begin{array}{l}
\left(L_{0}-\kappa_{N}(s, t) E_{0}\right) d u+\left(M_{0}-\kappa_{N}(s, t) F_{0}\right) d v=0, \text { and } \\
\left(M_{0}-\kappa_{N}(s, t) F_{0}\right) d u+\left(N_{0}-\kappa_{N}(s, t) G_{0}\right) d v=0 .
\end{array}\right.
$$

The ratio $d u: d v$ at the phrase 'a principal curvature at p in the direction $d u: d v$ ' of the above theorem is not appropriate, since $\{d u, d v\}$ is the (locally defined) dual frame of $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$.

Moreover, the homogeneous system (3.21) of equations has a nontrivial solution (s, t) if and only if

$$
\left|\begin{array}{ll}
L_{0}-\kappa_{N}(s, t) E_{0} & M_{0}-\kappa_{N}(s, t) F_{0} \tag{3.22}\\
M_{0}-\kappa_{N}(s, t) F_{0} & N_{0}-\kappa_{N}(s, t) G_{0}
\end{array}\right|=0
$$

So, the principal curvature $\kappa_{N}(s, t)$ of M at p is a solution of the equation

$$
\begin{equation*}
\left(E_{0} G_{0}-F_{0}^{2}\right) \kappa_{N}(s, t)^{2}-\left(E_{0} N_{0}+G_{0} L_{0}-2 F_{0} M_{0}\right) \kappa_{N}(s, t)+\left(L_{0} N_{0}-M_{0}^{2}\right)=0 \tag{3.23}
\end{equation*}
$$

Thus we obtain
Proposition 3.5. A number κ is a principal curvature if and only if κ is a solution of the equation

$$
\left(E G-F^{2}\right) \kappa_{N}^{2}-(E N+G L-2 F M) \kappa_{N}+\left(L N-M^{2}\right)=0 .
$$

References

[1] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, WileyInterscience, New York, 1969.
[2] M. Lipschutz, Differential Geometry, McGraw-Hill, 1969.
[3] B. O 'Neill, Elementary Differential Geometry, New York, Academic Press, 1997.
[4] Jin Suk Park, Yong-Soo Pyo and Hyang Sook Kim, An Introduction to Differential Geometry (in Korean), Kyungmoon Publ., 2013.
[5] J.-S. Park, Differential geometric properties on the Heisenberg group, to appear in J. Korean Math. Soc.
[6] J.-S. Park, Modern Geometry (in Korean), Kyungmoon Publ., 2015.
[7] Gab Jin Yun, Differential Geometry (in Korean), Kyungmoon Publ., 2014.
[8] H. Urakawa, Curvatures of Variations and Harmonic Maps, Amer. Math. Soc., Providence, Rhode Island, 1993.

