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Abstract

Let f be a C∞ real valued function on R
3, and c a real number. Let M be the

subset of R
3 such that M = {(x, y, z) ∈ R

3|f (x, y, z) = c}. On some teaching
materials pertinent to Differential Geometry, a necessary and sufficient condition
for M to be a surface in R

3 is written as follows: M is a surface in R
3 if and only if

the differential df is not zero for each point of M . In this note, the authors find the
following: the condition df �= 0 for each point of M is a sufficient condition for M

to be a surface in R
3, but the condition df �= 0 for each point of M is not a necessary

condition for M to be a surface. And then, at an arbitrarily given point p which
belongs to a surface M embedded isometrically in R

3, we precisely make an ex-
plication the principal curvatures of M at p, considering M as a hypersurface of R

3.
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1. Introduction

Let E
3 be three dimensional Euclidean space (R3, < , >) with the usual Riemannian

metric < , > on R
3, f C∞ real valued function, and c a real number. Let M f = c

the set of all points q such that f (q) = c. Then, on some teaching materials [3, 4, 7]
pertinent to Differential Geometry, is written as follows: M is a surface in R

3 if and only
if the differential df is not zero for each point of M .

In this paper, we find the fact that the condition df �= 0 for every point of M is a
sufficient condition for M to be a surface in R

3, but the condition is not a necessary
condition for M to be a surface (cf. Proposition 2.1, Theorem 2.2).

Moreover, at an arbitrarily given point p which belongs to a surface M embedded
isometrically in E

3(= (R3, < , >), we precisely make an explication the principal
curvatures of M at p, considering M as a hypersurface of R

3 (cf. Propositions 3.1
and 3.4).

2. A surface in R
3

Let f be a C∞ real valued function defined on R
3, and c a real number. Let M be the

subset of R
3 such that

M = {(x, y, z) ∈ R
3|f (x, y, z) = c}.

Now, assume the differential df of the function f is not zero at every point of M , and p is
an arbitrarily given point of M . Then, from the hypothesis on df is equivalent to assuming
that at least one of three partial derivatives is not zero at the point p = (p1, p2, p3) ∈ M ,
say (∂f/∂z)(p) �= 0. In this case, by the help of inverse function theorem we obtain the
following:

there exist open neighborhoods D(⊂ R
2) of (p1, p2), I (⊂ R) of p3 and J (⊂ R) of

the constant c such that

� : D × I � ((q1, q2), q3) �−→ ((q1, q2), f (q1, q2, q3)) ∈ D × J

is a C∞ diffeomorphism.
Putting �−1 =: � = (ψ1, ψ2, ψ3), ψ3(q1, q2, c) =: h(q1, q2) for each (q1, q2) ∈

D, we get

(q1, q2, c) = (� ◦ �)(q1, q2, c) = �(q1, q2, h(q1, q2))

= (q1, q2, f (q1, q2, h(q1, q2)))

for each (q1, q2) ∈ D. So, around the point p(= (p1, p2, p3)) of M ,

{(q1, q2, h(q1, q2))|(q1, q2) ∈ D}
is a simple surface (2-dimensional C∞ manifold embedded isometrically) in E

3(=
(R3, < , >)). Since p is an arbitrarily given point of M , we can easily find the fact that
M is a surface (2-dimensional C∞ manifold embedded isometrically) in E

3.
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Proposition 2.1. Let f be a C∞ real valued function defined on R
3, and c a real number.

Let M be the subset of R
3 such that M = {(x, y, z) ∈ R

3|f (x, y, z) = c}. Then, if the
differential df of f is not zero for each point of M , M is a surface (2-dimensional C∞
manifold embedded isometrically) in E

3.

On the other hand, the converse of Proposition 2.1 is not true. In fact, putting
f (x, y, z) := x2 + y2 − z2 and M = {(x, y, z) ∈ R

3|f (x, y, z) = c}, then p =
(0, 0, 0) ∈ M and (df )p = (2xdx + 2ydy − 2zdz)p = 0. But, M is a surface (2-
dimensional C∞ manifold embedded) in R

3.
Thus, by virtue of Proposition 2.1 and the above fact, we obtain

Theorem 2.2. Let f be a C∞ real valued function defined on R
3, and c a real number.

Let M be the subset of R
3 such that M = {(x, y, z) ∈ R

3|f (x, y, z) = c}. Then, the
condition df �= 0 for every point of M is a sufficient condition for M to be a surface in
R

3, but the condition df �= 0 for every point of M is not a necessary condition for M to
be a surface in R

3.

Remark 2.3. On [3, Theorem 1.4, p.127; 4, Theorem 4.1, p.127], a necessary and
sufficient condition for M to be a surface (two dimensional C∞ manifold embedded
isometrically) in R

3 is written as follows:

M is a surface in R
3 if and only if the differential df is not zero for each point of M .

But, by the help of Proposition 2.1 and Theorem 2.2, we get the fact that the condition
df �= 0 for every point of M is a sufficient condition for M to be a surface in R

3, but the
condition is not a necessary condition for M to be a surface.

3. Principal curvatures of a surface M at a point p belonging to M

In this section, we make a minute and detailed explication concerning principal directions
of a surface M (in the 3-dimensional Euclidean space) at a point p which belongs to M .

Let E
3 be the three dimensional Euclidean space (R3, < , >), M a surface (2-

dimensional C∞ manifold embedded isometrically) in E
3, and ι the inclusion map of M

into R
3. And, let g(:= ι�(< , >)) be the Riemannian metric on M which is induced by

ι and < , >), and D the Levi-Civita connection on E
3.

Let E := ι−1T R
3 be the induced bundle over M of T R

3 (the tangent bundle over
R

3) by the map ι, that is,

E := {(x, u)|x ∈ M, u ∈ Tι(x)M(= TxM)}.

Then, the C∞(M)-module of all smooth sections of E(= ι−1T R
3), denoted by �(M; E),

is as follows:

�(M; E) = {V | V : M → T R
3

is a C∞ − mapping such that V (x) ∈ Tι(x)R
3(= TxR

3) (x ∈ M)}.
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The induced connection D̃ on the induced bundle E(= ι−1T R
3) is defined as follows

([8, p. 126]):

For X ∈ X(M) and V ∈ �(M; E), we define D̃XV ∈ �(M; E) by

(3.1) (D̃XV )(x) = (Dι�XV )(x) = d

dt
|
t=0

DP(ι◦σ)(t)
−1

V (σ(t)) (x ∈ M),

where t �→ σ(t) ∈ M is a C∞-curve in M satisfying σ(0) = x, σ ′(0) = Xx ∈
Tx(M), and

DP(ι◦σ)(t) : Tι(x)R
3 −→ T(ι◦σ)(t)R

3

is the parallel transport along the curve (ι◦σ)(t) with respect to the canonical Levi-Civita
connection D on (R3, < , >).

Then, the formulas of Gauss and Weingarten [1, 5, 6] are

(3.2)
D̃Xι�Y = ι�(∇XY) + h(X, Y )U (X, Y ∈ X(M)),

D̃XU = ι�(−S(X)) (X ∈ X(M)),

where h is the second fundamental form of M for the unit normal vector field U , and S is
the shape operator of M (derived from U ). And, the following lemma about the induced
connection D̃ is well known ([8, Lemma 1.16, p.129], [6, Theorem 7.5, p.154]).

Lemma 3.1. For X, Y ∈ X(M),

D̃Xι�Y − D̃Y ι�X − ι�([X, Y ]) = T D(ι�X, ι�Y ) = 0 (X, Y ∈ X(M)),

where T D is the torsion tensor field on (E3, D).

Since D is the Riemannian connection on E
3(= (R3, < , >)), by the help of (3.2)

and Lemma 3.1 we see that ∇ is the Riemannian connection on (M, g(:= ι� < , >))

and for X, Y ∈ X(M)

(3.3) h(X, Y ) = h(Y, X), g(S(X), Y ) = h(X, Y ).

Let M be a surface (2-dimensional C∞-manifold) which is isometrically embedded
in E

3(= (R3, < , >)), p an arbitrarily given point of M , and (x1, x2) the standard
coordinates of R

2. For a local coordinate neighborhood (V , φ) around the point p,
where φ : V → φ(V )(⊂ R

2), we define local coordinates xi(i = 1, 2) by

xi := xi ◦ φ : V −→ R (i = 1, 2).

Then each point of V can be uniquely expressed by the coordinate system (x1, x2).
Putting

φ−1 =: x and φ(V ) =: D,
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we get a C∞-mapping x of D into R
3 such that

x : D � (u, v) −→ x(u, v) ∈ V (⊂ M ⊂ R
3).

Here, we may also regard x(u, v), (u, v) ∈ D, as x(u, v) = (x(u, v), y(u, v), z(u, v))

which belong to R
3.

Let u be a unit vector tangent to M at the point p. Then, the number

(3.4) κN(u) := g(S(u), u)

is called the normal curvature of M in the u direction, where S is the shape operator of
M (derived from the normal vector field U on M). The maximum and minimum values
of the normal curvature κN(u) of M at p are called the principal curvatures of M at p.
Unit vectors in these directions are called principal vectors of M at the point p.

Now, we put

ι�

(
∂

∂u

)
=

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
=: xu, ι�

(
∂

∂v

)
=

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
=: xv,

and consider the quantity
(3.5)
I =< d(ι ◦ x), d(ι ◦ x) > (= < dx, dx > )

=< xu, xu > du ⊗ du+ < xu, xv > (du ⊗ dv + dv ⊗ du)+ < xv, xv > dv ⊗ dv.

Since ι�

(
∂

∂u

)
= xu, ι�

(
∂

∂v

)
= xv and ι� < , >= g, we get from (3.5)

(3.6)

I = g

(
∂

∂u
,

∂

∂u

)
du ⊗ du + g

(
∂

∂u
,

∂

∂v

)
(du ⊗ dv + dv ⊗ du) + g

(
∂

∂v
,

∂

∂v

)
dv ⊗ dv

= ι�(< , >) = g.

Moreover, since the symmetric product αβ of two 1-forms α and β is given by

(3.7) αβ := 2−1(α ⊗ β + β ⊗ α).

By the help of (3.6)and (3.7), we get

(3.8)
I = g

(
∂

∂u
,

∂

∂u

)
du2 + 2g

(
∂

∂u
,

∂

∂v

)
dudv + g

(
∂

∂v
,

∂

∂v

)
dv2

= ι�(< , >) = g.

The tensor field I (= ι�(< , >) = g) of type (0,2) on the surface M is said to be the first
fundamental form of x = x(u, v).

And then, we consider the quantity

(3.9) II = − < d(ι ◦ x), dU >= − < xudu + xvdv, Uudu + Uvdv > .
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Since < xu, U >=< xv, U >= 0 and xuv = xvu, we get

(3.10)
< xu, Uu >= − < xuu, U >, < xv, Uv >= − < xvv, U >

< xu, Uv >=< xv, Uu >= − < xuv, U > .

From (3.9) and (3.10), we have
(3.11)

II =< xuu, U > du ⊗ du+ < xuv, U > (du ⊗ dv + dv ⊗ du)+ < xvv, U > dv ⊗ dv.

By virtue of (3.2), (3.3) and ι�(< , >= g, we get

(3.12)

< xu, Uu >= −g

(
∂

∂u
, S

(
∂

∂u

))
= −h

(
∂

∂u
,

∂

∂u

)
,

< xu, Uv >=< xv, Uu >= −g

(
∂

∂u
, S

(
∂

∂v

))
= −h

(
∂

∂u
,

∂

∂v

)
,

< xv, Uv >= −g

(
∂

∂v
, S

(
∂

∂v

))
= −h

(
∂

∂v
,

∂

∂v

)
.

By the help of (3.9), (3.10), (3.11) and (3.12), we obtain
(3.13)

II = h

(
∂

∂u
,

∂

∂u

)
du⊗du+h

(
∂

∂u
,

∂

∂v

)
(du⊗dv+dv⊗du)+h

(
∂

∂v
,

∂

∂v

)
dv⊗dv = h.

By the help of (3.7) and (3.13), (3.11) is written as

(3.14) II = h

(
∂

∂u
,

∂

∂u

)
du2 + 2 h

(
∂

∂u
,

∂

∂v

)
dudv + h

(
∂

∂v
,

∂

∂v

)
dv2 = h.

The tensor field II (= h) of type (0,2) on the surface M is said to be the second funda-
mental form of x = x(u, v).

The tangent space of M at the point p(∈ M) is

(3.15) TpM =
{

s

(
∂

∂u

)
p

+ t

(
∂

∂v

)
p

| s, t ∈ R

}
.

By virtue of (3.4), we obtain the fact that the normal curvature of M in a direction

s

(
∂

∂u

)
p

+ t

(
∂

∂v

)
p

=: v(s, t)(∈ TpM) at the point p(∈ M) is

(3.16) κN(s, t) := κN(‖v(s, t)‖−1
g v(s, t)) = ‖v(s, t)‖−2

g g(S(v(s, t)), v(s, t)).

So, κN is a C∞ function of R × R into R.
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Putting

E0 := g

((
∂

∂u

)
p

,

(
∂

∂u

)
p

)
,

F0 := g

((
∂

∂u

)
p

,

(
∂

∂v

)
p

)

and

G0 := g

((
∂

∂v

)
p

,

(
∂

∂v

)
p

)
,

we get

(3.17) ‖v(s, t)‖2
g = E0s

2 + 2F0st + G0t
2.

And, putting

L0 := h

((
∂

∂u

)
p

,

(
∂

∂u

)
p

)
,

M0 := h

((
∂

∂u

)
p

,

(
∂

∂v

)
p

)

and

N0 := h

((
∂

∂v

)
p

,

(
∂

∂v

)
p

)
,

we obtain from (3.3)

(3.18) g(S(v(s, t)), v(s, t)) = h(v(s, t), v(s, t)) = L0s
2 + 2M0st + N0t

2.

By the help of (3.16), (3.17) and (3.18), we have

(3.19) κN(s, t) = L0s
2 + 2M0st + N0t

2

E0s2 + 2F0st + G0t2
.

Proposition 3.2. The normal curvature of M in a direction

v(s, t) := s

(
∂

∂u

)
p

+ t

(
∂

∂v

)
p

(∈ TpM)

at the point p(∈ M) is

κN(s, t) = L0s
2 + 2M0st + N0t

2

E0s2 + 2F0st + G0t2
.
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From the above proposition, we find the fact that κN(s, t) only depends upon the ratio
s : t .

Remark 3.3. There is the statement in [4, p. 143 ∼ p. 150] such that the normal curvature
function κN defined on Tp(M) depends only upon the ratio du : dv, where

κN := h( ∂
∂u

, ∂
∂u

)du2 + 2h( ∂
∂u

, ∂
∂v

)dudv + h( ∂
∂v

, ∂
∂v

)dv2

g( ∂
∂u

, ∂
∂u

)du2 + 2g( ∂
∂u

, ∂
∂v

)dudv + g( ∂
∂v

, ∂
∂v

)dv2
= h

g
.

But, the above statement is not appropriate, since {du, dv} is the (locally defined)

dual frame of { ∂

∂u
,

∂

∂v
}.

Moreover, we get the fact that a necessary and sufficient condition for‖v(s, t)‖−1
g v(s, t),

(s, t) �= (0, 0), to be a principal vector of M at the point p(∈ M) is

(3.20)
∂κN(s, t)

∂s
= ∂κN(s, t)

∂t
= 0.

And, the condition (3.20) is equivalent to the following:

(3.21)
(L0 − κN(s, t)E0)s + (M0 − κN(s, t)F0)t = 0, and

(M0 − κN(s, t)F0)s + (N0 − κN(s, t)G0)t = 0.

Remark 3.4. In [2, Theorem 9.5, p. 183], a necessary and sufficient condition for κN to
be a principal curvature of M is presented as follows: A real number κN is a principal
curvature at p in the direction du : dv if and only if κN, du and dv satisfy

(
(L0 − κN(s, t)E0)du + (M0 − κN(s, t)F0)dv = 0, and

(M0 − κN(s, t)F0)du + (N0 − κN(s, t)G0)dv = 0.

The ratio du : dv at the phrase ‘a principal curvature at p in the direction du : dv’ of
the above theorem is not appropriate, since {du, dv} is the (locally defined) dual frame

of { ∂

∂u
,

∂

∂v
}.

Moreover, the homogeneous system (3.21) of equations has a nontrivial solution
(s, t) if and only if

(3.22)

∣∣∣∣L0 − κN(s, t)E0 M0 − κN(s, t)F0

M0 − κN(s, t)F0 N0 − κN(s, t)G0

∣∣∣∣ = 0.

So, the principal curvature κN(s, t) of M at p is a solution of the equation

(3.23) (E0G0−F 2
0 )κN(s, t)2−(E0N0+G0L0−2F0M0)κN(s, t)+(L0N0−M2

0 ) = 0.

Thus we obtain

Proposition 3.5. A number κ is a principal curvature if and only if κ is a solution of the
equation

(EG − F 2)κN
2 − (EN + GL − 2FM)κN + (LN − M2) = 0.
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