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Abstract

In this paper, we considering two parameter compound Rayleigh distribution [CRD]
with constant partially accelerated life tests under an adaptive Type II progressive
hybrid censoring samples. The likelihood equations of the involved parameters are
reduced to one non-linear equation which it is solved numerically to obtain the max-
imum likelihood estimates [MLEs] of the parameters. The approximate confidence
intervals [Cls] and two bootstrap confidence intervals are also proposed. Bayesian
point estimation and credible intervals by using MCMC method for the parameters
are presented. The obtaining results discussed through analysis of simulated data
set. Finally to investigate the precision and compare the performance of different
corresponding confidence intervals considered, we presented Monte Carlo simula-
tion study.
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1. Introduction

In manufacturing industries the accelerated life tests [ALTs] are presented to get more
failure data in reducing test time which it is necessary to present inferences in use
condition. Different type of ALTs presented in Nelson [1], firstly one is constant stress
ALT, in which the stress saved at a constant level through testing experiment more details
in [2-4]. Secondly is progressive stress ALT, stress continuously increasing in time see
[5-7]. Finaly one is the step stress ALT, in which stress changes through a given interval
of time or specified number of failures see [§-9]. The constant partially ALT applied in
this paper items tested at both use and accelerated condition simultaneously see recently
Seunggeun H. and Lee [10] and Tahani and Soliman [11].

CRD is one of models which is useful in different areas of statistics, this model under
use condition have he probability density function [pdf] given by

fi) =2ap%x(B+xH)"HD x>0, ¢, >0, (1)
and the cumulative distribution function [cdf] given by
Fi(x) =1—p*(B+xH)7" 2)

Where B and o defined as scale and shape parameters, respectively. The reliability and
hazerd rate functions of the CRD, respectively, given by

Si(t) = B*(B + 1577, 3)
and
i = 24 @)
: B+12)

CRD is contained in three parameter Burr Type XII distribution as a special case. Appli-
cation of randomly censored data as goodness of fit of the CRD using a medical data set
Ghitany [12]. Generalization of the CRD Bekker et al. [13].

The censoring schemes which are most common in life testing experiments are called
Type I and Type II censoring, firstly one, the experiment terminate at a prefixed time
7 and the secondly the experiment terminate at a prefixed number r. These types of
censoring don’t allow to remove units of experiment at time other than the end point of
the experiment. The more general censoring schemes of Type I or II called progressive
Type 1I censoring Balakrishnan and Aggarwala [14]. The Type I censoring combined
with Type II progressive censoring to introduced Type II progressive hybrid censoring
scheme see Kundu and Joarder [15], in which a life testing experiment with progressive
Type-Il right censoring scheme R = (R, R, ..., R,) is terminated at a prefixed time 7.
The Type-II progressive hybrid censoring, is more similar to Type-I censoring, because
the sample size is randomly and it can be a very small number even though equal zero.
The statistical inference procedures may be request more data to be efficiency, Ng et al.
[16] suggested censoring scheme which can be saving both the total test time and the cost
induced by failure of the units and increase the efficiency of statistical analysis called an
adaptive Type-II progressive hybrid censoring described as follows.



Paramters Estimation of Compound Rayleigh Distribution... 3

(8] (8] v:—-m—z Rj

X =1

R, Ry R; BEia Rt R,
Xi mn X2.m.n xJ.771.71 XJ|+1 ", X.m‘l m.n X"‘znz "

T

Figure 1: Description scheme of an adaptive Type II progressive hyperd censoring.

Let n units put on a life testing experiment and 77, 7T, ..., T, are corresponding
independent and identically distributed lifetimes with pdf f(¢) and cdf F(¢). An integer
m

m < n and censoring scheme R = (R, Ry, ..., Ry,) satsfiesn = m + Z R;, is
i=1
specified at the prior the experiment. During the experiment, at any i-th failurei R; items
are randomly removed from the test. Ideal total test time 7, also is specified at the prior
the experiment but the experiment allow to run over time t. If 7;,,.,,,., < T the experiment
stop at the time 7},.,.,. Other case the experimental time passes time t but the number
of observed failures has not reached m. Supposed number J is observed before time 7,

ie. Tymn < T < Tjs1:mn, J =1,2,..., m, then after the experiment passed time 7,
J
wesetRj;1=---=Ry_1=0and R, =n—m — ZRi see Ng et al. [15]. Fig.1

i=1
discrebe schematic representation of this situation
The value of 7 introduce a major role in the determination of R to reduce test time
and a more chance to observe extreme failures. If t — oo, we have a progressive Type
IT censoring with censoring scheme R = (Ry, R, ..., Ry). If t = 0, we have Type 11
censoring scheme.

For given integer J, the likelihood function is given by

m
3iR;
f(tl;m,ny t2;m,m ey tm;m,n) =C 1_[ f(ti;m,n)[l - F(ti;m,n)] s (5)
i=1
0 <tiymn <tymn <+ <luwman < 0,
where
m min{i—1,J}

c=[[|n-i+1- >  R|. (6)

i=1 i=1
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and
1 ifi <J
0 ifJ<i<m-—1

ifi =mandJ < m.

In this paper, in Section 2, the model description and some basic assumptions. Section
3 the derivation of the ML estimators of the parameters of CRD as well as the approximate
confidence intervals [CIs]. In Section 4, the two parametric bootstrap ClIs are derived.
In Section 5, the Bayesian approach is applied with the help of MCMC method. Data
analysis is provided in Section 6. In Section 7 Monte Carlo results are presented. Section
8, is discused to the concluding remarks.

2. Model Description and Basic Assumptions

An adaptive Type II progressive hybrid censoring scheme in constant partially ALTs

described as follows. Let n; be random units chosen from n test units and tested in

use condition. The remaining n, = n — n units are tested in accelerated condition.

An adaptive Type II progressive hybrid censoring is described as follows. At the first

failure 7'y, jonjo R units are randomly removed from the number n; — 1 surviving

units. At the second failure 7., jonjo R units from n; — 2 — R units are randomly

removed. Supposed number J; is observed before time t, i.e.TJj:m;n <t < Tjjt+1mm,

Jj = 1,2,...,mj, then after the experiment passed time 7, we set R]j+1 = ... =
Jj

Ry;—1 = 0 and set R,, j=nj—mj— Z R;;. The test continues until the m j-th failure
i=1

T].I;{A,m .. at this time, all remaining units are removed for j = 1, 2. In this study each

Jo Rty
of Rj;, 7 and m; < n; are fixed prior. If the failure unites of the n; unites are from a
continuous population with F;(x) and f;(x), the joint likelihood function given in (5)

for Tit:mjmjs Tizomjngs s Timjimon; and j = 1, 2 is given by
2 mj 5
L(a, .M =]]Cj {]‘[ FiWismyn) (S Wiz )7 (8)
j=1 i=1
where
mj min{i—l,.]j}

Ci=[]|ni-i+1- > Riil|. )

It is clear from (8) that an adaptive Type-II progressive hybrid censoring scheme under
constant partially ALTs containing the following schemes:

(1) Type-II censored scheme when 7 = 0.
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(2) Type-II progressive censoring when t = oo.

When the lifetime of units follows a CRD, given by (1-4). The hazard rate function
of units tested under accelerated condition is given by hy(t) = Ah(¢), A is called an
acceleration factor satisfying A > 0. Therefore the pdf, cdf, S>(¢) and h>(¢) under
accelerated condition are given, respectively, by

20t

ha(t) = A————, 10
2(1) B+ (10)
t
Sa(t) = exp (— / hz(Z)) dz = (B + 157", (11)
0
F(t) =1— BB+ 117, (12)
and
o) = arprt(B + 1)~ D, (13)
3. Maximum Likelihood Estimation
3.1. MLEs
Let, le;mj,nj, sz;m,,nj, e ,ijj;mj,nj, Jj =1, 2, present two an adaptive Type II pro-

gressively hybrid censored data from two populations whose pdfs and cdfs given in (1),
(2) and (12), (13), with R; = (Rj1, Rj2, ..., Rj1) the likelihood function L(«, B, A|1)

ml m2
L(a, B, M|t) = Ca™tmapm (Hlu) <Hf2i)
i=1

i=1

mq 2
12,
X exp {—a Z (81iR1; + 1) log |:1 + §i|

i=1

mj mp [2~
— Y log[B+1f] —ar ) (52iRai + Dlog |1+ %
i=1 i=1

—Zlog[ﬁﬂé]},
i=1
(14)
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where C = 2"1"™2(CC,. The log-likelihood function £(c, 8, A|t) = log L(«, B, Alt)
without constant values is then given by

€a, B, Alt) = (my+my)loga + mylogh
mi 2
1.
— E (81;R1; + 1) log |:1 + %j|

i=1

mq mo 5
- Zlog [B+ flzi] - OMZ (82i Rai + 1) log [1 + tﬁ:|
i=1

i=1
—Zlog [B+15]. (15)
i=I

The likelihood equations obtained by calculating the first partial derivatives of (15) with
respect to o, B and A and equating each to zero, as follows

o(a, B, A  mi+my 1
= = — Y @R+ Dlog [ 1+ L
o o p ( iRk + ) 0g + ,3

my t2.
~ ) (82Rai +1)log [1 Ty | =0 (16)
i=1

0(ar, B. A1) @ N (B1iRy; + 1) 1

_% 1 +Oé)\ m2 (521’R2i+1)t22i _i 1 —0 17)
— g+, B o B+ el
and " 5
e, D) my 3
—_ = 82 Ry + 1)1 1+ =0. 18
I Y 05;(21 2i + 1) log +,3 (18)
From (16) and (18) we obtain the ML estimates of « and A as
3 () = ! (19)
o =
D
and
N mo Dy
g = ——, (20)
mi Dy
where

Dy =) (81iRi; +1)log |:1 + #i| ; 21
i=1
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and

my 2
Dy=" (aRas + 1)log [1 T %} . (22)

i=1

From (19) and (20) in (15) and (18) we obtain

my Dy

mi
— log =L I
fB) (m1 + m2) log D, + my Ogm1D2

— Zlog [B+1] - Zlog [B+13;] —mi — ma, (23)

and

2
my o~ 1Ry + )15 _i 1 4 I i (82iRoi + 1) 13, B f: 1 _0
BD1 =  B+1], = B+1f, BD2T B — B +13

(24)

Thus, likelihoods equations (16—18) are reduced to one nonlinear equations (24) which
can be solved numerically for B by using one iteration method such as quasi Newton
Raphson, or fixed point solution hence the MLE, & and B, from (19) and (20).

3.2. Approximate interval estimation

The log-likelihood function given in (15), present

(e, B, MD  mitmy

, 25
doe? a? (25)
3% (c, B, Alt) -« N (iR + D1 & 1
0p* B ?Z B+ t2 212
izl li o1 [B+ 1]
ok mi (82iRai + 1) 13,
B* = B+13
22 1 o 1Ry + D1
+Z 212 o EZ 212
o1 [B+155] o B+
kA GaiRo + D13 @6)
2 9
BT [B+13]
0%0(a, B, AD) _my 27)

A2 e
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(e, B, A  9%(a, B Al 1 5?:(51¢R1i4—1)tﬁ
dadp  9Bd _'ﬁizl B+t
&i (82i Ry + 1) 13, _% 1 28)
B= B+13 Bty
320, B AID) = 12
— T o 82 Ry + Dlog |1+ 2|, 29
T ;(z, 2+ Dlog | 14— (29)
and
826(“& IB’ ME) — aZE(a’ IB’ ME) — g Z SZIRZZ + 1) t21 . (30)
dBIA EYEY B= B+

The Fisher information matrix I («, B, A), for the estimates (&, B and )t) Nelson [1], is
given by the negative second partial derivatives of (15) with respect to («, B and A). In
some cases , we can estimate /! (a, B, A) by Iy (a /3 k) where

-1

U, p. D _ (. B A1) _ 92, B AlD)
802 9adB  dadn
b iy = | LB MD 0@ B MY e, B MD
3B 082 dBIA
U, p. MDA 9%, B AlD)
~ 9ada  aadp 0A2 GBY

(31

Hence 100(1 — y)% approximate confidence intervals for ¢, 8 and A are respectively

given by
&:FZK\/FI ; ﬁ:FZz\/Fzz and)»:FZz\/Fs (32)

where F I, F> and F33 are the elements on the main diagonal of the covariance matrix
@, ,8 ) and 2y is the percentile of the standard normal distribution with any tail

probability equal g

4. Bootstrap Confidence Intervals

In statistical inference the bootstrap method is commonly one used to estimate confidence
intervals, bias and variance or calibrate hypothesis tests of estimators. Mor survey of
the nonparametric and parametric bootstrap methods Davison and Hinkley [17], Efron
and Tibshirani [18]. In this section, the two confidence intervals in contexts of the
parametric bootstrap are discussed: (i) For percentile bootstrap method see Efron [19],
(i1) For bootstrap- method see Hall, [20]. The bootstrap algorithms for estimating the
two confidence intervals are illustrated as follows.
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1 For given the original an adaptive Type Il progressively sample, (1:m;.n;, fj2:m;.n;
e Ljmjim;.n;), Obtain a, ,3, and X, j=1,2.

2 For given nj and m; (1 < m; < nj) and the same values of R;;, (i = 1,
2,...,mj)and j = 1,2, m; and m; independent samples are generated from

CRD, t* :(t;fl;mj',nj’ t . tjm,-;mj,n_,-) by using the algorithm presented
in Ng et al. [16].

%k
J2imj.ni> -

3 Based on t* in 1 compute the bootstrap sample estimates of &, B, and A say &%,
,3* and A"

4 Steps 2 and 3 are repeated N times, N may taken to be 1000.

5 The values &%, ﬁ* and A" are arranged in ascending order to get the bootstrap

samples (gbz[l], gb;:m, e (,?);[N]), k = 1,2,3 where (¢} = o*, o5 = p*, ¢} =

2%).

Percentile bootstrap confidence interval:

Let distribution G(z) = P((Z)Z < z) are cumulative distribution function of {0;’;. Define
Drpoor = G~ !(z) for each z. Hencethe approximate bootstrap 100(1 — y)% confidence

interval of ¢} given by
o Y\ - 14
I:(p;ckboot (E) ’ (pzboot (1 - §>i| . (33)

Bootstrap- confidence interval

First, find the order statistics 8?;[1] < SI[Z] < .- < 8z[N | where

sl = O O iy N k=1,2.3, (34)

var (@;U ]>

where §; = &, ¢o = B, 3 = A
Let H(z) = P(8; < z) be the cumulative distribution function of §;. For a given z,
define

Drvoot—t = P + v/ Var(@ ) H ™' (2). (35)

The approximate 100(1 — y)% confidence interval of ¢, is given by

(@kboot—t (g) , Pboot—t (1 - g)) ' (36)
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S. Bayes estimation of the model parameters

In several practical situations, the information of the parameters value are available in an
independent manner Basu etal. [21]. Thus, assumed that the parameters are independent
a priori and let the NIP for the acceleration factor A is given by

iy = A7 a>0. (37)

and for each parameter o and B be represented by independent gamma distributions
presented respectively by

ba
() = maa—l exp (—ba), a>0and a, b>0 (38)
a
and
C
n3(B) = I )ozc_l exp (—dB), B>0and c, d>0. (39)
C

Hence, the joint prior pdf of the three parameters can be expressed by

T, B, A) = %a“—lﬁc—lrlexp(—ba —dB), a>0, f>0,1>0. (40)

From the joint prior pdf (40) and likelihood function (14) of parameters, the joint posterior
pdf given the data, denoted by 7 («, B, A|t), presented as

(@, B, A0 = 0™ Lia, B, A1) x 7*(, B, ML(a, B, D) x 7, B, 1), (41)

(0,0) (0, 0] (0,0
where v = / / / L(a, B, Alt) x *(a, B, M)dadBd). Hence, the Bayes esti-
0o Jo Jo
mate of any function of «, f and A say ¢(«, 8, 1), under squared error loss function
(SEL) is

@(Ol, IB’)\‘) = Ea,ﬂ,M;(Qﬂ(a, ﬂ’)\'))

. foofoo foo o, B, L@, B, D) x (@, B, \)dadBd).
0 0 0
(42)

In several cases, the ratio of two integrals given by (42) can not be obtained in closed
form. Hence, different methods can be used the important one is MCMC method which
selected to be used in this article then compute the Bayes estimator of any function
¢(a, B, A) under the SEL function.
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MCMC Approach

The joint posterior pdf of &,  and A can be written as

JT(O[, ,B»ML) o Olm1+m2+a_1ﬂc_]

mi l2- mi
X exp <—ba —o Z (61iR1; + 1) log |:1 + %:| - Zlog [;‘3 + tlzl-])

myp [2
X exp <—d,8 — oA Z (62i Ry + 1) log |:1 + %

i=1
m
— > log[B+ tzzl-]) amat, 43)
i=1
The conditional posterior PDF’s of «, 8 and A are as follows
2 mj 2

12,
mTi(x|B, A, t) ~Gamma | m; +my +a, b+ ZZyj((SjiRji + 1) log(1 + ﬁ) ,
j=1i=1

(44)
where
it =1
yj_{k,ifj:Z (45)
my tz
75(Ma, B, 1) ~ Gamma | ma, @ Y (Ry; + 1) log 1+% : (46)
i=1
and

m3(Bla, A, 1) oc p

mi 2 mi
X exp <—d,8 —« Z (61iR1; + 1) log |:1 + %i| — Zlog [,3 + tlzi])
i=1

i=1

my 2 ma
5.
X exp <—om Y " (82 Ry + 1) log [1 + %} — ) log[B + r%,.]> .
i=1

i=1
47

The plot of 73(B|a, A, t) is approximately similar to normal distribution. Hnce MH
method Metropolis et al.[22] with normal proposal distribution used to generate random
sample from 73 (Bla, A, 1).

Gibbs with MH algorithm given as follows

Step 1: Beginning with initial values as (B =Band A® = 1) and set I = 1.
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Table 1: Simulated progressively censored samples with constant PALTSs.

0.1038
0.5420

0.2140 0.2364 0.2903 0.3150 0.3685 0.3838 0.4342 0.5273
0.7577 1.0719 1.14888 1.16728 1.17777

0.0965
0.3553
0.6729

0.1152 0.1544 0.1591 0.1890 0.2112 0.2220 0.2424 0.2457
0.3586 0.3887 0.3977 0.4396 05134 0.5645 0.5806 0.6552
0.7193 0.7382 0.7441 0.7697  0.7890 1.2187

Step 2:
Step 3:

Step 4:

Step 5:
Step 6:

Step 7:

Step 8:

By using Gamma distribution 77 1 (| 8 =1, A~V 1) givenin (44) generate oD.
Also from Gamma distribution 7, (A |a(1 ), ,3(1 -, t) given in (45) generate A D,

MH with N (,3(1 -, o) proposal distribution generate ,3(1 ) using (47), Where o
is computed as 4/ F>> from variances-covariances matrix.

Compute oz(l), ,8(1) and A,
Put I = I + 1 and Repeat steps 2 — 5 N times.
The MCMC point estimate of ¢; (¢; = «, ¢, = f and 3 = A) as
1 A
E@l=—— Y ¢, (48)

N—M
i=M-+1

where M is the number of generated parameters which deleted before the sta-
tionary distribution is achieved and called burn-in. and posterior variance of ¢,

becomes
1 N :
- (¢” = Eln)
i=M+1

. 2
Viglt) = )

(49)

. M+1 M+2 N
By ordering the values gol( ), (pl( ), e gol( ) as Pr(1ys P12)s -+ » PUN—M)-

The 100(1 — y)% symmetric credible interval is given by

(‘PZ%(N—M))’ ‘Pl((l—%xN—M))) : (50)

6. Illustrative Example

Estimation procedures developed in this paper can be illustrated by consideration sim-
ulated samples of size (m| = 15 and my = 25 of n1 = 25, and n, = 40 with adaptive
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Figure 3: Profile log-likelihood function of S.
Table 2: MLEs, bootstrap and 95% confidence intervales
Pa.s OML (OBoot 95% AC Len. 95% PBCI Len. 95% BTCI Len.
a=12 11173 13254 (-0.2422,2.4768) 2719 (0.2458,4.0124) 3.7666  (0.4325,3.1245) 2.6920
B=08 05912 07012 (—0.3968,1.5790) 1.9761 (0.1245,2.2149) 2.0904  (0.1458, 1.9989) 1.8531
A=20 16660 1.8952 (0.5767, 2.7554) 2.1787 (0.3254,3.5842) 3.2588 (0.8364,3.0012) 2.1648
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Table 3: MCMC, and 95% credible intervales.

Pa.s (Omeme 95% CI Len.
a=12 143442 (0.5562,,3.0607) 2.5045
B =0.8 0.857068 (0.2351,,2.1536) 1.9185
A=20 1.70629 (0.9053,,2.9344) 2.0291

: : - * L ] - 1
3.5 . : 0 s ik, }:
LA | g o Wi &L
H P H RSN s
3.0 F F A - b LR .’. s
s §- 3 :; "‘.: iy,
} BRI A
* ’g .3 £ ’ H "'.
I . PEELTS X5 1]
.; .s b ’,t D SRR
il ST
2 £ e L iy
3

- 2000 4000 6000 8000 10000

Figure 4: Simulation number of o generated by MCMC method.

parameter t = 0.6) using algorithm introduced by Ng et al. [16]. CRD with pa-
rameters vector [«, B, A] = [1.2,0.8, 2] and two progressive censoring scheme (CSs)
R, = {1,0,1,0,0,2,0,0,2,0,0,2, 0,0,2} and R, = {2,0, 0,0,2,0,1,2,0,0,2,
0,0,2,0,0,2,0,0,2}. Figure 1 show the different cases of probability density func-
tions with use conditions or accelerate conditions. The samples generated from this
distribution are presented in Table 1. Figure 2 show the plot of profile log-likelihood
function of B given in (23), it is a unimodal function. The MLE of g from (24) with the
initial guess of B say 2.5 and the MLE of & and A from (21) and (22). The point estimates
as well as 95% approximate, Percentile bootstrap (PBClIs) and bootstrap-t (BTClIs) con-
fidence intervals are presented in Table 2. In Bayesian context the hypered parameters

of gamma distribution are selected to satisfies E(x or ) =~ 5 or 7 respectively. In

MCMC method, we run the Gibbs for 11, 000 times and discard the first M = 1000
values as ‘burn-in’. The simulation number of «, 8 and A generated by MCMC method
and the corresponding histogram are shown in Fig. (3-9). The Bayes point estimation
and corresponding 95% credible intervals of parameters «, B and A are computed and
presented in Table 3. From the results in Table 2 and 3, we observed that the BTCIs and
credible intervals are narrower than the approximate and PBClIs confidence intervals.
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SO0

Figure 5: Histogram of o generated by MCMC method.
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Figure 6: Simulation number of 8 generated by MCMC method.
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1200
1000

800

200

Figure 7: Histogram of 8 generated by MCMC method.

2000 4000 6000 8000 10000

Figure 8: Simulation number of A generated by MCMC method.
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Figure 9: Histogram of A generated by MCMC method.

17

Table 4: AVG and (MSEs) for the estimate of the parameters [«, 8, A] = [0.5, 0.1, 1.5].

T (n,m) CS MLE Boot MCMC(Prior 0)
o B A o B A o B A
15 (4020) (20,0"%)  0.5545 0.1021 1.5424 0.6141 0.1329 1.8547 0.5241 0.1197 1.5599
0.1112 0.0534 04736 0.3235 0.1021 0.5840 0.1100 0.0516 0.4514
(120) 0.5754 0.1216 1.5828 0.6288 0.1489 1.6627 0.5351 0.1533  1.4994
0.2001 0.0614 05398 0.4479 0.0906 0.6438 0.1801 0.0636 0.5130
0°2190%) 05664 0.1441 15967 0.6388 0.1504 1.7714 0.5461 0.1621 1.5977
02121 0.0707 05537 0.4531 0.1069 0.7741 02111 0.0605 0.5425
(5030)  (20,090) 05200 0.1023 15365 0.5970 0.1332 1.8327 0.5205 0.1121 1.4998
0.0888 0.0423 03890 0.1282 0.0874 0.3347 0.0859 0.0396 0.3379
©0°,12005) 05351 0.1124 15273 05899 0.1404 1.7234 0.5151 0.1119 1.5122
0.1101 0.0570 04028 02220 0.0903 0.4500 0.1102 0.0511 0.3843
019120y 06164 0.1168 1.5482 0.6062 0.1400 1.8204 0.5346 0.1143 1.4875
0.1325 0.0567 04191 0.2335 0.0893 0.6194 0.1222 0.0537 0.4071
0.6 (40,200 (20,0'%) 05428 0.1124 1.5498 0.6000 0.1329 1.8445 0.5119 0.1087 1.5402
0.1047 0.0527 04645 03002 0.1124 05745 0.0999 0.0499 0.4334
(120) 0.5684 0.1154 1.5742 0.6124 0.1500 1.6054 0.5248 0.1379  1.5008
0.1987 0.0604 05390 0.4442 0.0802 0.6125 0.1024 0.0640 0.5223
©0°2190%) 05789 0.1333 15475 0.6038 0.1447 17001 0.5339 0.1225 1.5789
0.2002 0.0685 0.5449 0.3987 0.1124 0.6698 0.2008 0.0598 0.5455
4030)  (20,09) 05356 0.0996 1.5881 0.6357 0.1297 14828 0.5277 0.1020 1.4934
0.1100 0.0440 04534 02102 0.0707 0.6296 0.0985 0.0418 0.4377
0°,120,05) 05360 0.0990 15606 0.5399 0.1099 1.5464 0.5355 0.1154 1.5575
0.1840 0.0447 05018 0.2990 0.0570 0.6999 0.1500 0.0430  0.5539
09,129y 05321 0.0950 1.5049 0.6355 0.1320 1.4581 05133 0.1051 1.4861
0.2014 0.0548 05074 0.3554 0.0741 0.6381 0.2000 0.0528 0.5215
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7. Simulation Studies

Theoretical results of estimation problem discussed in this paper have been illustrating
throw simulation studies using (Mathematica ver. 8.0). The performance of different
estimators of acceleration, shape and scale parameters assessment in terms of average
[AVG] and mean square error [MSE], where

S
_A—_l NO) . . . .
AVG = o), = E w, ", wherew; =a, wy =8, w3=21, andk =1, 2, 3, (51)
S
i=1

and
1 = : 2
MSE= -3 (6 — ) . (52)

S

i=
Different confidence intervals compared in terms of the average confidence lengths [AC]
and coverage percentages [CP]. For each sample computed 95% confidence interval and
checked whether it contain the true value and recorded the length of the interval. This
procedure was repeated 1000 times. Coverage probability estimated as the number of
confidence intervals that covered the true values divided by 1000 and sum of the lengths
for all intervals divided by 1000 estimated as expected width of the confidence interval.
Different censoring schemes [C.S] and different adaptive parameter t used in this studies.
In this studies, case considered case, [«, B, A]= [1.5, 2.0, 2.0], (n; = ny = n) and
(m1 = my = m) and non-informative prior whicha = b = ¢ = d = 0.0001[prior O] the

3
results presented in Table 1 and 2. (ii) [, B, A]=[0.5, 0.7, 0.5], (nz = Enl’ n| = n)

3
and (mz = Eml’ m; = m) the results presented in Table 3 and 4.

8. Concluding Remarks

In situations which the experimenter need to reducing the cost and time associated with
testing in life-testing and reliability studies or in cases which experimenter may be unable
to obtain complete information on failure times for all experimental units. In this paper,
we considered here a more general CS which can be balance between the total test time
and the cost induced by failure of the units and increase the efficiency of statistical
analysis called an adaptive Type-II progressive hybrid censoring.

A simulation study was conducted to examine and compare the performance of the
proposed methods for different sample sizes, different censoring schemes. From the
results in Tables 4 and, we observe the following.

1 Results for increasing values of an adaptive parameters 7 is acceptable than de-
creasing values of t.

2 The more accurate results through the MSEs and average confidence interval pre-
sented from scheme in which the censoring occurs after the first observed failure.



Paramters Estimation of Compound Rayleigh Distribution... 19

Table 5: The coverage percentages and average confidence interval of the parameters.
[a, B, A] =[0.5,0.1, 1.5]

T (,m) cs MLE PBCIs BTCIs MCMC(Prior 0)
o B A o B A o B A o B A

0.15 (4020)  (20,0'%) 090 089 091 089 0.6 0.91 090 093 091 091 092 094
0750 0251 1.64 0984 0350 2.820 0700 0250 1561  0.63 0250 1.551

(129 090 083 090 087  0.89 0.96 0.91 095 095 092 094 096

0.882 0266 195 0999 0445 3012 0811 0223 1878 0700 0213 1.772

©°290% 08 08 090 087  0.89 0.91 090 093 093 090 091 093

0.992 0357 2292 1.001 0457 35313 0.882 0329 2126 0.800 0299 2287

(50,30) (20,02 091 090 095 093  0.89 0.94 092 093 094 093 097 095
0700 0.202 1404 0.880 0333 1533  0.6001 0203 1352 0.604 0.193 1252

©0°,1200% 092 093 096 091 0.90 0.92 093 094 095 094 093 095

0772 0213 1518 0.872 0344 1668 0702 0.177 1474 0602 0.187 1474

©'120y 090 097 096 090  0.89 0.98 090 096 096 097 096  0.96

0.882 0224 1.605 0997 02399 1935 0702 0.191 1603 0.602 0202 1.581

0.6  (4020)  (20,0'%) 091 091 092 090 090 0.90 092 092 092 093 09 093
0730 0244 161 0884 0351 2810 0701 0230 1560 0.620 0240 1.540

(129 093 090 092 089  0.89 0.93 096 094 096 094 092 096

0.827 0259 192 0979 0439 2911  0.800 0201 1870 0701 0210 1752

©°2'90% 090 091 097 089 091 0.90 093 095 091 092 095 094

0.888 0348 2.187 1.002 0422 3522 0870 0328 2202 0810 0283 2284

40,30) (20,020 093 091 094 090 092 0.95 093 094 094 095 094 095
0.600 0.194 2494 0.688 0.199 2888 0500 0201 1456 0559 0201 2.456

02,1200 092 090 095 093 091 0.92 096 097 095 095 096 096

0752 0.130 3421 0758 0.118 1421 0612 0223 1414 06100 0213 1413

09129 090 090 095 092 095 0.94 093 095 095 095 094 095

0792 0.136  1.199 0.892 0.188  1.199  0.698 0260 1.051 0.6044 0233 1.050

3 The MCMC credible intervals and BTCIs presented more suitable results than the
approximate CIs and PTCIs since have small lengths than the lengths of latter, for
different sample sizes, observed failures and schemes.

4 The efficiency of each estimates increasing for the increasing sample size and
affected sample size.
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