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Abstract
In this paper, we considering two parameter compound Rayleigh distribution [CRD]
with constant partially accelerated life tests under an adaptive Type II progressive
hybrid censoring samples. The likelihood equations of the involved parameters are
reduced to one non-linear equation which it is solved numerically to obtain the max-
imum likelihood estimates [MLEs] of the parameters. The approximate confidence
intervals [CIs] and two bootstrap confidence intervals are also proposed. Bayesian
point estimation and credible intervals by using MCMC method for the parameters
are presented. The obtaining results discussed through analysis of simulated data
set. Finally to investigate the precision and compare the performance of different
corresponding confidence intervals considered, we presented Monte Carlo simula-
tion study.
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1. Introduction

In manufacturing industries the accelerated life tests [ALTs] are presented to get more
failure data in reducing test time which it is necessary to present inferences in use
condition. Different type of ALTs presented in Nelson [1], firstly one is constant stress
ALT, in which the stress saved at a constant level through testing experiment more details
in [2–4]. Secondly is progressive stress ALT, stress continuously increasing in time see
[5–7]. Finaly one is the step stress ALT, in which stress changes through a given interval
of time or specified number of failures see [8–9]. The constant partially ALT applied in
this paper items tested at both use and accelerated condition simultaneously see recently
Seunggeun H. and Lee [10] and Tahani and Soliman [11].

CRD is one of models which is useful in different areas of statistics, this model under
use condition have he probability density function [pdf] given by

f1(x) = 2αβαx(β + x2)−(α+1), x > 0, α, β > 0, (1)

and the cumulative distribution function [cdf] given by

F1(x) = 1 − βα(β + x2)−α. (2)

Where β and α defined as scale and shape parameters, respectively. The reliability and
hazerd rate functions of the CRD, respectively, given by

S1(t) = βα(β + t2)−α, (3)

and

h1(t) = 2αt

(β + t2)
. (4)

CRD is contained in three parameter Burr Type XII distribution as a special case. Appli-
cation of randomly censored data as goodness of fit of the CRD using a medical data set
Ghitany [12]. Generalization of the CRD Bekker et al. [13].

The censoring schemes which are most common in life testing experiments are called
Type I and Type II censoring, firstly one, the experiment terminate at a prefixed time
τ and the secondly the experiment terminate at a prefixed number r . These types of
censoring don’t allow to remove units of experiment at time other than the end point of
the experiment. The more general censoring schemes of Type I or II called progressive
Type II censoring Balakrishnan and Aggarwala [14]. The Type I censoring combined
with Type II progressive censoring to introduced Type II progressive hybrid censoring
scheme see Kundu and Joarder [15], in which a life testing experiment with progressive
Type-II right censoring scheme R = (R1, R2, . . . , Rm) is terminated at a prefixed time τ .
The Type-II progressive hybrid censoring, is more similar to Type-I censoring, because
the sample size is randomly and it can be a very small number even though equal zero.
The statistical inference procedures may be request more data to be efficiency, Ng et al.
[16] suggested censoring scheme which can be saving both the total test time and the cost
induced by failure of the units and increase the efficiency of statistical analysis called an
adaptive Type-II progressive hybrid censoring described as follows.
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Figure 1: Description scheme of an adaptive Type II progressive hyperd censoring.

Let n units put on a life testing experiment and T1, T2, . . . , Tn are corresponding
independent and identically distributed lifetimes with pdf f (t) and cdf F(t). An integer

m < n and censoring scheme R = (R1, R2, . . . , Rm) satsfies n = m +
m∑

i=1

Ri , is

specified at the prior the experiment. During the experiment, at any i-th failure, Ri items
are randomly removed from the test. Ideal total test time τ , also is specified at the prior
the experiment but the experiment allow to run over time τ . If Tm:m:n < τ the experiment
stop at the time Tm:m:n. Other case the experimental time passes time τ but the number
of observed failures has not reached m. Supposed number J is observed before time τ ,
i.e. TJ :m:n < τ < TJ+1:m:n, J = 1, 2, . . . , m, then after the experiment passed time τ ,

we set RJ+1 = · · · = Rm−1 = 0 and Rm = n − m −
J∑

i=1

Ri see Ng et al. [15]. Fig.1

discrebe schematic representation of this situation
The value of τ introduce a major role in the determination of R to reduce test time

and a more chance to observe extreme failures. If τ → ∞, we have a progressive Type
II censoring with censoring scheme R = (R1, R2, . . . , Rm). If τ = 0, we have Type II
censoring scheme.

For given integer J , the likelihood function is given by

f (t1;m,n, t2;m,n, . . . , tm;m,n) = C

m∏
i=1

f (ti;m,n)[1 − F(ti;m,n)]δiRi , (5)

0 < t1;m,n < t2;m,n < · · · < tm;m,n < ∞,

where

C =
m∏

i=1


n − i + 1 −

min{i−1,J }∑
i=1

Ri


 , (6)
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and

δi =




1 if i ≤ J

0 if J < i ≤ m − 1

n−m−
J∑

j=1
Rj

Rm

if i = m and J < m.

(7)

In this paper, in Section 2, the model description and some basic assumptions. Section
3 the derivation of the ML estimators of the parameters of CRD as well as the approximate
confidence intervals [CIs]. In Section 4, the two parametric bootstrap CIs are derived.
In Section 5, the Bayesian approach is applied with the help of MCMC method. Data
analysis is provided in Section 6. In Section 7 Monte Carlo results are presented. Section
8, is discused to the concluding remarks.

2. Model Description and Basic Assumptions

An adaptive Type II progressive hybrid censoring scheme in constant partially ALTs
described as follows. Let n1 be random units chosen from n test units and tested in
use condition. The remaining n2 = n − n1 units are tested in accelerated condition.
An adaptive Type II progressive hybrid censoring is described as follows. At the first
failure Tj1;mj ,nj

, Rj1 units are randomly removed from the number nj − 1 surviving
units. At the second failure Tj2;mj ,nj

, Rj2 units from nj − 2 − Rj1 units are randomly
removed. Supposed number Jj is observed before time τ , i.e.TJj :m:n < τ < TJj+1:m:n,
Jj = 1, 2, . . . , mj , then after the experiment passed time τ , we set RJj+1 = · · · =

Rmj−1 = 0 and set Rmj
= nj − mj −

Jj∑
i=1

Rji. The test continues until the mj -th failure

T
Rj

jmj ;mj ,nj
at this time, all remaining units are removed for j = 1, 2. In this study each

of Rji, τ and mj < nj are fixed prior. If the failure unites of the nj unites are from a
continuous population with Fj(x) and fj (x), the joint likelihood function given in (5)
for Tj1;mj ,nj

, Tj2;mj ,nj
, ..., Tjmj ;mj ,nj

and j = 1, 2 is given by

L(α, β, λ|t) =
2∏

j=1

Cj

{mj∏
i=1

fj (tji;mj ,nj
)
(
Sj (tji;mj ,nj

)
)δjiRji

}
, (8)

where

Cj =
mj∏
i=1


nj − i + 1 −

min{i−1,Jj}∑
i=1

Rji


 . (9)

It is clear from (8) that an adaptive Type-II progressive hybrid censoring scheme under
constant partially ALTs containing the following schemes:

(1) Type-II censored scheme when τ = 0.
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(2) Type-II progressive censoring when τ = ∞.

When the lifetime of units follows a CRD, given by (1-4). The hazard rate function
of units tested under accelerated condition is given by h2(t) = λh1(t), λ is called an
acceleration factor satisfying λ > 0. Therefore the pdf, cdf, S2(t) and h2(t) under
accelerated condition are given, respectively, by

h2(t) = λ
2αt

(β + t2)
, (10)

S2(t) = exp

(
−
∫ t

0
h2(z)

)
dz = βλα(β + t2)−λα, (11)

F2(t) = 1 − βλα(β + t2)−λα, (12)

and

f2(t) = αλβλαt (β + t2)−(λα+1). (13)

3. Maximum Likelihood Estimation

3.1. MLEs

Let, Tj1;mj ,nj
, Tj2;mj ,nj

, . . . ,Tjmj ;mj ,nj
, j = 1, 2, present two an adaptive Type II pro-

gressively hybrid censored data from two populations whose pdfs and cdfs given in (1),
(2) and (12), (13), with Rj = (Rj1, Rj2, . . . , Rj1) the likelihood function L(α, β, λ|t)

L(α, β, λ|t) = Cαm1+m2λm2

(
m1∏
i=1

t1i

)(
m2∏
i=1

t2i

)

× exp

{
−α

m1∑
i=1

(δ1iR1i + 1) log

[
1 + t2

1i

β

]

−
m1∑
i=1

log
[
β + t2

1i

]− αλ

m2∑
i=1

(δ2iR2i + 1) log

[
1 + t2

2i

β

]

−
m2∑
i=1

log
[
β + t2

2i

]}
,

(14)
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where C = 2m1+m2C1C2. The log-likelihood function �(α, β, λ|t) = log L(α, β, λ|t)
without constant values is then given by

�(α, β, λ|t) = (m1 + m2) log α + m2 log λ

−α

m1∑
i=1

(δ1iR1i + 1) log

[
1 + t2

1i

β

]

−
m1∑
i=1

log
[
β + t2

1i

]− αλ

m2∑
i=1

(δ2iR2i + 1) log

[
1 + t2

2i

β

]

−
m2∑
i=1

log
[
β + t2

2i

]
. (15)

The likelihood equations obtained by calculating the first partial derivatives of (15) with
respect to α, β and λ and equating each to zero, as follows

∂�(α, β, λ|t)
∂α

= m1 + m2

α
−

m1∑
i=1

(δ1iR1i + 1) log

[
1 + t2

1i

β

]

− λ

m2∑
i=1

(δ2iR2i + 1) log

[
1 + t2

2i

β

]
= 0, (16)

∂�(α, β, λ|t)
∂β

= α

β

m1∑
i=1

(δ1iR1i + 1) t2
1i

β + t2
1i

−
m1∑
i=1

1

β + t2
1i

+ αλ

β

m2∑
i=1

(δ2iR2i + 1) t2
2i

β + t2
2i

−
m2∑
i=1

1

β + t2
2i

= 0, (17)

and
∂�(α, β, λ|t)

∂λ
= m2

λ
− α

m2∑
i=1

(δ2iR2i + 1) log

[
1 + t2

2i

β

]
= 0. (18)

From (16) and (18) we obtain the ML estimates of α and λ as

α̂ (β) = m1

D1
, (19)

and

λ̂ (β) = m2D1

m1D2
, (20)

where

D1 =
m1∑
i=1

(δ1iR1i + 1) log

[
1 + t2

1i

β

]
, (21)
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and

D2 =
m2∑
i=1

(δ2iR2i + 1) log

[
1 + t2

2i

β

]
. (22)

From (19) and (20) in (15) and (18) we obtain

f (β) = (m1 + m2) log
m1

D1
+ m2 log

m2D1

m1D2

−
m1∑
i=1

log
[
β + t2

1i

]− m2∑
i=1

log
[
β + t2

2i

]− m1 − m2, (23)

and

m1

βD1

m1∑
i=1

(δ1iR1i + 1) t2
1i

β + t2
1i

−
m1∑
i=1

1

β + t2
1i

+ m2

βD2

m2∑
i=1

(δ2iR2i + 1) t2
2i

β + t2
2i

−
m2∑
i=1

1

β + t2
2i

= 0.

(24)

Thus, likelihoods equations (16–18) are reduced to one nonlinear equations (24) which
can be solved numerically for β by using one iteration method such as quasi Newton
Raphson, or fixed point solution hence the MLE, α̂ and β̂, from (19) and (20).

3.2. Approximate interval estimation

The log-likelihood function given in (15), present

∂2�(α, β, λ|t)
∂α2

= −m1 + m2

α2
, (25)

∂2�(α, β, λ|t)
∂β2 = −α

β2

m1∑
i=1

(δ1iR1i + 1) t2
1i

β + t2
1i

+
m1∑
i=1

1[
β + t2

1i

]2
−αλ

β2

m2∑
i=1

(δ2iR2i + 1) t2
2i

β + t2
2i

+
m2∑
i=1

1[
β + t2

2i

]2 − α

β

m1∑
i=1

(δ1iR1i + 1) t2
1i[

β + t2
1i

]2
−αλ

β

m2∑
i=1

(δ2iR2i + 1) t2
2i[

β + t2
2i

]2 , (26)

∂2�(α, β, λ|t)
∂λ2 = −m2

λ2 , (27)
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∂2�(α, β, λ|t)
∂α∂β

= ∂2�(α, β, λ|t)
∂β∂α

= 1

β

m1∑
i=1

(δ1iR1i + 1) t2
1i

β + t2
1i

+ λ

β

m2∑
i=1

(δ2iR2i + 1) t2
2i

β + t2
2i

−
m2∑
i=1

1

β + t2
2i

, (28)

∂2�(α, β, λ|t)
∂α∂λ

=
m2∑
i=1

(δ2iR2i + 1) log

[
1 + t2

2i

β

]
, (29)

and

∂2�(α, β, λ|t)
∂β∂λ

= ∂2�(α, β, λ|t)
∂λ∂β

= α

β

m2∑
i=1

(δ2iR2i + 1) t2
2i

β + t2
2i

. (30)

The Fisher information matrix I (α, β, λ), for the estimates (α̂, β̂ and λ̂) Nelson [1], is
given by the negative second partial derivatives of (15) with respect to (α, β and λ). In
some cases , we can estimate I−1 (α, β, λ) by I−1

0 (α̂, β̂, λ̂) where

I−1
0 (α̂, β̂, λ̂) =




−∂2�(α, β, λ|t)
∂α2

− ∂2�(α, β, λ|t)
∂α∂β

− ∂2�(α, β, λ|t)
∂α∂λ

−∂2�(α, β, λ|t)
∂β∂α

− ∂2�(α, β, λ|t)
∂β2

− ∂2�(α, β, λ|t)
∂β∂λ

−∂2�(α, β, λ|t)
∂λ∂α

− ∂2�(α, β, λ|t)
∂λ∂β

− ∂2�(α, β, λ|t)
∂λ2




−1

(α̂,β̂,λ̂)

.

(31)

Hence 100(1 − γ )% approximate confidence intervals for α, β and λ are respectively
given by

α̂ ∓ zγ
2

√
F11, β̂ ∓ zγ

2

√
F22 and λ̂ ∓ zγ

2

√
F33 (32)

where F11, F22 and F33 are the elements on the main diagonal of the covariance matrix
I−1(α̂, β̂, λ̂) and zγ

2
is the percentile of the standard normal distribution with any tail

probability equal
γ

2
.

4. Bootstrap Confidence Intervals

In statistical inference the bootstrap method is commonly one used to estimate confidence
intervals, bias and variance or calibrate hypothesis tests of estimators. Mor survey of
the nonparametric and parametric bootstrap methods Davison and Hinkley [17], Efron
and Tibshirani [18]. In this section, the two confidence intervals in contexts of the
parametric bootstrap are discussed: (i) For percentile bootstrap method see Efron [19],
(ii) For bootstrap-t method see Hall, [20]. The bootstrap algorithms for estimating the
two confidence intervals are illustrated as follows.
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1 For given the original an adaptiveType II progressively sample, (tj1;mj ,nj
, tj2;mj ,nj

,

. . . , tjmj ;mj ,nj
), obtain α̂, β̂, and λ̂, j = 1, 2.

2 For given nj and mj (1 < mj < nj ) and the same values of Rji, (i = 1,

2, . . . , mj ) and j = 1, 2, m1 and m2 independent samples are generated from
CRD, t∗ =(t∗j1;mj ,nj

, t∗j2;mj ,nj
, . . . , t∗jmj ;mj ,nj

) by using the algorithm presented
in Ng et al. [16].

3 Based on t∗ in 1 compute the bootstrap sample estimates of α̂, β̂, and λ̂ say α̂
∗
,

β̂
∗

and λ̂
∗
.

4 Steps 2 and 3 are repeated N times, N may taken to be 1000.

5 The values α̂
∗
, β̂

∗
and λ̂

∗
are arranged in ascending order to get the bootstrap

samples (ϕ̂∗[1]
k , ϕ̂

∗[2]
k , . . . , ϕ̂

∗[N ]
k ), k = 1, 2, 3 where (ϕ∗

1 = α∗, ϕ∗
2 = β∗, ϕ∗

3 =
λ∗).

Percentile bootstrap confidence interval:

Let distribution G(z) = P(ϕ̂
∗
k � z) are cumulative distribution function of ϕ̂

∗
k . Define

ϕ̂
∗
kboot = G−1(z) for each z. Hencethe approximate bootstrap 100(1 − γ )% confidence

interval of ϕ̂
∗
k given by

[
ϕ̂

∗
kboot

(γ

2

)
, ϕ̂

∗
kboot

(
1 − γ

2

)]
. (33)

Bootstrap-t confidence interval

First, find the order statistics δ
∗[1]
k < δ

∗[2]
k < · · · < δ

∗[N ]
k , where

δ
∗[j ]
k = ϕ̂

∗[j ]
k − ϕ̂k√

var
(
ϕ̂

∗[j ]
k

) , j = 1, 2, . . . , N, k = 1, 2, 3, (34)

where ϕ̂1 = α̂, ϕ̂2 = β̂, ϕ̂3 = λ̂.

Let H(z) = P(δ∗
k < z) be the cumulative distribution function of δ∗

k . For a given z,
define

ϕ̂kboot−t = ϕ̂k +√Var(ϕ̂k)H
−1(z). (35)

The approximate 100(1 − γ )% confidence interval of ϕ̂k is given by

(
ϕ̂kboot−t

(γ

2

)
, ϕ̂kboot−t

(
1 − γ

2

))
. (36)
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5. Bayes estimation of the model parameters

In several practical situations, the information of the parameters value are available in an
independent manner Basu et al. [21]. Thus, assumed that the parameters are independent
a priori and let the NIP for the acceleration factor λ is given by

π∗
1(λ) = λ−1, λ>0. (37)

and for each parameter α and β be represented by independent gamma distributions
presented respectively by

π∗
2(α) = ba

�(a)
αa−1 exp (−bα) , α>0 and a, b>0 (38)

and

π∗
3(β) = dc

�(c)
αc−1 exp (−dβ) , β>0 and c, d>0. (39)

Hence, the joint prior pdf of the three parameters can be expressed by

π∗(α, β, λ) = badc

�(a)�(c)
αa−1βc−1λ−1 exp (−bα − dβ) , α>0, β>0, λ>0. (40)

From the joint prior pdf (40) and likelihood function (14) of parameters, the joint posterior
pdf given the data, denoted by π(α, β, λ|t), presented as

π(α, β, λ|t) = ω−1L(α, β, λ|t) × π∗(α, β, λ)L(α, β, λ|t) × π∗(α, β, λ), (41)

where ω =
∫ ∞

0

∫ ∞

0

∫ ∞

0
L(α, β, λ|t) × π∗(α, β, λ)dαdβdλ. Hence, the Bayes esti-

mate of any function of α, β and λ say ϕ(α, β, λ), under squared error loss function
(SEL) is

ϕ̂(α, β, λ) = Eα,β,λ|t (ϕ(α, β, λ))

= ω−1
∫ ∞

0

∫ ∞

0

∫ ∞

0
ϕ(α, β, λ)L(α, β, λ|t) × π∗(α, β, λ)dαdβdλ.

(42)

In several cases, the ratio of two integrals given by (42) can not be obtained in closed
form. Hence, different methods can be used the important one is MCMC method which
selected to be used in this article then compute the Bayes estimator of any function
ϕ(α, β, λ) under the SEL function.
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MCMC Approach

The joint posterior pdf of α, β and λ can be written as

π(α, β, λ|t) ∝ αm1+m2+a−1βc−1

× exp

(
−bα − α

m1∑
i=1

(δ1iR1i + 1) log

[
1 + t2

1i

β

]
−

m1∑
i=1

log
[
β + t2

1i

])

× exp

(
−dβ − αλ

m2∑
i=1

(δ2iR2i + 1) log

[
1 + t2

2i

β

]

−
m2∑
i=1

log
[
β + t2

2i

])
λm2−1. (43)

The conditional posterior PDF’s of α, β and λ are as follows

π1(α|β, λ, t) ∼ Gamma


m1 + m2 + a, b +

2∑
j=1

mj∑
i=1

γ j (δjiRji + 1) log(1 + t2
ji

β
)


 ,

(44)
where

γ j =
{

1, if j = 1
λ, if j = 2

(45)

π∗
2(λ|α, β, t) ∼ Gamma

(
m2, α

m2∑
i=1

(R2i + 1) log

[
1 + t2

2i

β

])
, (46)

and

π∗
3(β|α, λ, t) ∝ βc−1

× exp

(
−dβ − α

m1∑
i=1

(δ1iR1i + 1) log

[
1 + t2

1i

β

]
−

m1∑
i=1

log
[
β + t2

1i

])

× exp

(
−αλ

m2∑
i=1

(δ2iR2i + 1) log

[
1 + t2

2i

β

]
−

m2∑
i=1

log
[
β + t2

2i

])
.

(47)

The plot of π∗
3(β|α, λ, t) is approximately similar to normal distribution. Hnce MH

method Metropolis et al.[22] with normal proposal distribution used to generate random
sample from π∗

3(β|α, λ, t).

Gibbs with MH algorithm given as follows

Step 1: Beginning with initial values as (β(0) = β̂ and λ(0) = λ̂) and set I = 1.
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Table 1: Simulated progressively censored samples with constant PALTs.

0.1038 0.2140 0.2364 0.2903 0.3150 0.3685 0.3838 0.4342 0.5273

0.5420 0.7577 1.0719 1.14888 1.16728 1.17777

0.0965 0.1152 0.1544 0.1591 0.1890 0.2112 0.2220 0.2424 0.2457

0.3553 0.3586 0.3887 0.3977 0.4396 0.5134 0.5645 0.5806 0.6552

0.6729 0.7193 0.7382 0.7441 0.7697 0.7890 1.2187

Step 2: By using Gamma distribution π1(α|β(I−1), λ(I−1), t) given in (44) generate α(I).

Step 3: Also from Gamma distribution π2(λ|α(I), β(I−1), t) given in (45) generate λ(I).

Step 4: MH with N(β(I−1), σ ) proposal distribution generate β(I) using (47), Where σ

is computed as
√

F22 from variances-covariances matrix.

Step 5: Compute α(I), β(I) and λ(I).

Step 6: Put I = I + 1 and Repeat steps 2 − 5 N times.

Step 7: The MCMC point estimate of ϕl (ϕ1 = α, ϕ2 = β and ϕ3 = λ) as

E(ϕl|t) = 1

N − M

N∑
i=M+1

ϕ
(i)
l , (48)

where M is the number of generated parameters which deleted before the sta-
tionary distribution is achieved and called burn-in. and posterior variance of ϕl

becomes

V̂ (ϕl|t) = 1

N − M

N∑
i=M+1

(
ϕ

(i)
l − Ê(ϕl|t)

)2
. (49)

Step 8: By ordering the values ϕ
(M+1)
l , ϕ

(M+2)
l , . . . , ϕ

(N)
l as ϕl(1), ϕl(2), . . . , ϕl(N−M).

The 100(1 − γ )% symmetric credible interval is given by(
ϕl(

γ
2 (N−M)), ϕl((1− γ

2 )(N−M))

)
. (50)

6. Illustrative Example

Estimation procedures developed in this paper can be illustrated by consideration sim-
ulated samples of size (m1 = 15 and m2 = 25 of n1 = 25, and n2 = 40 with adaptive
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Figure 2: The plot of f1(t) with black line and f2(t) with dashed line.

Figure 3: Profile log-likelihood function of β.

Table 2: MLEs, bootstrap and 95% confidence intervales

Pa.s (.)ML (.)Boot 95% AC Len. 95% PBCI Len. 95% BTCI Len.

α = 1.2 1.1173 1.3254 (-0.2422, 2.4768) 2.719 (0.2458, 4.0124) 3.7666 (0.4325, 3.1245) 2.6920

β = 0.8 0.5912 0.7012 (−0.3968, 1.5790) 1.9761 (0.1245, 2.2149) 2.0904 (0.1458, 1.9989) 1.8531

λ = 2.0 1.6660 1.8952 (0.5767, 2.7554) 2.1787 (0.3254, 3.5842) 3.2588 (0.8364, 3.0012) 2.1648
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Table 3: MCMC, and 95% credible intervales.

Pa.s (.)MCMC 95% CI Len.

α = 1.2 1.43442 (0.5562, ,3.0607) 2.5045

β = 0.8 0.857068 (0.2351, ,2.1536) 1.9185

λ = 2.0 1.70629 (0.9053, ,2.9344) 2.0291

Figure 4: Simulation number of α generated by MCMC method.

parameter τ = 0.6) using algorithm introduced by Ng et al. [16]. CRD with pa-
rameters vector [α, β, λ] = [1.2, 0.8, 2] and two progressive censoring scheme (CSs)
R1 = {1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 2} and R2 = {2, 0, 0, 0, 2, 0, 1, 2, 0, 0, 2,

0, 0, 2, 0, 0, 2, 0, 0, 2}. Figure 1 show the different cases of probability density func-
tions with use conditions or accelerate conditions. The samples generated from this
distribution are presented in Table 1. Figure 2 show the plot of profile log-likelihood
function of β given in (23), it is a unimodal function. The MLE of β from (24) with the
initial guess of β say 2.5 and the MLE of α and λ from (21) and (22). The point estimates
as well as 95% approximate, Percentile bootstrap (PBCIs) and bootstrap-t (BTCIs) con-
fidence intervals are presented in Table 2. In Bayesian context the hypered parameters

of gamma distribution are selected to satisfies E(α or β) � a

b
or

c

d
, respectively. In

MCMC method, we run the Gibbs for 11, 000 times and discard the first M = 1000
values as ‘burn-in’. The simulation number of α, β and λ generated by MCMC method
and the corresponding histogram are shown in Fig. (3–9). The Bayes point estimation
and corresponding 95% credible intervals of parameters α, β and λ are computed and
presented in Table 3. From the results in Table 2 and 3, we observed that the BTCIs and
credible intervals are narrower than the approximate and PBCIs confidence intervals.
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Figure 5: Histogram of α generated by MCMC method.

Figure 6: Simulation number of β generated by MCMC method.
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Figure 7: Histogram of β generated by MCMC method.

Figure 8: Simulation number of λ generated by MCMC method.
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Figure 9: Histogram of λ generated by MCMC method.

Table 4: AVG and (MSEs) for the estimate of the parameters [α, β, λ] = [0.5, 0.1, 1.5].
τ (n, m) CS MLE Boot MCMC(Prior 0)

α β λ α β λ α β λ

1.5 (40,20) (20,019) 0.5545 0.1021 1.5424 0.6141 0.1329 1.8547 0.5241 0.1197 1.5599

0.1112 0.0534 0.4736 0.3235 0.1021 0.5840 0.1100 0.0516 0.4514

(120) 0.5754 0.1216 1.5828 0.6288 0.1489 1.6627 0.5351 0.1533 1.4994

0.2001 0.0614 0.5398 0.4479 0.0906 0.6438 0.1801 0.0636 0.5130

(05,210,05) 0.5664 0.1441 1.5967 0.6388 0.1504 1.7714 0.5461 0.1621 1.5977

0.2121 0.0707 0.5537 0.4531 0.1069 0.7741 0.2111 0.0605 0.5425

(50,30) (20,020) 0.5200 0.1023 1.5365 0.5970 0.1332 1.8327 0.5205 0.1121 1.4998

0.0888 0.0423 0.3890 0.1282 0.0874 0.3347 0.0859 0.0396 0.3379

(05,120,05) 0.5351 0.1124 1.5273 0.5899 0.1404 1.7234 0.5151 0.1119 1.5122

0.1101 0.0570 0.4028 0.2220 0.0903 0.4500 0.1102 0.0511 0.3843

(010,120) 0.6164 0.1168 1.5482 0.6062 0.1400 1.8204 0.5346 0.1143 1.4875

0.1325 0.0567 0.4191 0.2335 0.0893 0.6194 0.1222 0.0537 0.4071

0.6 (40,20) (20,019) 0.5428 0.1124 1.5498 0.6000 0.1329 1.8445 0.5119 0.1087 1.5402

0.1047 0.0527 0.4645 0.3002 0.1124 0.5745 0.0999 0.0499 0.4334

(120) 0.5684 0.1154 1.5742 0.6124 0.1500 1.6054 0.5248 0.1379 1.5008

0.1987 0.0604 0.5390 0.4442 0.0802 0.6125 0.1024 0.0640 0.5223

(05,210,05) 0.5789 0.1333 1.5475 0.6038 0.1447 1.7001 0.5339 0.1225 1.5789

0.2002 0.0685 0.5449 0.3987 0.1124 0.6698 0.2008 0.0598 0.5455

(40,30) (20,020) 0.5356 0.0996 1.5881 0.6357 0.1297 1.4828 0.5277 0.1020 1.4934

0.1100 0.0440 0.4534 0.2102 0.0707 0.6296 0.0985 0.0418 0.4377

(05,120,05) 0.5360 0.0990 1.5606 0.5399 0.1099 1.5464 0.5355 0.1154 1.5575

0.1840 0.0447 0.5018 0.2990 0.0570 0.6999 0.1500 0.0430 0.5539

(010,120) 0.5321 0.0950 1.5049 0.6355 0.1320 1.4581 0.5133 0.1051 1.4861

0.2014 0.0548 0.5074 0.3554 0.0741 0.6381 0.2000 0.0528 0.5215
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7. Simulation Studies

Theoretical results of estimation problem discussed in this paper have been illustrating
throw simulation studies using (Mathematica ver. 8.0). The performance of different
estimators of acceleration, shape and scale parameters assessment in terms of average
[AVG] and mean square error [MSE], where

AVG = ω̂k = 1

s

s∑
i=1

ω̂
(i)
k , where ω1 = α, ω2 = β, ω3 = λ, and k = 1, 2, 3, (51)

and

MSE = 1

s

s∑
i=1

(
ω̂

(i)
k − ωk

)2
. (52)

Different confidence intervals compared in terms of the average confidence lengths [AC]
and coverage percentages [CP]. For each sample computed 95% confidence interval and
checked whether it contain the true value and recorded the length of the interval. This
procedure was repeated 1000 times. Coverage probability estimated as the number of
confidence intervals that covered the true values divided by 1000 and sum of the lengths
for all intervals divided by 1000 estimated as expected width of the confidence interval.
Different censoring schemes [C.S] and different adaptive parameter τ used in this studies.
In this studies, case considered case, [α, β, λ]= [1.5, 2.0, 2.0], (n1 = n2 = n) and
(m1 = m2 = m) and non-informative prior which a = b = c = d = 0.0001[prior 0] the

results presented in Table 1 and 2. (ii) [α, β, λ]= [0.5, 0.7, 0.5],

(
n2 = 3

2
n1, n1 = n

)

and

(
m2 = 3

2
m1, m1 = m

)
the results presented in Table 3 and 4.

8. Concluding Remarks

In situations which the experimenter need to reducing the cost and time associated with
testing in life-testing and reliability studies or in cases which experimenter may be unable
to obtain complete information on failure times for all experimental units. In this paper,
we considered here a more general CS which can be balance between the total test time
and the cost induced by failure of the units and increase the efficiency of statistical
analysis called an adaptive Type-II progressive hybrid censoring.

A simulation study was conducted to examine and compare the performance of the
proposed methods for different sample sizes, different censoring schemes. From the
results in Tables 4 and, we observe the following.

1 Results for increasing values of an adaptive parameters τ is acceptable than de-
creasing values of τ .

2 The more accurate results through the MSEs and average confidence interval pre-
sented from scheme in which the censoring occurs after the first observed failure.
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Table 5: The coverage percentages and average confidence interval of the parameters.
[α, β, λ] = [0.5, 0.1, 1.5]

τ (n, m) CS MLE PBCIs BTCIs MCMC(Prior 0)

α β λ α β λ α β λ α β λ

0.15 (40,20) (20,019) 0.90 0.89 0.91 0.89 0.86 0.91 0.90 0.93 0.91 0.91 0.92 0.94

0.750 0.251 1.64 0.984 0.350 2.820 0.700 0.250 1.561 0.63 0.250 1.551

(120) 0.90 0.88 0.90 0.87 0.89 0.96 0.91 0.95 0.95 0.92 0.94 0.96

0.882 0.266 1.95 0.999 0.445 3.012 0.811 0.223 1.878 0.700 0.213 1.772

(05,210,05) 0.89 0.89 0.90 0.87 0.89 0.91 0.90 0.93 0.93 0.90 0.91 0.93

0.992 0.357 2.292 1.001 0.457 3.5313 0.882 0.329 2.126 0.800 0.299 2.287

(50,30) (20,020) 0.91 0.90 0.95 0.93 0.89 0.94 0.92 0.93 0.94 0.93 0.97 0.95

0.700 0.202 1.404 0.880 0.333 1.533 0.6001 0.203 1.352 0.604 0.193 1.252

(05,120,05) 0.92 0.93 0.96 0.91 0.90 0.92 0.93 0.94 0.95 0.94 0.93 0.95

0.772 0.213 1.518 0.872 0.344 1.668 0.702 0.177 1.474 0.602 0.187 1.474

(010,120) 0.90 0.97 0.96 0.90 0.89 0.98 0.90 0.96 0.96 0.97 0.96 0.96

0.882 0.224 1.605 0.997 0.2399 1.935 0.702 0.191 1.603 0.602 0.202 1.581

0.6 (40,20) (20,019) 0.91 0.91 0.92 0.90 0.90 0.90 0.92 0.92 0.92 0.93 0.96 0.93

0.730 0.244 1.61 0.884 0.351 2.810 0.701 0.230 1.560 0.620 0.240 1.540

(120) 0.93 0.90 0.92 0.89 0.89 0.93 0.96 0.94 0.96 0.94 0.92 0.96

0.827 0.259 1.92 0.979 0.439 2.911 0.800 0.201 1.870 0.701 0.210 1.752

(05,210,05) 0.90 0.91 0.97 0.89 0.91 0.90 0.93 0.95 0.91 0.92 0.95 0.94

0.888 0.348 2.187 1.002 0.422 3.522 0.870 0.328 2.202 0.810 0.288 2.284

(40,30) (20,020) 0.93 0.91 0.94 0.90 0.92 0.95 0.93 0.94 0.94 0.95 0.94 0.95

0.600 0.194 2.494 0.688 0.199 2.888 0.500 0.201 1.456 0.559 0.201 2.456

(05,120,05) 0.92 0.90 0.95 0.93 0.91 0.92 0.96 0.97 0.95 0.95 0.96 0.96

0.752 0.130 3.421 0.758 0.118 1.421 0.612 0.223 1.414 0.6100 0.213 1.413

(010,120) 0.90 0.90 0.95 0.92 0.95 0.94 0.93 0.95 0.95 0.95 0.94 0.95

0.792 0.136 1.199 0.892 0.188 1.199 0.698 0.260 1.051 0.6044 0.233 1.050

3 The MCMC credible intervals and BTCIs presented more suitable results than the
approximate CIs and PTCIs since have small lengths than the lengths of latter, for
different sample sizes, observed failures and schemes.

4 The efficiency of each estimates increasing for the increasing sample size and
affected sample size.
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