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Abstract 

 

We derive the equation for the stream function of planar transonic vortical 

flows of an ideal perfect gas. Vorticity arises at high subsonic flight velocity 

due to shock waves in the supersonic zones on an airfoil. Vortex is known to 

be constant along the stream line, therefore only the stream function equation 

should be used for precisely calculating the energy losses. However, as it was 

marked by L.Bers (see epigraph), there is no equation in the whole flow 

domain containing both the subsonic and supersonic sub-domains. Actually 

we derive two different equations with a polar singularity on the sonic line. To 

conjugate the neighbor solutions a regularity condition should be fulfilled. 
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"...If we shall attempt to exclude the velocity potential, then we shall meet difficulty in 
the connection with that that   is two-valued function of the mass stream V  

... There is no single equation of the second order to which the stream function would 
satisfy." L.Bers [1] 
 

 

Introduction 

Transonic aerodynamics [1] says: if the Mach number M   of the flight upstream 

exceeds a critical value 1crM  , which is determined only by the form of the wing 

profile, then the local supersonic zones arise. Such zones are known to contain, as a 
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rule, shock waves. Length and intensity of shock waves and aerodynamic resistance 

sharply increases as 1M  . Particularly, economic efficiency of the long-distance 

civil aviation depends on both the flight speed and form of the profile . 

Therefore to lower the expenditure of the fuel, one should increase crM  and 

coordinate this with the increase of M  . Designing a wing profile of high efficiency 

is possible in the only case when using the equation for the stream function. 

 

 

Equation for the stream function 
We study stationary flows of an ideal gas obeying the thermodynamic equations 

p RT  , VE c T . As usual, ,  ,  ,  p T E  are the pressure, density, temperature, 

internal energy. R  is the gas constant and Vc const  is specific heat at constant 

volume. 

The Euler system for the Clapeiron gas 
2

( ) 0,  ( ) 0,  ( / 2) ( ) 0Vp c T p               V V V V V V  

has two first integrals asserting that entropy and full enthalpy are constant along 

stream lines 
2

0 0/ 2 ( ) ( ),  / ( )pi i с T S p S        V  

Here V  is the velocity vector, /pi c T E p     is the enthalpy, S  is the entropy, 

/p Vc c   is the isentropic exponent ( ,  ,  )p V p Vc const c const c c R    , 

( , )x y    is the stream function such that 

,  ,  y xu v u v       V i j  

It follows from the first integrals and the Clapeiron law that 
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Denote by square brackets the breaks on shock waves. In concordance with the 

Rankin-Hugoniot conditions 0 0[ ( )],  [ ( )]p    are proportional to the curvature of the 

shock line, 0[ ( )] 0T   . 

We restrict oneself to the most important case, when the flow upstream is uniform. 

Then 0 0( )T const T   . 

By 02 / ( 1)cra RT const    , ( , ) ( , ) / crx y x y a   V  denote the critical 

sound velocity and the velocity coefficient correspondingly. Formulas (1) allow to 

express ( , ),  ( , ),  ( , )T x y p x y x y  in the form 

0 0 0

0 0 0 0 0 0
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via so called gas dynamical functions 
2 1/( 1) /( 1)( ) 1 ( 1) / ( 1),  ( ) [ ( )] ,  ( ) [ ( )]                      

Denoting 
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we express   in the form 
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Let  
1

1,2 ( ) ( )Q q 


   be the two-valued inverse function determined on the segment 

[0,1] such that 1 [0,1]  , 2 [1, ( 1 / ( 1)]     . In correspondence with eq.(2) the 

velocity coefficient   can be expressed in the domains of subsonic and supersonic 

velocities via ψ ,ψ  as follows 
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 (3) 

If there is the shock wave in the flow, the vorticity is determined by distribution of the 

velocity argument break along the shock wave arc. Let k  be a unit vector orthogonal 

to the flow plane. Using the formula (see the text book [2]) 

( 1)/ 1/

0/ / ( ) ( ) ,  
1

rot u y v x i p S   
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k V  

and taking into account that 
0 0( ) ( ) 0pi с T      , we obtain 
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Let us express 1,2ln ( ( ))Q    via partial derivatives of the stream function using 

the formulas 
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Thus we obtain finally the pair of the non-linear equations of second order describing 

sub- and supersonic flows 
1
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In correspondence with eq.(3) equality 0 ( )A     takes place on the sonic line 

1  . 

Monotone functions 1,2 ( )Q  are different in sub- and supersonic domains. We have 

1,2 1,2 1 0(1) 1,  ( ) |QQ  
      

As 
2( ) 1 ~ ( 1)Q      at 1 , then 

1

1,2 1| ~ ( 1)
   . Let s  be the sonic line 

length. In order to eq.(4) be twice continuously differentiable solution in the whole 

domain of the mixed sub- and supersonic flow, it is necessary that there exists a 

continuously differentiable function ( )L s  such that 
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It is easy to check that equality 
2 22 0x xx x y yx y yy          takes place on the 

sonic line in each irrotational flow. 

Eq.(4) is determined in the exterior of a profile. Asymptotic behavior of the vortical 

flow, which is subsonic outside of a finite circle containing the profile, is established 

in [3].The boundary condition on the profile is 0  . Certainly, the condition 

Zhukovskii-Kutta-Chaplygin is supposed to be fulfilled. Existence and uniqueness of 

the boundary-value problem solution remain open. 

 

Remark 1 

Computing a weakly supercritical flow, one can simplify the problem. Starting from 
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the irrotational flow we will increase step by step the vortical members in eq.(4). 

Calculating firstly the solution to the boundary-value problem for the velocity 

potential [1] 

2 2 21
1 2

2
x xx x y xy y yy


       


      

one can find the approximate position of the sonic line. The shock wave can be 

determined approximately as well, if considering it as the position of large velocity 

gradients. Then the solution can be corrected with using eq.(4). 

 

Remark 2 

The equation for axially symmetrical transonic vortical flow can be deduced by 

similar way. 
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