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Abstract

The aim of this paper consists in proving Kleinecke-Shirokov Theorem for deriva-
tions on Banach–Jordan pairs. Namely, the couples (D+a, D−b) of a Banach–
Jordan pair V = (V +, V −) are quasinilpotent for any derivation D = (D+, D−)

on V satisfying the conditions D2
+a = 0 and D2

−b = 0 generalizing by the way the
famous Thomas’s Theorem for derivations on Banach algebras.
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1. Introduction

A very crucial topic in the Theory of derivations centres the question on local and global
properties of these operators defined on some Banach (possibly nonassociative) algebras.
One of the earliest results (1955) in the Theory of derivations is the famous Theorem of I.
M. Singer and J. Wermer [15] asserting that every bounded derivation on a commutative
Banach algebra has range in the radical. They conjectured later that this result remains
true even if the boundedness assumption is dropped. It took more than thirty years before
this classical conjecture was finally confirmed for commutative algebras by M. P. Thomas
[16] . The fundamental work which started investigation into the elementary properties
of derivations is independently due to D. C. Kleinecke [6] and F. V. Shirokov [14] who
asserted that every commutator [a, b] in a Banach algebra A satisfying [a, [a, b]] =
0 is quasinilpotent. This result may be stated in a general context, namely, Da is
quasinilpotent whenever the second iteration of any derivation D on a Banach algebra A
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annihilates the element a of A. The proof of this property seems to be easy in the case
where D is a bounded derivation. However, if one drops the boundedness assumption of
D, does the result hold to be true? This question remains open a long time ago before M.
P. Thomas gave an affirmative answer [17] . But, whether or not this result remains true in
the more general context of derivations on Banach-Jordan pairs is still an open question.
In this context , the question is stated as follows: If D = (D+, D−) is a derivation on
a Banach-Jordan pair V = (V +, V −) satisfying D2+a = 0 and D2−b = 0 for a couple
(a, b) × V + × V −, is the couple (D+a, D−b) quasinilpotent? In this paper, our aim
consists in giving an affirmative answer to this question which generalize Thomas’s result
to the more general context of Banach-Jordan pairs. But, unlike Thomas’s procedure
based on representation theory, our approach consists in an intensive use of spectral
theory in Banach-Jordan pairs recently developed in [5] . As it is pointed out in [17], the
importance of this result lies in its connection with the famous Singer-Wermer conjecture
in the noncommutative case which until now still defies solution.

2. Preliminaries

In this paper we shall deal with Jordan pairs and Jordan algebras over a commutative ring
of scalars R of characteristic not two. The reader is referred to [7] for further details.
However, we shall record in this section some notations and results.

Definition 2.1. A Jordan pair over a commutative ring R of characteristic not two is
a pair of R-modules P = (P +, P −) endowed with a couple (Q+, Q−) of quadratic
operators Qσ : P σ −→ HomR(P −σ , P σ ) such that the following identities hold for all
(x, y) ∈ P σ × P −σ (σ = ±)

V σ
(x,y)Q

σ
x = Qσ

x V −σ
(y,x), V σ

(Qσ
x y,x) = V σ

(x,Q−σ
y x),

where V σ
(x,y)z = Qσ

(x,z)y = {x, y, z}σ , Qσ
(x,z) = Qσ

x+z − Qσ
x − Qσ

z and {x, y, x}σ =
2Qσ

x y.

Every couple (x, y) ∈ V σ ×V −σ gives rise to the so called Bergman operator defined
by B(x,y) = IdV σ − V(x,y) + QxQy . Such operator is of great interest in Jordan theory.

An example of Jordan pairs over a field K of characteristic not two is given by taking
P + = Mp,q(R) and P − = Mq,p(R) (p, q ∈ N

∗) the linear spaces of rectangular
matrices with entries in an associative algebra R over the field K. The multiplication in
P is defined by:

Qσ
uv = uvu ∀(u, v) ∈ P σ × P −σ ,

the usual matrix product.

Definition 2.2. A Jordan pair P = (P +, P −) is said to be normed provided the vector
spaces P + and P − are respectively endowed with norms ‖.‖+ and ‖.‖− such that, for
all x, z ∈ V σ and y ∈ V −σ , we have

∥∥{x, y, z}σ
∥∥

σ
≤ ‖x‖σ ‖y‖−σ ‖z‖σ .
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If the norms ‖.‖σ are complete then P is said to be a Banach-Jordan pair.

If there is no confusion, the triple products {x, y, z}σ and the norms ‖.‖σ of P are
merely denoted by {x, y, z} and ‖.‖ .

A typical example of Banach-Jordan pairs is given by taking

P + = BL(X , Y), P − = BL(Y, X ),

the pair of linear bounded operators between real or complex Banach spaces X and Y with
the multiplicationQuv = uvu, the usual composition. The pairP = (BL(X , Y),BL(Y, X ))

is frequently denoted by B(X , Y).
A (linear) Jordan algebra is a vector spaceJ endowed with a binary product (a, b) �−→

ab satisfying the identities: ab = ba, and a2(ba) = (a2b)a. If a complete norm is de-
fined on J and makes continuous its product ab, J is said to be a Banach-Jordan algebra.
Jordan pairs are known by their intimate relationship with Jordan algebras. Indeed, any
associative, alternative or Jordan algebra A gives rise to a Jordan pair (A, A) with a
quadratic multiplication xyx or Uxy, with U denoting the usual U -operator of a Jordan
algebra defined by Uxy = 2x(xy) − x2y.

Conversely, given a Jordan pair V = (
V +, V −)

and an element u ∈ V −σ , the vector
space V σ gives rise to a Jordan algebra by defining the U -operator Ua = U(u)

a = QaQu,

and the square a(2,u) = Qau. This Jordan algebra, denoted by V σ(u), is called the u-
homotope of V at u. If V is a linear Jordan pair, we just need to define the linear product in

V σ(u) as follows: a.b = 1

2
Q(a,b)u = 1

2
{a, u, b} . The left multiplication of the algebra

V σ(u) is the linear operator L(u)
a such that, for all x ∈ V σ , L(u)

a x = a.x = 1

2
V(a,u)x.

Let V be a normed Jordan pair, then V σ(u) is a normed Jordan algebra for the norm
|x| = ‖x‖σ ‖u‖−σ . Moreover, V σ(u) is a Banach-Jordan algebra provided the norms of
V are complete.

Primitive ideals and Jacobson radical. A Jordan pair V = (V +, V −) is said to be
primitive at b ∈ V −σ if there exists a proper inner ideal K of V σ : QKV −σ ⊂ K, such
that:

i) K is a c-modular inner ideal of the homotope V σ(b) for some c ∈ V σ ,

ii) K complements the (σ )-parts of nonzero ideals: Iσ + K = V σ for any nonzero
ideal I = (I+, I−) of V.

For more details on modular inner ideals, we refer to [12] and [13].
An ideal P of a Jordan system (algebra or pair) V is called primitive if the factor

system (algebra or pair) V/P is primitive.
Anquela and Cortés proved in [1] the following results:

• V is primitive at b ∈ V −σ if and only if the so called local algebra Vb =
V σ(b)/KerQb is a primitive Jordan algebra and V is strongly prime.
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• If V is primitive at some 0 	= b0 ∈ V −σ then so is V at every element 0 	= b ∈ V ±.

Further results on primitive Jordan pairs can be found in [1] .

The core of a maximal inner ideal M is the largest ideal contained in M . The core
of M is a primitive ideal of V [1].

Following [7], the Jacobson radical of a Jordan pair V is defined as the ideal
Rad(V ) = (Rad(V +), Rad(V −)),whereRad(V σ ) is the set of properly quasi-invertible
elements of V σ , that is, those elements which are quasi-invertible in all homotopes
V σ(u), u ∈ V −σ . The Jacobson radical of V is also the intersection of all its primitive
ideals. A Jordan pair is said to be semiprimitive if Rad(V ) = 0.

Capacity. A nondegenerate Jordan pair is said to have a finite capacity [10] if it satisfies,
among other equivalent conditions, both chain conditions on principal inner ideals. For
more details on finiteness conditions in Jordan pairs, we refer to [10].

If F is a subspace of a vector space E then we shall denote by πF : E −→ E/F the
canonical map from E onto the quotient vector space E/F.

Let (a, b) be a couple of a Jordan pair V. The spectrum of (a, b) is defined as the set

SpV (a, b) = {
λ ∈ C: λ − a is not invertible in J 1} ,

where J 1 = C ⊕ J denote the unital hull of J = V +(b). Thus by definition, 0 ∈
SpV (a, b). From the basic properties of the quasi-inverse [7] , it follows that

(1.3) 0 	= λ ∈ SpV (a, b) ⇔ (λ−1a, b) not quasi-invertible,

0 	= λ ∈ SpV (a, b) ⇔ B(λ−1a,b) not invertible.

If V is a complex Banach-Jordan pair then, as for complex Banach algebras, SpV (a, b)

is a nonvoid compact subset of the complex field C.

Lemma 2.3. Let V be a Jordan pair. Then, for every (a, b) ∈ V + × V −, SpV (a, b) =
∪P primitiveSpV/P (πP a, πP b) = SpV/Rad(V )(πRad(V )a, πRad(V )b).

Proof. It is clear that the inclusion ∪P primitiveSpV/P (πP a, πP b) ⊂ SpV (a, b) is easily
obtained from

[
9, Prop. 13.b

]
. For the reverse inclusion take

α /∈ ∪P primitiveSpV (πP a, πP b),

and show that α /∈ SpV (a, b). Suppose on the contrary that α ∈ SpV (a, b). The set
B(α−1a,b)V

σ is an inner ideal of V different from V σ . Thus B(α−1a,b)V
σ is contained in

a maximal inner ideal M of V σ . Consider the core P σ = Core(Mσ ) of M . This is a
primitive ideal of V for which we have so α /∈ SpV/P (πP a, πP b). By 1.3, this means
that the Bergman operator B(α−1πP a,πP b) is invertible. Consequently, we do have

πP V σ = B(α−1πP a,πP b)πP V σ = πP B(α−1a,b)V
σ ⊆ πP M.

This proves that M = V σ which is clearly a contradiction.
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For the second equality SpV (a, b) = SpV/Rad(V )(πRad(V )a, πRad(V )b), the inclu-
sion SpV/Rad(V )(πRad(V )a, πRad(V )b) ⊆ SpV (a, b) holds by

[
9, Prop. 1.3.b

]
. For the

reverse inclusion, take α /∈ SpV/Rad(V )(πRad(V )a, πRad(V )b). Then, by 1.3, the couple
(α−1πRad(V +)a, πRad(V −)b) is quasi-invertible in V/Rad(V ). But since Rad(V ) is a
quasi-invertible ideal of V , (α−1a, b) is quasi-invertible in V by [7, Lemma. 4.3] and
so α /∈ SpV (a, b) by 1.3. �

Remark 2.4. The equality SpV (a, b) = SpV/I (πIa, πIb) holds for any quasi-invertible
ideal I = (I+, I−) of the Jordan pair V.

3. Bounded derivations

Definition 3.1. Let V = (V +, V −) be a Jordan pair over an arbitrary ring of scalars �.

Following [7] , a pair of linear mappings D = (D+, D−) :Dσ : V σ −→ V σ , is called a
derivation on V if the condition

Dσ(Qxy) = {Dσ(x), y, x} + QxD−σ (y)

holds for every x ∈ V σ , y ∈ V −σ and σ ∈ {+, −} . If
1

2
∈ �, this is equivalent to say

that the identity,

Dσ({x, y, z}) = {Dσ(x), y, z} + {x, D−σ (y), z} + {x, y, Dσ (z)} ,

holds for every x, z ∈ V σ , y ∈ V −σ and σ = ±.

An example of derivations is given by defining the linear operators D = (D+, D−)

on the Banach-Jordan pair B(X , Y) = (BL(X , Y),BL(Y, X )) by

D+(x) = xa − bx, D−(y) = yb − ay, for all (x, y) ∈ BL(X , Y) × BL(Y, X )

for suitable linear operators a and b in the Banach algebras BL(X ) and BL(Y) of
all bounded operators defined on the Banach spaces X and Y . Let us note that the
structure of linear derivations on the Banach pair B(X , Y) is given in [18, Th.2.3.1]
whereas the structure of non-linear (additive) derivations on the same pair is established
in [11, Th. 4.4 and 4.5].

A tedious computation enables to establish the following Leibnitz formula for a
derivation D = (D+, D−) on a Jordan pair V . For any positive integer n,

(2.2) Dn
σ ({x, y, z}) = �i+j+k=n

n!
i!j !k!

{
Di

σ (x), D
j
−σ y, Dk

σ z
}

for all x, z ∈ V σ , y ∈ V −σ .

Let us note that the main result in this section holds to be true under the assumption that
the components D+ and D− are bounded. However, we do mention that technics used
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here in the proof are entirely different from those given in the proof of the main result in
this paper where the boundeness of D+ and D− is redundant as it will be seen later.

Recall that the spectral radius of an element x of a Banach algebra A is defined by

the positive real number ρ(x) = lim
∥∥xn

∥∥ 1
n = max {|α| : α ∈ SpA(x)}. The spectral

radius of (a, b) ∈ V is defined in the same way as the positive real number

ρ(a, b) = lim
∥∥∥a(n,b)

∥∥∥
1
n = max {|α| : α ∈ SpV (a, b)} ,

where a(n,b) is the nth power of a in the the Jordan algebra V +(b) for which we have
a(n+1,b) = Qab

(n,a). By an induction process together with the first identity in 1.1, we
can show that the following formula holds to be true

(2.3) a(n+1,b) = 1

2n
V n

(a,b)a.

The couple (a, b) is said to be quasinilpotent if ρ(a, b) = 0, equivalently, SpV (a, b) =
{0}.

For more detailed study of spectral theory and holomorphic functional calculus in
Banach–Jordan pairs the reader is referred to [5] .

The following lemma is of live interest in the sequel.

Lemma 3.2. Let D = (D+, D−) be a derivation on a Jordan pair V and (a, b) be a
couple of V + × V − such that D2+a = 0 and D2−b = 0, then

i) For all n ∈ N, D2n+2+ V n
(a,b)a = 0. Accordingly, for all positive integers h, k such

that k ≥ 2h + 2, we have Dk+V h
(a,b)a = 0.

ii) For all n ∈ N, D2n+1+ V n
(a,b)a = (2n + 1)!V n

(D+a,D−b)D+a.

Proof.

i) We proceed by induction. For n = 0, this is trivial with the notation V 0
(a,b) = IdV + .

Suppose that D2n+2+ V n
(a,b)a = 0. Then, for n + 1, we have

D
2(n+1)+2
+ V n+1

(a,b)a = D2n+4+
{
a, b, V n

(a,b)a
}

= �i+j+k=2n+4
(2n + 4)!

i!j !k!
{
Di+a, D

j
−b, Dk+V n

(a,b)a
}

= �
k≥2n+2
i+j+k=2n+4

(2n + 4)!
i!j !k!

{
Di+a, D

j
−b, Dk+V n

(a,b)a
}

= (2n + 4)!
1!1!(2n + 2)!

{
D+a, D−b, D2n+2+ V n

(a,b)a
}

= 0,

since all others terms vanish under the hypothesis D2+a = 0 and D2−b = 0 or
either the induction assumption.
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ii) As in i), we proceed by induction. For n = 0, this is trivial since V 0
(a,b) = IdV + .

Suppose that the equality holds for n. Then, for n + 1, we have

D2n+3+ V n+1
(a,b)a = D2n+3+

{
a, b, V n

(a,b)a
}

= �i+j+k=2n+3
(2n + 3)!

i!j !k!
{
Di+a, D

j
−b, Dk+V n

(a,b)a
}

= �
k≥2n+1
i+j+k=2n+3

(2n + 3)!
i!j !k!

{
Di+a, D

j
−b, Dk+V n

(a,b)a
}

= (2n + 3)!
1!1!(2n + 1)!

{
D+a, D−b, D2n+1+ V n

(a,b)a
}

= (2n + 3)(2n + 2)
{
D+a, D−b, D2n+1+ V n

(a,b)a
}

,

because all terms as {
Di+a, D

j
−b, Dk+V n

(a,b)a
}

such that 2 ≤ i or 2 ≤ j vanish under the conditions D2+a = 0 and D2−b = 0 and
only the term {

D+a, D−b, D2n+1+ V n
(a,b)a

}

survives in the sum. Let us note that terms
{
Di+a, D

j
−b, Dk+V n

(a,b)a
}

for which i = j = 0 and k = 2n + 3 or either (i, j) ∈ {(0, 1), (1, 0)} and
k = 2n+ 2, they vanish by i). Therefore, using the induction hypothesis, we have

D2n+3+ V n+1
(a,b)a = (2n + 3)(2n + 2)

{
D+a, D−b, D2n+1+ V n

(a,b)a
}

= (2n + 3)(2n + 2)
{
D+a, D−b, (2n + 1)!V n

(D+a,D−b)D+a
}

= (2n + 3)!V(D+a,D−b)V
n
(D+a,D−b)D+a

= (2n + 3)!V n+1
(D+a,D−b)D+a.

Finally, for all n ∈ N, D2n+1+ V n
(a,b)a = (2n + 1)!V n

(D+a,D−b)D+a as required. �

Theorem 3.3. Let D = (D+, D−) be a bounded derivation on a Banach–Jordan pair V

and (a, b) be a couple of V + × V −. If D2+a = 0 and D2−b = 0, then (D+a, D−b) is
quasinilpotent.

Proof. Consider the Banach-Jordan algebra V σ(u) the u-homotope of V at u = D−b and
the multiplication algebra M(V +(u)) of V +(u)). For all a ∈ V +, the left multiplication



3218 H. Marhnine and C. Zarhouti

operator La = 1

2
V(a,u) satisfies, for all x ∈ V +,

[
D+, La

]
x = D+Lax − LaD+x

= 1

2
(D+ {a, u, x} − {a, u, D+x})

= 1

2
(D+ {a, D−b, x} − {a, D−b, D+x})

= 1

2
({D+a, D−b, x} + {

a, D2−b, x
} + {a, D−b, D+x} − {a, D−b, D+x})

= 1

2
V(D+a,D−b)x

= LD+ax.

This shows that
[
D+, La

] = LD+a. Hence, the subalgebra of those elements S in the
multiplication algebra M(V +(u)), for which D+S − SD+ lies in M(V +(u)), coincides
with M(V +(u)) since it contains all left multiplication operators on V +(u). Therefore,
we can define a derivation δ on M(V +(u)) by

δ(S) = [
D+, S

] = D+S − SD+,

for all S ∈ M(V +(u)). Since this derivation is bounded, it can be extended to a deriva-
tion, also denoted by δ, on M(V +(u)) the completion of M(V +(u)) with respect to the
operator-norm of M(V +(u)). Such extension is clearly unique. Now, we compute to
show that

δ(V(D+a,b) + V(a,D−b)) = 2V(D+a,D−b),

and then we have
δ2(V(D+a,b) + V(a,D−b)) = 0.

Now, Kleinecke-Shirokov Theorem [6] , [14] applies to the Banach algebra M(V +(u)) to
have the quasinilpotency of the operatorV(D+a,D−b) inM(V +(u)). That isρ(V(D+a,D−b)) =
0. This enables to obtain, together with 2.3,

lim
∥∥∥D+a(n+1,D−b)

∥∥∥
1

n+1 = lim

∥∥∥∥
1

2n
V n

(D+a,D−b)D+a

∥∥∥∥
1

n+1

≤ lim
1

2
n

n+1

∥∥∥V n
(D+a,D−b)

∥∥∥
1

n+1 ‖D+a‖ 1
n+1

≤ 0,

Since lim
∥∥∥V n

(D+a,D−b)

∥∥∥
1

n+1 = ρ(V(D+a,D−b)) = 0, as it is just pointed out above. This

proves that ρ((D+a, D−b) = 0 which completes the proof. �
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Example 3.4. Consider de Banach-Jordan pair B(X , Y) = (BL(X , Y), BL(Y , X )) and
a fixed bounded linear operators a and b in the Banach algebras BL(X ) and BL(Y).
Let u be an element in BL(X , Y). As in [18, Cor.4.2.2] , the operator u is said to be
intertwining with the couple (a, b) if

ua = bu.

Let (u, v) be two operators in (BL(X , Y)×BL(Y, X )) such that ua−bu and bv−va

are intertwining with (a, b).We claim that the couple (ua−bu, bv−va) is quasinilpotent.
Indeed, by defining the bounded derivation D = (D+, D−) on the Banach-Jordan pair
B(X , Y) =(BL(X , Y),BL(Y ,X )) by

D+x = xa − bx, D−y = by − ya for all (x, y) ∈ (BL(X , Y) × BL(Y, X )).

We compute to check that D2+u = 0 and D2−v = 0. Therefore, by Theorem 2.5,
(D+u, D−v) = (ua − bu, bv − va) is quasinilpotent.

The quasinilpotency of (D+a, D−b), quoted in Theorem 2.5, may be obtained from
an alternative assumption, namely, DσRad(V σ ) ⊆ Rad(V σ ) as it is shown in the
following result.

Corollary 3.5. Let D = (D+, D−) be a derivation on a Banach–Jordan pair V leaving
invariant Rad(V ) : DσRad(V σ ) ⊆ Rad(V σ ) and (a, b) be a couple of V + × V −. If
D2+a = 0and D2−b = 0, then (D+a, D−b) is quasinilpotent.

Proof. Consider the quotient pair V/Rad(V ). This is a Banach-Jordan pair because,
by [4, A.5.2] , Rad(V σ ) is closed in V σ . On the other hand, since DσRad(V σ ) ⊆
Rad(V σ ), D = (D+, D−) induces a derivation δ = (δ+, δ−) on the quotient pair
V/Rad(V ) defined by

δσ (x + Rad(V σ )) = Dσx + Rad(V σ ).

Moreover, δσ is bounded by [3, Th. 3.9] since V/Rad(V ) is semiprimitive. Now, since
δ2+(a + Rad(V +)) = δ2−(b + Rad(V −)) = 0, it follows by Theorem 2.5 that

SpV/Rad(V )(πRad(V )a, πRad(V )b) = 0.

But
SpV/Rad(V )(πRad(V )a, πRad(V )b) = SpV (D+a, D−b)

by Lemma 1.4. �

4. The main result

The following technical result of Functional Analysis, frequently used in the automatic
continuity Theory, will be needed in the proof of the result of this paper. This proof is
in fact devided into the following steps.
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Lemma 4.1. [18] Let S be a possibly unbounded linear operator on a Banach space X

and let M be a closed linear subspace of X such that πMSn is bounded for all positive
integer n. Then, there exists a strictly positive real number λ such that

∥∥πMSn
∥∥ ≤ λn,

for all n.

Before going on the proof of the main result, recall that if P = (P +, P −) is a
primitive ideal of a Banach-Jordan pair V = (V +, V −), then, by [4, A.5.2] , P σ is
closed in the Banach space V σ . Consequently, V/P is also a Banach-Jordan pair.

Proposition 4.2. Let D = (D+, D−) be a possibly unbounded derivation on a Banach–
Jordan pair V and P = (P +, P −) be a primitive ideal of V . Suppose that P is invariant
under D : DσP σ ⊆ P σ . Then, for any couple (a, b) of V + × V −satisfying D2+a = 0
and D2−b = 0, (πP D+a, πP D−b) is quasinilpotent.

Proof. Since the ideal P is primitive, it is closed and the quotient V/P is a primitive
Banach-Jordan pair. On the other hand, since P is invariant under D, the operator D

drops to a derivation δ = (δ+, δ−) on the quotient pair V/P defined by

δσ (x + P σ ) = Dσ(x) + P σ .

It follows that δσ is bounded by means of
[
3, Prop. 3.7

]
. Moreover, δ satisfies

πP Dn
σ = δn

σπP ∀n ∈ N.

It follows that πP Dn
σ is bounded. Now, by Lemma 2.4 ii), we have the equality

D2n+1+ V n
(a,b)a = (2n + 1)!V n

(D+a,D−b)D+a,

which is equivalent to

V n
(D+a,D−b)D+a = (2n + 1)!−1D2n+1+ V n

(a,b)a.

This enables to obtain, using 2.3,

∥∥∥πP (D+a)(n+1,D−b)
∥∥∥

1
n+1 =

∥∥∥∥
1

2n
πP V n

(D+a,D−b)D+a

∥∥∥∥
1

n+1

= (2n + 1)! −1
n+1

∥∥∥∥
1

2n
πP D2n+1+ V n

(a,b)a

∥∥∥∥
1

n+1

≤ (2n + 1)! −1
n+1

∥∥∥πP D2n+1+
∥∥∥

1
n+1

∥∥∥∥
1

2n
V n

(a,b)a

∥∥∥∥
1

n+1

.

Since πP Dn
σ is bounded, by Lemma 3.1, there exists a strictly positive real number λ

such that ∥∥∥πP D2n+1+
∥∥∥ ≤ λ2n+1, for all n ∈ N..
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This allows to obtain

∥∥∥πP (D+a)(n+1,D−b)
∥∥∥

1
n+1 ≤ (2n + 1)! −1

n+1 λ
2n+1
n+1

∥∥∥∥
1

2n
V n

(a,b)a

∥∥∥∥
1

n+1

≤ (2n + 1)! −1
n+1 λ

2n+1
n+1

∥∥∥a(n+1,b)
∥∥∥

1
n+1

.

The latter term in the previous inequality tends to zero when n tends to ∞. It follows that

lim
∥∥∥πP (D+a)(n+1,D−b)

∥∥∥
1

n+1 = 0, that is ρ(πP D+a, πP D−b) = 0, which completes

the proof. �

Before stating the main Theorem in this paper, we recall a result established in
[2, Th. 2.12] on the invariance of primitive ideals of a Banach-Jordan pair V under a
derivation D defined on V.

Lemma 4.3. [2, Th. 2.12] Let D = (D+, D−) be a possibly unbounded derivation on
a Banach-Jordan pair V . Then DP ⊆ P for all primitive ideals P = (P +, P −) of V

except possibly finitely many primitive ideals whose quotients are Banach–Jordan pairs
of finite capacity.

Theorem 4.4. L et D = (D+, D−) be a possibly unbounded derivation on a Banach–
Jordan pair V . Then, for any couple (a, b) of V + × V − satisfying D2+a = 0 and
D2−b = 0, (D+a, D−b) is quasinilpotent.

Proof. It suffices to prove that SpV (D+a, D−b) is reduced to {0}. As a first step, we
start by showing that SpV (D+a, D−b) is finite. By Lemma 3.3, D leaves invariant all
primitive ideals of V except possibly finitely many primitive ideals say P1, . . . , Pn which
provide necessarily quotient Banach-Jordan pairs V/Pk of finite capacity. Therefore, by
Proposition 3.2, for any primitive ideal P not lying in the set {P1, . . . , Pn}, we have

SpV/P (πP D+a, πP D−b) = {0} .

On the other hand, by [8] and [9], for all k ∈ {1, . . . , n}, SpV/Pk
(πPk

D+a, πPk
D−b) if

finite. In virtue of Lemma 1.4, it follows that

SpV (D+a, D−b) = ∪k=n
k=1SpV/Pk

(πPk
D+a, πPk

D−b).

This proves that SpV (D+a, D−b) is finite.
Assume actually that SpV (D+a, D−b) is not reduced to {0} and take 0 	= α ∈

SpV (D+a, D−b). Then, by 1.3, the Bergman operator B(α−1D+a,D−b) is not invertible.
The set B(α−1D+a,D−b)V

+ is an inner ideal of V which is different from V +. We claim
that B(α−1D+a,D−b)V

+ is invariant under the operator D+. Indeed, for all u ∈ V +, we
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have taking into account the conditions D2+a = 0 and D2−b = 0,

D+B(α−1D+a,D−b)u = D+(u − V(α−1D+a,D−b)u + Q
α−1D+a

Q
D−b

u)

= D+u − D+
{
α−1D+a, D−b, u

} + D+Q
α−1D+a

Q
D−b

u

= D+u − {
α−1D+a, D−b, D+u

} + Q
α−1D+a

D−Q
D−b

u

= D+u − V(α−1D+a,D−b)D+u + Q
α−1D+a

Q
D−b

D+u

= B(α−1D+a,D−b)D+u.

Since B(α−1D+a,D−b)D+u belongs to B(α−1D+a,D−b)V
+, this proves our claim:

D+B(α−1D+a,D−b)V
+ ⊆ B(α−1D+a,D−b)V

+.

By means of the main Theorem in [12] together with Zorn’s Lemma applied to the
inductive set

{
I+ inner ideal of V + : D+I+ ⊆ I+}

, there exists a maximal inner ideal
M+ ⊂ V +, also invariant under D+, such that B(α−1D+a,D−b)V

+ ⊆ M+. By the
symmetry of the argument, applied to the inner ideal B(α−1D−b,D+a)V

−, there exists a
maximal inner ideal M− ⊂ V −, also invariant under D−, such that B(α−1D−b,D+a)V

− ⊆
M−. Let P = (P +, P −) = Core(M) be the core of M = (M+, M−) that is the largest
ideal of V contained in M. The ideal P is primitive and also invariant under the derivation
D. Indeed, note first that an easy computation enables to check that DP + P is an ideal
of V . Moreover, P σ satisfies DP σ +P σ ⊆ Mσ . Since, by definition, P = (P +, P −) =
Core(M) is the largest ideal of V contained in M, we have DP σ + P σ ⊆ P σ . This
proves that DP ⊆ P. Now, in virtue of Proposition 3.2,

SpV/P (πP D+a, πP D−b) = {0} .

This shows that α /∈ SpV/P (πP D+a, πP D−b). Equivalently, B(α−1πP D+a,πP D−b) is
invertible. Therefore, we obtain,

πP V + = B(α−1πP D+a,πP D−b)πP V + = πP B(α−1D+a,D−b)V
+ ⊆ πP M+.

Hence, as in the proof of Lemma 1.4, we deduce that M+ = V +, which is a contradiction.
Finally, we obtain that SpV (D+a, D−b) = {0} as required. �

Actually, Theorem 3.4 may be used to derive a result on derivations of Banach-Jordan
algebras together with Thomas’s brilliant result on derivations of Banach algebras [17].

Corollary 4.5. Let D be a (possibly unbounded) derivation on a Banach–Jordan algebra
J . Then, for any element a of J satisfying D2a = 0, Da is quasinilpotent.

Proof. Consider the unital hull J
′ = C ⊕ J of the Jordan algebra J . It is also a Banach-

Jordan algebra with respect to the norm ‖α + x‖ = |α| + ‖x‖. Moreover, D extends to
a derivation, also denoted by D, on J

′
such that

D(α + x) = Dx, for all α ∈ C and x ∈ J.
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It is known that V = (J
′
, J

′
) is a Banach-Jordan pair for the product Qab = 2a(ab)−a2b

and δ = (D, D) is a derivation on V. Now, since, D2a = D21 = 0, then by Theorem 3.4,
the couple (a, 1) is quasinilpotent in V . That is SpV (a, 1) = Sp(a, J

′(1) = Sp(a, J
′
) =

{0} . �

Corollary 4.6. [Thomas’s Theorem, 17] Let D be a (possibly unbounded) derivation
on a Banach algebra A. Then, for any element a of A satisfying D2a = 0, Da is
quasinilpotent. Accordingly, if D is a Jordan derivation on A: D(x ◦ y) = D(x) ◦ y +
x ◦ D(y) with x ◦ y = 1

2
(xy + yx),satisfying D2a = 0 for some element a ∈ A, then

Da is quasinilpotent.
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