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Abstract 

 

This paper describes the powerful statistical technique Savitzky-Golay that 

can be used in many engineering applications and presents its application in 

selected technical experiment. The approach is based on a comparison two 

different techniques: polynomial regression model and Savitzky-Golay 

moving average polynomial smoother. 
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Introduction 
Perhaps the simplest and one of the most frequently used extrapolation methods is the 

moving averages method. A moving average is a method for smoothing time series by 

averaging (with or without weights) a fixed number of consecutive terms. Moving 

averages are used to smooth fluctuations in time series or to identify time series 

components, such as the trend, the cycle, the seasonal, etc. A moving average is a 

technique to get an overall idea of the trends in a data set. The moving average is 

extremely useful for forecasting long-term trends [1]. 

Simple (unweighted) moving average smoothing is probably the most common 

method of smoothing time series, mainly due to its ease of implementation. However, 

it faces several major disadvantages. One of them is the fact that a moving average 

always lags the last observation, such that the moving average can be 

disproportionally affected by old observations dropping out of the average. The 

end-point problem applies. Simple moving average method is most useful when 
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demand has no pronounced trend or seasonal fluctuations. Besides these two 

disadvantages, weighted moving average smoothing encounters another disadvantage. 

Namely, the results are strongly affected by the choice for the weighting factors. 

Although the best possible weighting factors should be determined iteratively when 

using this method, the weighting factors are usually chosen in such a way that more 

weight is given to more recent observations. In general however, the choice for the 

weighting factors is relatively arbitrary [2−3]. 

The number of terms in the average is the span. The role of the span is important. If 

the span is large, for example 12 months, than many observations go into each 

average, and extreme values have relatively little effect on the forecasts. The resulting 

series of forecasts will be much smoother than the original series. In the contrast, if 

the span is small, for example 3 months, then extreme observations have a larger 

effect on the forecast, and the forecast series will be much less smooth. 

Whereas weighted moving average smoothing assigns arithmetically increasing 

weights over time, exponential smoothing requires weighting factors to decrease 

exponentially as observations are getting older. Recent observations are weighted 

more heavily than remote observations. The unequal weighting is accomplished by 

using one or more smoothing parameters, which determine how much weight is given 

to each observation. The simplest technique of this type, simple exponential 

smoothing, is appropriate for a series that moves randomly above and below a 

constant mean (stationary series). It has no trend and no seasonal patterns [4−5]. 

Then, one often applies double exponential smoothing, but regarding this method it is 

recommended to avoid its use when a seasonal trend occurs. Triple exponential 

smoothing (sometimes referred to as Holt-Winters smoothing) can be seen as the most 

extensive form of exponential smoothing, because it takes into account both 

seasonality and trends [6]. Also for exponential smoothing it holds that the choice for 

the smoothing factors is rather arbitrary. It is reasonable though to pick the value that 

minimizes the mean of squared errors MSE [2,7]. 

Moving average filters are commonly used in industries for real-time processing of 

noisy data. The generalized moving average smoothing filter by Savitzky-Golay is 

derived from least squares fitting of a lower order polynomial to a number of 

consecutive points. Inventors showed that fitting a polynomial to a set of input 

samples and then evaluating the resulting polynomial at a single point within the 

approximation interval is equivalent to discrete convolution with a fixed impulse 

response. Savitzky and Golay (1964) were interested in smoothing noisy data 

obtained from chemical spectrum analyzers, and they demonstrated that least-squares 

smoothing reduces noise while maintaining the shape and height of waveform peaks 

(in their case, Gaussian-shaped spectral peaks) [8−9]. 

In the case of moving averages a least-squares fit is made to a zero order polynomial 

(i.e. a straight horizontal line or a constant value), whereas a SG filter performs a 

least-squares fit to a higher-order polynomial. The polynomial order should be higher, 

the wider the smoothing window. If the data in a particular smoothing window fits to 

a parabola, then it is preferred to use a second-order (quadratic) SG filter. The use of a 

fourth-order (quartic) SG filter is quite common in case the data fits to a fourth order 

polynomial. The major advantage of this method is the preservation of important 
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features of the original time series, like the relative widths and heights. Usually, these 

features are flattened by other (simpler) averaging techniques. If the data is irregularly 

spaced, a least-squares fit should be done within a moving window around each data 

point. This is computationally burdensome, particularly when the number of data 

points to the left and right is large, leading to the use of a higher-order polynomial. As 

an alternative, the user of the SG filter may pretend that the data points are equally 

spaced [2,10−11]. 

 

 

Simple and Weighted Moving Averages 

Suppose that there are n times periods and the corresponding values of Y variable are 

1 2, , , ny y y2 . Consider a decomposition of the time series into trend and residual 

components 
t t ty T e= +, 1,2, ,t n= 2 , and where ( )tT f t=  is a smooth and continuous 

function of t. Further we assume that the errors 
te are normally distributed with mean 

zero and unknown constant variance 2s . 

The estimation of trend component 
tT  is known as smoothing, and a two-sided simple 

moving average (SMA) is one way of doing so [12]: 

( )1 1

1 1ˆ ˆ
2 1 2 1

k

t t t k t k t k t k t j

j k

T y y y y y y
k k

- - + + - + +

=-

= = + + + + =
+ +

ä3 , 1, 2, ,t k k n k= + + -2 . (1) 

So each average consists of 2 1k+  observations. Sometimes this is known as a SMA 

smoother. The larger the value of k, the flatter and smoother the estimate of ( )tT f t=  

will be. 

Suppose the given time series is in years and we have decided to calculate 3-years 

moving average. The moving averages denoted by 1 2
ˆ ˆ ˆ, , , ny y y2  are calculated so: the 

average of the first 3 values is ( )1 2 3 3y y y+ +  and it is written against the middle year 

2t= .We leave the first value 1y  and calculate the average for the next three values. 

The average is ( )2 3 4 3y y y+ +  and is written against the middle years 3t= . The 

process is carried out to calculate the remaining moving averages. 

The moving average has less variability than the original observations. If the variance 

of an individual observation 
ty  is 2s , then the variance of the moving average is [13] 

2

2
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There is a trade-off between increasing bias (with large k) and increasing variance 

(with small k) [12]. 

We can estimate trend using a symmetric weighted moving average (WMA) 

ˆ
k

t j t j

j k

y a y +
=-

=ä , (3) 

where j ja a-=  and 1
k

j

j k

a
=-

=ä . 

The advantage of weighted averages is that the resulting trend estimate is much 

smoother. Instead of observations entering and leaving the average abruptly, they can 
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be slowly down-weighted. There are many schemes for selecting appropriate weights 

[14]. 

 

 

Best Local Polynomial Fit 
A simple moving average works well for a locally almost linear time series, but it may 

have problems to reflect a more twisted shape. This suggests fitting higher order local 

polynomials. By Savitzky-Golay method (SGMA) is smoothing performed by 

approximating the data series by a low-order local polynomial, using a moving 

window technique. We must specify the order of the polynomial and the size of the 

moving window. The larger the window the greater the smoothing effect. Only one 

set of coefficients is calculated, and this is applied to the data in every window by the 

corresponding coefficient value [8−11]. 

Suppose we have 2 1k+  consecutive data 
1 1, , , , , ,t k t k t t k t ky y y y y- - + + - +2 2  from a time 

series 1 2, , , ny y y2 . A local polynomial trend estimator of order 2 1r k< + is the 

minimizer 
0 1, , , rb b b2  satisfying 

( )
2

0 1 min.
k

r

t r

k

y t
t

b b t b t+

=-

- - - - =ä 3  (4) 

If we differentiate the left hand side with respect to each jb , 0,1, ,j r= 2 , and set the 

derivatives equal to zero, we see that the minimizers satisfy the 1r+  normal equations 

1

0 1
ˆ ˆ ˆ

k k k k
j j j r j

r t

k k k k

y t
t t t t

b t b t b t t+ +

+
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+ + + =ä ä ä ä3 .   (5) 

Assume that we specify a window size of 2 1 5k+ =. A cubic polynomial ( 3r = ) is 

selected, as the example relates to data smoothing. To find a cubic polynomial that 

best fits five successive points we minimize 

( )
2

2
2 3

0 1 2 3

2

ty t
t

b b t b t b t+

=-

- - - -ä . (6) 

So normal equations for the least-squares approximation problem are 
2 2 2 2 2

1 2 3

0 1 2 3

2 2 2 2 2

ˆ ˆ ˆ ˆj j j j j
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Using the fact that for odd-numbered j hold generally 
2

2

0j

t

t
=-

=ä , present system (7) 

take reduced form 
2
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Choosing 0t=  we obtain in particular that 
0

ˆ
t̂yb=  is a predictor of the central 

observation 
ty  among 

2 1 1 2, , , ,t t t t ty y y y y- - + +
. From the first and the third equation of 

system (8) we get 
2 2

2
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( )2 1 1 2

1
3 12 17 12 3

35
t t t t ty y y y y- - + += - + + + -. (9) 

Relation (9) may be rewritten in the other equivalent form 

[ ][ ]2 1 1 2

1
ˆ 3, 12, 17, 12, 3 , , , ,

35
t t t t t ty y y y y y- - + += - - Ö . (10) 

Symbolic notation for this moving average has the form 

( )1 35 3, 12, 17, 12, 3- - . (11) 

Note that the weights are symmetric and the sum of weights is 1. 

The end points are not smoothed because a span cannot be defined. A moving average 

of 2 1 5k+ = terms will mean losing 2 terms each at the beginning and at the end. 

At first we are deriving relations for terms 
1n̂y - , and 

n̂y . We used five past 

observations 
4 3 2 1, , , ,n n n n ny y y y y- - - -

 of the time series and estimated polynomial 
2 3

2 0 1 2 3
ˆ ˆ ˆ ˆ

n̂y t b b t b t b t- += + + + , (12) 

for values 1t=  and 2t= . At that we needed estimates 
1b̂, 

2b̂ , and 
3b̂ . 

From system (8) we get following results: 
2 2

3
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After substituting relations (13) – (15) into expression (12) and by sequel selection 

values 1t=  and 2t=  we get 

[ ][ ]1 4 3 2 1

1
ˆ 2, 8, 12, 27, 2 , , , ,

35
n n n n n ny y y y y y- - - - -= - Ö , (16) 

[ ][ ]4 3 2 1

1
ˆ 1, 4, 6, 4, 69 , , , ,

70
n n n n n ny y y y y y- - - -= - - Ö . (17) 

In an analogous manner we shall proceed in case of relations for terms 
2̂y , and 

1̂y . By 

using five first observations 
1 2 3 4 5, , , ,y y y y y  of the time series and estimated 

polynomial (12) for values 1t=-, and 2t=- we receive: 

[ ][ ]1 1 2 3 4 5

1
ˆ 69, 4, 6, 4, 1 , , , ,

70
y y y y y y= - - Ö , (18) 

[ ][ ]2 1 2 3 4 5

1
ˆ 2, 27, 12, 8, 2 , , , ,

35
y y y y y y= - Ö . (19) 

Expression (12) can be also used to making of short-time prognoses. Considering 

3t= , forecast for period 1t+  can be expressed as 

[ ][ ]1 4 3 2 1

1
ˆ 4, 11, 4, 14, 16 , , , ,

5
n n n n n ny y y y y y+ - - - -= - - - Ö .   (20) 

Notice that the sum of the weights of ending, beginning, and predicted moving 

averages (16) – (20) is equal 1, but the weights are asymmetric round about the 

middle value [15]. 
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Application in Technical Practice 
In paper [16] we presented the results of experiments and measurements of the stress 

of a pipeline located on a pipe bridge. The experiment was carried out by means of 

resistance strain gages for two modes, which were the stress changes upon pressure 

changes in the pipes and at the driving in of sheet pilings in the immediate vicinity of 

the pipeline. On the basis of measurements, the impact of these changes on the 

operational safety of the pipeline in the renovation process of old above ground and 

the realization of new underground pipeline solutions. Polynomial regression models 

were applied for the prediction and a statistical analysis of residuals was applied for 

the quality assessment of selected models. 

The purpose of the analysis was to determine the relationship between the pressure p 

[MPa] and the time t [h]. For experiment were collected n = 18 of the paired 

observations. Time span was between 8.00 and 16.30 with equal distance half an 

hour. The statistical analysis of the measured data was performed by using classical 

polynomial regression with software MATLAB. 

The cubic regression polynomial 2 3

0 1 2 3
ˆ ˆ ˆ ˆp̂ t t tb b b b= + + +  fit the measured data very 

good. Symbols ˆ
jb , for 0,1 , 2 ,3j= , are unbiased estimators of the true regression 

coefficients jb . The fitted (predicted) values for the mean of p are here signed as p̂ . 

Least squares parameter estimator for this model is vector 

6.365855 0.199945ˆ ( , , 0.020551, 0.000529)T= - -ɓ . 

We computed 95 % confidence intervals on regression coefficients with these results: 

0 6.229503 6.5, 02207bÍ , 
1 0.260419 0.139 72 , 4b - -Í , 

2 0.013258 0.02, 7843 bÍ , 

3 0.000782 0.000 76 , 2b - -Í . 

Since neither of confidence intervals does not contain zero, we can conclusion that all 

terms are useful in the regression model. 

The basic statistical outputs for cubic regression polynomial are: root mean squared 

error 0.0539RMSE= , coefficient of determination 2 0.9363R = , adjusted R-squared 
2 0.9226R* = , Durbin-Watson statistic 1.4088DW = , statistic 0.6175MAPE=  %. 

We also computed e.g. 95
 
% prediction interval for pressure p by using the cubic 

polynomial regression model (Fig.1.) [16]. 
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Figure 1: Fitted cubic polynomial with 95 % prediction interval 
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Presently we will compare selected cubic regression polynomial with appropriate 

Savitzky-Golay polynomial. We applied Savitzky-Golay moving average polynomial 

smoother with 5 span data and level 3 of polynomial to fit by using expressions (10), 

and (16) – (20). The MATLAB has function smooth, and sgolayfilt for designing and 

implementing both symmetric and asymmetric SG filters. 

More information can be seen in Table 1, where we present the observed data of the 

time t and the pressure 
tp , forecasted data 

t̂p  using cubic regression polynomial and 

SGMA polynomial smoother with 5 span data and level 3. 

 

Table 1: Comparison of regression model, and SGMA model with measured data 

 

t tp  
t̂p  cubic regression polynomial 

t̂p  SGMA, span 5, level 3 

1 6.0972 6.1859 6.0968 

2 6.0958 6.0439 6.0975 

3 6.0247 5.9367 6.0221 

4 5.9106 5.8610 5.9167 

5 5.8108 5.8138 5.8010 

6 5.7119 5.7917 5.7207 

7 5.7148 5.7918 5.7261 

8 5.8183 5.8107 5.8102 

9 5.8893 5.8453 5.8740 

10 5.8891 5.8924 5.9100 

11 5.9576 5.9490 5.9430 

12 5.9907 6.0117 5.9919 

13 6.0551 6.0774 6.0804 

14 6.2032 6.1429 6.1602 

15 6.1926 6.2051 6.2300 

16 6.2830 6.2608 6.2602 

17 6.2974 6.3068 6.3126 

18 6.3248 6.3400 6.3210 

19 — 6.35711 6.2414 

 

 

Figures 1−2 show the results of applying cubic regression polynomial and considered 

SGMA polynomial smoother. 
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Figure 2: Result of applying the SGMA polynomial smoother with span 5 and level 3 

 

 

Obtained forecasted data by using both methods are quite similar to the actual data. 

The accuracy of the forecasted data compare to the actual data also quite high, as we 

can see in the RMSE and MAPE values. The RMSE value for the regression method is 

0.0539 and the MAPE value is 0.6175 %. The RMSE value for the SGMA method is 

0.0182 and the MAPE value is 0.2279 %. The behavior of the SGMA model for our 

problem is better than the regression model. 

 

 

Conclusion 

We presented theory for Savitzky-Golay polynomial smoothing and its application for 

selected problem. Savitzky and Golay proposed the method of data smoothing based 

on local least-squares polynomial approximation. SGMA polynomial smoother will 

obtain a good trade-off in waveform smoothing under suitable conditions. These are 

the appropriate window size and the polynomial degree. 

For every polynomial order, the coefficients must be determined optimally such that 

the corresponding polynomial curve best fits the given data. Instead of applying 

averaging filter it is better to perform least squares fit of a small set of consecutive 

data points to a polynomial. So least-squares fit technique is used to choose the 

polynomial coefficients such that they give minimum sum of the squared errors. The 

output smoothed value is taken at the center of the window to replace the original data 

[8, 17]. 

The Savitzky-Golay filtering method is often made use of frequency data or 

spectroscopic (peak) data. For frequency data, the method is effective at preserving 

the high frequency components of the signal. The Savitzky-Golay method can be less 

successful than a moving average filter to de-noise. However, it should note that a 
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higher degree polynomial makes it possible to achieve a high level of smoothing 

without attenuation of data features [18]. 
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