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Abstract 

 

This paper presents the application of linear regression model for processing 

of stress state data which were collected through drilling into a structural 

element. The experiment was carried out by means of reflection 

photoelasticity. The harmonic star method (HSM) established by the authors 

was used for the collection of final data. The non-commercial software based 

on the harmonic star method enables us to automate the process of 

measurement for direct collection of experiment data. Such software enabled 

us to measure stresses in a certain point of the examined surface and, at the 

same time, separate these stresses, i.e. determine the magnitude of individual 

stresses. A data transfer medium, i.e. a camera, was used to transfer the 

picture of isochromatic fringes directly to a computer. 

 

Keywords: principal normal stresses, harmonic star method, simple linear 

regression, root mean squared error, mean absolute percentage error, 

R-squared, adjusted R-squared, MATLAB. 

 

 

Introduction 
Residual stresses are stresses which occur in a material even if the object is not loaded 

by external forces. The analysis of residual stresses is very important when 

determining actual stress state of structural elements. Residual stresses occur as early 

as in the stage of technological processes and may be of different nature with respect 

to direction, magnitude, depth, or planar gradient. They cause various failures of 
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structural parts, knots, machines or devices. Clients often require the knowledge of 

residual stress state in components or structures. It is appropriate to carry out the 

analysis which is based on the means of reflection photoelasticity, and determine 

gradient or magnitude of residual stresses [1]. 

Reflection photoelasticity provides us with complex information on stress or 

deformation stress in structural elements subjected to loads. However, evaluation of 

the entire field under analysis is often time-consuming. With the development of the 

new HSM software application we aimed to shorten the measurement of principal 

strains, principal normal stresses as well as residual stresses on a photoelastic layer 

applied to examined objects while using reflection polariscope M030, M040 or 

LF/Z-2 [2–4]. When determining strains and stresses on the photoelastic layer of the 

object subjected to loading, measurements are always carried out point after point. 

When more points are being analyzed, this procedure is lengthy. The new HSM 

application enables fast and efficient analysis of directions and magnitudes of 

principal strains and principal normal stresses in individual points over the entire 

surface with a reflection layer subject to examination [5–8]. 

It was further necessary to evaluate the experimental data. When analyzing the 

collected data we found out that polynomial regression models are suitable for data 

processing. 

 

 

Determination of residual stresses by means of photoelasticity 

In order to specify residual stresses, a reflective optically sensitive layer was bonded 

with the structural element. This layer exhibits the phenomenon of temporary 

birefringence. The harmonic star method was used for evaluation of the stress state. 

This method has enabled us to gain data on principal normal stresses of the examined 

object [5,9]. 

For the examination of residual stresses we had to drill a hole through the reflection 

layer. The hole was drilled to the material of the structural element up to the depth of 

5 mm. Parameters of residual stresses in the material were determined from the 

pattern of colourful isochromatic fringes which occurred on the reflection layer. This 

pattern occurs when stress is released after drilling and when illuminated with 

polarized light from the reflection polariscope. 

In addition to quantitative values of residual stresses, this method enables visual 

representation of their distribution around the holes on the reflection layer (Figure 1). 

Such visual representation allows us to visualize their overall distribution around the 

holes, and, in this way, enables immediate identification of areas of maximum 

residual stresses as well as stress gradients [8,10]. 

Separated values of residual stresses as gained by means of the HSM software were 

processed with suitable polynomial regression models in the MATLAB environment 

[11]. 
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Figure 1. Photographic record of isochromatics 

 

 

Experimented object, measurement and evaluation sequence for determination 

of residual stresses 

The experiment was carried out on a supporting element constituting a structural 

component of a lorry trailer extension frame (Figure 2) [12]. The manufacturer of the 

structure had requested this experiment due to frequent failures of the structure. In 

addition, the manufacturer requested structural measures which would eliminate these 

failures. One of the ways in which relevant data on the examined object can be 

collected is a complex of measurements which aim to define stress state in critical 

areas of the structure. We found out that residual stresses in the material of the 

supporting element (bracket) have a significant effect on the failure. The steel bracket 

is cut by laser technology and shaped by bending. A series of drilling experiments 

was carried out in predetermined areas of the structural component in order to specify 

residual stresses [1,2]. 

For the purposes of the experiment we decided to use reflection photoelasticity which 

provided us with initial reference information on the stress gradient in the area of 

residual stresses. At the same time, this method enabled us to determine stress 

magnitudes. The measurement was carried out directly on the supporting element. 

Figure 3 depicts the process of drilling as well as drilling equipment RS-200 installed 

on the supporting element. 
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Figure 2: Structure of a trailer frame and bracket subjected to examination 

 

 
 

Figure 3: A part of the supporting element with optically sensitive layer and the 

installation of drilling equipment 

 

 

The measurement and evaluation chain for determination of residual stresses by 

means of photoelasticity included drilling device RS-200, an object coated with 

photoelastic layer in the area of maximum stress concentration, polariscope LF/Z-2, 

camera CANON D 450 transferring isochromatic fringes from the reflection layer to a 

computer after drilling, software for subsequent separation of principal stresses by 

means of the harmonic star method, output device, e.g. printer (Figure 4). The 

reflection layer was made of a 3.125 mm thick mass with designation PS-1. The 

manufacturer, company Vishay, presented its fringe constant as f 
=

 
615

 
με [1,2]. 
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Figure 4: Experimental chain for determination of residual stresses 

 

 

Execution of the experiment, values of principal stresses identified by HSM 

software 

The experiment provided us with a large number of information. Therefore we have 

decided to demonstrate herein only the measurement in one point of the bracket. In 

the area of highest stress concentration we applied the layer of a photosensitive 

material while following a prescribed procedure. A hole was drilled through the 

photoelastic layer on the material of the supporting element progressively with 

increment of 0.5 mm. A Vishay cooling spray was used during the experiment. 

Cooling was necessary in order to exclude temperature alteration in the photoelastic 

layer during drilling. Such alteration of temperature could cause incorrect outcomes of 

the experiment. For drilling in the reflection layer and the structure in the analyzed 

point we used drilling equipment RS-200. The material was drilled up to the depth of 

8.4 mm. Diameter of the drill was 3.2 mm. Total depth of the hole was 8.4 mm. The 

depth of drilling was chosen with respect to the thickness of the photoelastic layer 

(3.125 mm) and the thickness of adhesive layer of cca 0.3 mm. The hole of 5 mm was 

sufficient to determine residual stresses in the material of the supporting element. 

Diameter of the hole was 3.2 mm which corresponds with the diameter of the drill 

[13,14]. 

After each drilling, visible isochromatic fringes on the examined surface were 

recorded with the camera. These fringes represent differences of principal normal 

stresses 
1 2σ σ . Using the camera the recorded colourful fringes were transferred to 

the computer for additional identification by means of the HSM software [5]. Stresses 

were separated, i.e. individual extreme components 
1 maxσ σ  and 

2 minσ σ  of normal 

stresses were specified from the difference of 
1 2σ σ . Individual separated values of 

these stresses during every drilling step are listed in Tab. 1. 
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Table 1: Separated values of extreme normal stresses 

 

Drilling depth [mm] min 

[MPa] 

max 

[MPa] 

0.50 79.40 269.12 

1.00 46.33 197.89 

1.50 44.43 170.19 

2.00 44.85 163.33 

2.50 48.54 164.83 

3.00 60.97 180.04 

3.50 65.78 183.21 

4.00 69.23 187.15 

4.50 71.62 192.99 

5.00 74.89 201.20 

 

 

Measurements provided us with basic information on residual stresses in the 

supporting element. At the same time, it was necessary to predict stresses in 

dependence on the depth of the hole in the supporting element. For this purpose we 

decided to use the means of regression analysis. 

 

 

Mathematical and statistical determination of extreme normal stresses tendency 

on the sample 

Basic task of statistical analysis of data in Tab. 1 was to estimate the dependence 

between extreme normal stresses σmin or σmax (variable dependent) and the depth of 

drilling h (variable independent) while using a suitable regression function, as well as 

to determine the level of intensity on which the given dependence occurs between 

various secondary interfering factors. Statistical analysis of measurement values was 

done with MATLAB software. 

The first step was to roughly assess the art and intensity of dependence between the 

analyzed quantitative attributes. For this purpose we used a correlation diagram in 

which every data pair is represented graphically by one point in a plane. The art of 

dependence is estimated by means of a curve which fits the outcome values. In both 

cases we have chosen the 2
nd

 up to the 4
th
 degree of polynomial regression model (see 

Figure 5 and Figure 6). 
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Figure 5: Comparison of three polynomial regression models with measured data  

for σmin vs. h 
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Figure 6: Comparison of three polynomial regression models with measured data  

for σmax vs. h 
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Neither methodology, relations of the least square method, nor residual characteristics 

and statistical tests are discussed in this paper. A comprehensive description of these 

aspects can be found in relevant literature [11,15]. 

In order to test statistical relevance of individual regression coefficients of polynomial 

regression functions min 0 1

m
mσ β β h β h  or m 0 1

m
ax mσ β β h β h for m 

=
 
2, 3, 4 

we used t-tests within which the null hypothesis H0: 0j  was tested in relation to the 

alternative hypothesis H1: 0j , 0,1 , ,j m . 

We used the level of significance 
 
=

 
0.05. If p-value is lower than the significance 

level, a particular regression coefficient is considered statistically relevant. Point 

estimations 
0 1
ˆ ˆ ˆ, , , m  of regression coefficients 

0 1, , , m  which were gained 

by means of the least square method, as well as the resulting p-values for examined 

regression coefficients are listed in Tab. 2. − Tab. 5. 

 

Table 2: Least squares parameter estimates for σmin vs. h 
 

Type of polynomial Parameter estimates 

Quadratic 72.5862 19.1022 4.ˆ 29( , , )21 Tβ  

Cubic 109.4107 84.4249 32.53ˆ ( , , ,94 3.4335)Tβ  

Quartic 137.0692 155.3442 84.4394 17.6174ˆ ( , , , , 1.2894)Tβ  

 

Table 3: P-values of t-tests for σmin vs. h 
 

Type of polynomial P-values 

Quadratic [0.0005; 0.0952; 0.0475] 

Cubic [2.539·10
−5

; 0.0010; 0.0014; 0.0027] 

Quartic [2.0644·10
−5

; 0.0006; 0.0017; 0.0051; 0.0120] 

 

Table 4: Least squares parameter estimates for σmax vs. h 
 

Type of polynomial Parameter estimates 

Quadratic 276.1293 74.8267 12.ˆ ( , , 3 )53 9 Tβ  

Cubic 345.7367 198.3027 66.07ˆ ( , , ,80 6.4902)Tβ  

Quartic 397.6817 331.4950 163.5506 33.1287ˆ ( , , , , 2.4217)Tβ  

 

Table 5: P-values of t-tests for σmax vs. h 
 

Type of polynomial P-values 

Quadratic [4.6263·10
−6

; 0.0047; 0.0062] 

Cubic [6.2653·10
−7

; 0.0002; 0.0005; 0.0015] 

Quartic [5.1824·10
−8

; 7.3088·10
−6

; 3.8766·10
−5

; 0.0001; 0.0004] 
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After the estimation of parameters of regression functions it is appropriate to evaluate 

relevance of the selection according to specified criteria. The following residual 

characteristics were used as criteria for the estimation of regression function 

relevance: root mean squared error RMSE, mean absolute percentage error MAPE, 

coefficient of determination R2
 or modified coefficient of determination R*2

. 

The RMSE statistics is a point estimation of standard deviation  of a random 

component ε. The MAPE statistics is used as an accuracy indicator of individual 

predictions as opposed to reality. There is no general scale in analytical practice 

which would specify acceptable MAPE values. If the calculated value of MAPE 
<

 
10

 

%, it is interpreted as an excellent prediction; values between 10
  

20
 
% are 

interpreted as a good prediction, values between 20
  

50
 
% are interpreted as an 

acceptable prediction, and values above 50
 
% are interpreted as an inaccurate 

prediction [16–18]. The coefficient (index) of determination (R-squared) R2
 specifies 

the part of the total variability of values under examination which can be explained by 

the particular regression model. It is hence an important feature when estimating the 

appropriateness of the selected regression model. Values close to zero indicate that 

the selected regression function is not appropriate. Contrary to the above mentioned, 

values close to 1 indicate that the regression function is very appropriate for 

extrapolation. The R-squared is a point estimation of the coefficient of determination 

ρ2
 of the basic group. If the sample size is small, in this case such estimation is biased 

and overestimates the appropriateness for the regression model. A modified 

coefficient of determination (adjusted R-squared) R*2
 provides us with estimation 

without bias. This coefficient was modified with respect to the number of model 

parameters and sample size [15,19]. 

When comparing more regression functions, the most appropriate seems to be the 

regression model in which R2
 or R*2 

reaches higher values and RMSE as well as 

MAPE reach lower values [11,15,20]. 

Basic statistical outcomes for three selected polynomial regression models and both 

examined principles are listed in Tab. 6 and 7. 

 

Table 6: Basic regression statistics for σmin vs. h 
 

Statistics Polynomial model 

quadratic cubic quartic 

RMSE 10.0855 4.8829 2.6857 

MAPE [%] 12.7878 5.0160 2.7759 

R
2 0.5656 0.9127 0.9780 

R
*2

 0.4415 0.8691 0.9604 

 

 

The least square method provides us with point estimations of linear regression 

models without deviations provided that certain preconditions of random errors 

distribution probability are fulfilled in the model. 
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Table 7: Basic regression statistics for σmax vs. h 
 

Statistics Polynomial model 

quadratic cubic quartic 

RMSE 18.6607 8.2120 2.3339 

MAPE [%] 7.0209 2.9358 0.7247 

R
2 0.7076 0.9515 0.9967 

R
*2

 0.6241 0.9272 0.9941 

 

 

It is assumed that random errors  are normally distributed with zero mean value and 

constant dispersion (homoscedasticity). It is also assumed that these errors are 

uncorrelated. Fulfilment of these preconditions cannot be validated earlier than after 

regression model is fitted, since residuals are not known before this selection. As long 

as the model does not fulfil any of the given conditions, it cannot be used for given 

data even if it is better than the alternating models, e.g. according to RMSE or R*2
 

values [11,15]. 

Preconditions of the model are mainly verified by means of simple diagrams or 

well-known statistical tests. In the event of standardized residuals diagram versus 

theoretical values it is true that the model is appropriate as long as cca 95
 
% of 

residuals is in the interval of (−2, 2) [15]. 
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Figure 7: Scatter plots of standardized residuals vs. fitted values of three regression 

polynomials for σmin vs. h 
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Figure 8: Scatter plots of standardized residuals vs. fitted values of three regression 

polynomials for σmax vs. h 
 

 

Based on Tab. 3 it can be stated that in the event of σmin vs. h the quadratic regression 

polynomial is not satisfactory as its coefficients β1 and β2 are of no statistical 

relevance. As regards σmax vs. h (see Tab. 5), all coefficients of the three examined 

types of regression polynomials are statistically relevant. 

Based on the statistical outcomes in Tab. 6 and 7, for both examined cases the most 

appropriate degree of polynomial model is the 4
th
 degree. 

Figure 7 and 8 indicate that all three polynomial regression models are appropriate for 

the residual analysis. The best outcome for both examined cases relates to the 4
th

 

degree of a polynomial model. In this case all residuals are defined in the interval of 

(−2, 2). 

 

 

Conclusion 

Based on the statistical analysis, in both cases we have chosen polynomial regression 

models of the 4
th

 degree for modelling of dependence between extreme normal 

stresses and the depth of drilling. Estimated regression coefficients for both examined 

cases are listed in Tab. 2 and 4. 

By merging experimental method of photoelasticity and mathematical statistical 

methods we have specified the tendency of extreme normal stresses on the bracket. 

The selected regression models can as well be used in the prediction of stresses in 

dependence of drilling depth. 

Through measurements we found values of reduced stress according to von Mises 

yield criterion. These values reached up to 78 % of yield strength of the bracket 

material. These stresses are relatively high if compared to yield strength of the 

material. It was hence recommended that the manufacturer of the trailer frame should 
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take a series of measures. These measures were related to technology of forming and 

heat-processing of the bracket. 

In comparison to resistance tensiometry, the photoelastic drilling method enables us, 

in addition to visualization of stress gradient, to specify stresses directly in the edge 

area of the hole. Tensiometric method enables to find only average stress values in the 

area close to the hole. These values, however, depend on the length of tensiometer's 

base. The method of photoelasticity, as well as tensiometric method, can be used 

directly on a real structure. This paper demonstrated verification of the selected 

method. Such procedure can be used for future verification of similar tasks. 
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