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Abstract

This paper proposes new attacks on RSA with the modulus N = p2q. The first
attack is based on the equation eX−NY = p2u+q2v +Z such that u is an integer
multiple of 2 and v is an integer multiple of 3. If

|p2u − q2v| < N1/2,

|Z| <
|p2 − q2|

3(p2 + q2)
N1/3

and

X <
N

3(p2u + q2v)
,

then N can be factored in polynomial time using continued fractions. For the
second and third attacks, this paper proposes new vulnerabilities in k RSA Moduli
Ni = p2

i qi for k ≥ 2 and i = 1, . . . , k. The attacks work when k RSA public keys
(Ni, ei) are related through

eix − Niyi = p2
i u + q2

i v + zi



or

eixi − Niy = p2
i u + q2

i v + zi

where the parameters x, xi , y, yi and zi are suitably small.

AMS subject classification:
Keywords: RSA, Factorization, Continued fraction, LLL algorithm, Simultaneous
diophantine approximations.

1. Introduction

The RSA cryptosystem was developed by Rivest, Shamir and Adleman is the well-
known public key cryptosystem [1]. The mathematical operations in RSA depend on
three parameters, the modulus N = pq which is the product of two large primes p and
q, the public exponent e and the private exponent d, related by the congruence relation
ed ≡ 1 (mod φ(N)) where φ(N) = (p−1)(q −1). Hence, the difficulty of breaking the
RSA cryptosystem is based on three hard mathematical problems which is the integer
factorization problem of N = pq, the e-th root problem from C ≡ Me (mod N ) and to
solve the diophantine key equation ed + 1 = φ(N)k.

Many practical issues have been considered when implementing RSA in order to
reduce the encryption or the execution decryption time. To reduce the encryption time,
one may wish to use a small public exponent e. For discussion on security issues
surrounding small encryption exponent see [4]. Logically, the RSA cryptosystem is
likely to have faster decryption if the secret exponent d is relatively small. The knowledge
of secret exponent d leads to factoring N in polynomial time. Thus, much research has
been produced to determine the lower bound for d. Nevertheless, the use of short secret
exponent will encounter serious security problems in various instances of RSA.

Based on the convergents of the continued fraction expansion of
e

N
, Wiener (1990)

showed that the RSA cryptosystem is insecure when the secret exponent, d <
1

3
N1/4

[2]. Later, in 1999, Boneh and Durfee proposed an extension on Wiener’s work. It was
determined that the RSA cryptosystem is insecure when d < N0.292 by using lattice basis
reduction technique [3]. In 2004, the work proposed by Blömer and May which combined
lattice basis reduction techniques with continued fraction algorithm, showed that the
RSA cryptosystem is insecure if there exist integers x, y and z satisfying the equation

ex − yφ(N) = z with x <
1

3
N1/4 and |z| < exN−3/4 [16]. In cases where a single

user generates many instances of RSA (N, ei) with the same modulus and small private
exponents, Howgrave-Graham and Seifert (1999) proved that the RSA cryptosystem is
insecure in the presence of two decryption exponents (d1, d2) with d1, d2 < N5/14 [6].
In the presence of three decryption exponents, they improved the bound to N2/5 based
on the lattice reduction method.
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Then, in 2007, Hinek showed that it is possible to factor k RSA moduli using equations

eid−kiφ(Ni) = 1 ifd < Nδ with δ = k

2(k + 1)
−ε where ε is a small constant depending

on the size of max Ni = piqi [8]. In 2014, Nitaj et al. proposed a new method to factor
k RSA moduli Ni in the scenario that the RSA instances satisfy k equations of the shape
eix − yiφ(Ni) = zi or of the shape eixi − yφ(Ni) = zi with suitably small parameters
xi , yi , zi , x, y where φ(Ni) = (pi − 1)(qi − 1) [9]. The analysis utilized the LLL
algorithm.

As described in [18] the moduli of the form N = p2q is frequently used in cryp-
tography and therefore they represent one of the most important cases. According to
May, the modulus in the general form of N = prq with r ≥ 2 is more insecure than
N = pq. Nevertheless, the modulus N = p2q is still tempting to be used. Exam-
ples of schemes are the RSA-Takagi Cryptosystem (1997), Okamoto-Uchiyama cryp-
tosystem (1998), Pailier cryptosystem(1999), HIME(R) Cryptosystem (2002), Schmidt-
Samoa Cryptosystem (2006) and AAβ Cryptosystem (2012). Differing from the modulus
N = pq, research on the security of N = p2q is still scarce. Sarkar (2014) proved that
the modulus N = p2q can be factored if d < N0.395 using lattice reduction techniques
[19].

Recently, in 2015, Asbullah and Ariffin showed that one can factor N = p2q in
polynomial time if e satisfies the equation eX − (N − (ap2 + bq2)Y = Z where a, b

are positive integer satisfying gcd(a, b) = 1, |ap2 − bq2| < N1/2,

|Z| <
|ap2 − bq2|

3(ap2 + bq2)
N1/3Y

and 1 ≤ Y ≤ X <
N1/2

2(ap2 + bq2)1/2
[11].

Our contribution. Therefore, in this paper, we present new cryptanalysis on the mod-
ulus of N = p2q by using the continued fractions method as the first analysis motivated
from some previous attacks by Wiener [2], Nitaj [12], [13],[14] and Asbullah and Ariffin
[11]. We consider the public value, e satisfying the following generalized key equation,
eX − NY = p2u + q2v + Z such that u is an integer multiple of 2 and v is an integer
multiple of 3. If

|p2u − q2v| < N1/2, X <
N

3(p2u + q2v)
, |Z| <

|p2 − q2|
3(p2 + q2)

N1/3.

then N can be factored in polynomial time using continued fraction. We also show that the
number of such parameter e satisfying the following equation eX−NY = p2u+q2v+Z

are at least N
1
3 −ε where ε > 0 is arbitrarily small for large N .

In the second attack, we focus on k instances of (Ni, ei) where Ni = p2
i qi together

with its generalized system of key equations eix − Niyi = p2
i u + q2

i v + zi . We prove
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that, each RSA moduli Ni can be factored in polynomial time if

x < Nδ, yi < Nδ, |zi | <
|p2

i − q2
i |

3(p2
i + q2

i )
N1/3 where δ = k

3
− αk, N = mini Ni

Finally, for the third attack, we prove that we are able to factor k RSA moduli of the
form Ni = p2

i qi when k instance of (Ni, ei) are available and the variables (xi, y, zi, δ)

in the generalized system of key equations given by eixi − Niy = p2
i u + q2

i v + zi

satisfying

xi < Nδ, y < Nδ, |zi | <
|p2

i − q2
i |

3(p2
i + q2

i )
N1/3 where δ = βk − αk − 2k

3
.

with N = maxi Ni and mini ei = Nβ .
For the second and third attack, we transform the equations into a simultaneous

diophantine problem and apply lattice basis reduction techniques to find parameters
(x, yi) or (y, xi). This leads to a suitable approximation of p2u + q2v which allow
us to compute the prime factor pi and qi of each moduli Ni = p2

i qi . We also prove
that the proposed attacks enables one to factor k RSA moduli of the form Ni = p2

i qi

simultaneously.
The layout of the paper is as follows. In Section 2, we begin with a brief review on

continued fractions expansion, lattice basic reduction, simultaneous diophantine approx-
imation and also some useful results that will be used throughout the paper. In Section
3, Section 4 and Section 5, we present our first, second and third attacks consecutively
together with examples. Then, we conclude the paper in Section 6.

2. Preliminaries

In this section, we give brief review on continued fractions expansion, lattice basic
reduction and simultaneous diophantine approximation that will be used throughout this
paper.

2.1. Continued Fractions Expansion

A continued fraction is an expression of the form

a0 + 1

a1 + 1
. . .+ 1

an+
...

= [a0, a1, . . . , an, . . .],

which, for simplicity, can be rewritten as x = [a0, a1, . . . , an, . . .]. If x is a rational
number, then the process of calculating the continued fractions expansion will finish in

some finite index n and then x = [a0, a1, . . . , an]. The convergence
a

b
of x are the
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fractions denoted by
a

b
= [a0, a1, . . . , ai] for i ≥ 0. An important result on continued

fractions that will be used is the following theorem.

Theorem 2.1. (Legendre) [15] Let x = [a0, a1, a2, . . .] be the continued fraction
expansion of x. If X and Y are coprime integers such that

∣∣∣x − Y

X

∣∣∣ <
1

2X2

then
Y

X
is convergent of x.

2.2. Lattice Basis Reductions

Let u1, . . . , ud be d linearly independent vectors of R
n with d ≤ n. The set of all integer

linear combinations of the vectors u1, . . . , ud is called a lattice and is in the form

L =
{ d∑

i=1

xiui | xi ∈ Z

}
.

The set (ui, . . . , ud) is called a basis of L and d is its dimension. The determinant of L
is defined as det(L) =

√
det(UT U) where U is the matrix of the ui’s in the canonical

basis of R
n. Define ‖v‖ to be the Euclidean norm of a vector v ∈ L. A central problem

in lattice reduction is to find a short non-zero vector in L. The LLL algorithm produces
a reduced basis and the following result fixes the sizes of the reduced basis vector (see
[17]).

Theorem 2.2. [10] Let L be a lattice of dimension ω with a basis {v1, . . . , vω}. The
LLL algorithm produces a reduced basis {b1, . . . , bω} satisfying

‖b1‖ ≤ ‖b2‖ ≤ · · · ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i ,

for all 1 ≤ i ≤ ω.

One of the important application of the LLL algorithm is it provides a solution to the
simultaneous diophantine approximations problem which is defined as follows. Let
α1, . . . , αn be n real numbers and ε a real number such that 0 < ε < 1. A classical
theorem of Dirichlet asserts that there exist integers p1, . . . , pn and a positive integer
q ≤ ε−n such that

|qαi − pi | < ε for 1 ≤ i ≤ n.

In [10] described a method to find simultaneous diophantine approximations to rational
numbers which they consider a lattice with real entries. Hence, we state here a similar
result for a lattice with integer entries.



3164 M. Rezal Kamel Ariffin and N. Nek Abd Rahman

Theorem 2.3. (Simultaneous Diophantine Approximations). [10] There is a polyno-
mial time algorithm, for given rational numbers α1, . . . , αn and 0 < ε < 1, to compute
integers p1, . . . , pn and a positive integer q such that

maxi |qαi − pi | < ε and q ≤ 2n(n−3)/4 · 3n · ε−n.

Proof. See Appendix. �

3. The First Attack

In this section, we present our first attack on RSA with the modulus N = p2q. The
following lemma shows that any approximation of p2u + q2v will lead to an approxi-
mation of q. We begin with a lemma fixing the size of prime factor p and q of RSA-type
modulus N = p2q.

Lemma 3.1. [11] Let N = p2q with q < p < 2q. Then

2−1/3N1/3 < q < N1/3 < p < 21/3N1/3.

Proof. See [11]. �

Lemma 3.2. Let N = p2q with q < p < 2q. Let 1 < u < q/2, 1 < v < p/3 such that
u is an integer multiple of 2 and v is an integer multiple of 3. Let |p2u − q2v| < N1/2.
Let S be an approximation of p2u + q2v such that

|p2u + q2v − S| <
|p2u − q2v|

3(p2u + q2v)
N1/3,

then uvq =
[ S2

4N

]
.

Proof. Set S = p2u + q2v + x with |x| <
|p2u − q2v|

3(p2u + q2v)
N1/3. Notice that

(p2u − q2v)2 = (p2u − q2v)(p2u − q2v)

= (p2u)2 − 2(p2q2uv) + (q2v)2

= (p2u)2 + 2(p2q2uv) − 2(p2q2uv) − 2(p2q2uv) + (q2v)2

= (p2u + q2v)2 − 4(p2q2uv)

= (p2u + q2v)2 − 4Nquv

Hence we get
(p2u − q2v)2 = (p2u + q2v)2 − 4Nquv (1)

and consider

S2 − 4(p2q2uv) = (p2u + q2v + x)2 − 4Nquv

= (p2u)2 − 2(p2q2uv) + (q2v)2 + 2xp2u + 2xq2v − 4Nquv

= (p2u + q2v)2 + 2x(p2u + q2v) + x2 − 4Nquv
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By using (1) we can rewrite the equation as

S2 − 4Nquv = (p2u − q2v)2 + 2x(p2u + q2v) + x2 (2)

Since |p2u − q2v| < N1/2 and

|x| <
|p2u − q2v|

3(p2u + q2v)
N1/3,

hence we have

|S2 − 4Nquv| = (p2u − q2v)2 + 2|x|(p2u + q2v) + x2

< (N1/2)2 + 2(p2u + q2v)
|p2u − q2v|

3(p2u + q2v)
N1/3 + (N1/3)2

< N + 2

3
(N1/2)N1/3 + N2/3

= N(1 + 2

3
(N−1/6) + N−1/3

< 2N

Thus, we have |S2 − 4Nquv| < 2N . Divide by 4N , we get∣∣∣∣ S2

4N
− uvq

∣∣∣∣ <
2N

4N
= 1

2

It follows that uvq =
[ S2

4N

]
. This terminates the proof. �

Lemma 3.3. Let N = p2q with q < p < 2q. Let

|p2u + q2v − S| <
|p2u − q2v|

3(p2u + q2v)
N1/3

such that u is an integer multiple of 2 and v is an integer multiple of 3. Let D =
|S2 − 4Nquv|, then

√
D is an approximation of |p2u − q2v|where |p2u + q2v − √

D| <

N1/3.

Proof. Observe that

|(p2u + q2v)2 − √
D| ≤

∣∣∣(p2u − q2v)2 − |S2 − 4Nquv|
∣∣∣

≤ |(p2u − q2v)2 + 4Nquv − S2|
≤ |(p2u − q2v)2 − 4Nquv + 4Nquv − S2|
= |(p2u + q2v)2 − S2| (3)
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From left hand side of (3), we get∣∣∣(p2u − q2v)2 − D

∣∣∣ =
∣∣∣|p2u − q2v| − √

D

∣∣∣(|p2u + q2v| + √
D

)
and right hand side of (3), we get

|(p2u + q2v)2 − S2| = |p2u + q2v − S|(p2u + q2v + S)

Suppose that from Lemma 3.2, we have

|p2u + q2v − S| <
|p2u − q2v|

3(p2u + q2v)
N1/3,

this implies that

p2u + q2v + S < p2u + q2v +
(
p2u + q2v + |p2u − q2v|

3(p2u + q2v)
N1/3

)

< 2
(
p2u + q2v

)
+ |p2u − q2v|

3(p2u + q2v)
N1/3

< 2
(
p2u + q2v

)
+ 1

3
N1/3

< 3
(
p2u + q2v

)
(4)

where |p2u − q2v| < p2u + q2v and p2u + q2v > p2 > N2/3. Next, from (3) and (4),
this implies that∣∣∣|p2u − q2v| − √

D

∣∣∣ = |(p2u + q2v)2 − S2|
|p2u − q2v| + √

D

≤ |(p2u + q2v)2 − S2|
|p2u − q2v|

<
|p2u + q2v − S|(p2u + q2v + S)

|p2u − q2v|

<
|p2u − q2v|N1/3

(
3(p2u + q2v)

)
3
(
p2u + q2v

)
|p2u − q2v|

= N1/3 (5)

This terminates the proof. �

Lemma 3.4. Let N = p2q with q < p < 2q. Let e be an exponent satisfying an
equation eX − NY = p2u + q2v + Z for some u, v ∈ N and with gcd(X, Y ) = 1. If

X <
N

3(p2u + q2v)
and

|Z| <
|p2 − q2|

3(p2 + q2)
N1/3,
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then
Y

X
is a convergent of the continued fraction

e

N
.

Proof. Suppose that

|Z| <
|p2 − q2|

3(p2 + q2)
N1/3.

Thus, |Z| < N1/3. Let X <
N

3(p2u + q2v)
. By using the equation eX − NY =

p2u + q2v + Z and if we divide by NX, then we obtain∣∣∣∣ e

N
− Y

X

∣∣∣∣ = |eX − NY |
NX

= |p2u + q2v + Z|
NX

≤ |p2u + q2v| + |Z|
NX

≤ |(p2u + q2v) + N1/3|
NX

In order to apply Legendre Theorem, observe that∣∣∣∣ e

N
− Y

X

∣∣∣∣ <
1

2X2

|(p2u + q2v) + N1/3|
NX

<
1

2X2

X <
N

2(p2u + q2v) + N1/3

Hence, we conclude that
Y

X
is convergent continued fraction

e

N
. According to Lemma

3.3, such condition is satisfied for X <
N

3(p2u + q2v)
. This terminates the proof. �

The following theorem shows that how to factor N = p2q completely.

Theorem 3.5. Let N = p2q with q < p < 2q. Let u, v ∈ N such that u is an integer
multiple of 2 and v is an integer multiple of 3. Let |p2u − q2v| < N1/2. Let e be an
exponent satisfying an equation eX − NY = p2u + q2v + Z with gcd(X, Y ) = 1. If

X <
N

3(p2u + q2v)
and

|Z| <
|p2 − q2|

3(p2 − q2)
N1/3,

then N can be factored in polynomial time.



3168 M. Rezal Kamel Ariffin and N. Nek Abd Rahman

Proof. Suppose e be an exponent satisfying an equation eX − NY = p2u + q2v + Z

with gcd(X, Y ) = 1. Let X and |Z| satisfying the condition in Lemma 3.4, then
Y

X

is convergent of continued fraction
e

N
. From the value of X and Y . We define S =

eX − NY . Then S is approximation of of p2u + q2v satisfy

|p2u + q2v − S| = |Z| <
|p2u − q2v|

3(p2u + q2v)
N1/3 <

|p2 − q2|
3(p2 + q2)

N1/3 (6)

Hence, this implies that uvq =
[ S2

4N

]
. It follows that we obtain q = gcd

([ S2

4N

]
, N

)
.

�

Now, we proposed the following algorithm for further recovering prime factorization
of RSA-type modulus N = p2q.

Table 1: Algorithm 1

INPUT: The public key modulus (N, e) satisfying N = p2q and Theorem 3.5.
OUTPUT: The prime factor p, q.

1. Compute the continued fraction
e

N
.

2. For each convergent
Y

X
of

e

N
, compute S = eX − NY .

3. Compute
[ S2

4N

]
.

4. Compute q = gcd
([ S2

4N

]
, N

)
5. If 1 < q < N , then p =

√
N

q
.

Example 3.6. As an illustration of Algorithm 1, let N and e be as follows.

N = 64831586618801, e = 52225855228363

Suppose that N and e satisfy all the conditions stated in Theorem 3.5. Then, we compute

the continued fraction of
e

N
. The list of the convergent of continued fraction are shown

as follows [
0, 1,

4

5
,

25

31
,

29

36
,

3534

4387
,

229739

285191
,

233273

289578
,

5828291

7235063
, . . .

]
.

We may omit the first and the second entry. We start with the convergent
4

5
and we obtain

S = eX − NY = 1802929666611,
[ S2

4N

]
= 12534612957.
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Hence, if we compute gcd(12534612957, 64505203569251) = 1. Then, we try for next

convergent
25

31
, we obtain

S = eX − NY = −704132804473756,
[ S2

4N

]
= 1911888294710864

Hence, if we compute gcd(1911888294710864, 64505203569251) = 1. Then, we pro-

ceed with the next convergent which is
29

36
, we get S = eX − NY = 14776275839 and[ S2

4N

]
= 841944. Hence, we compute gcd(841944, 64505203569251) = 35081 which

leads to the factorization of N since q = 35081 and p =
√

N

q
= 42989.

3.1. Estimation of Weak Exponents Satisfying eX − NY = p2u + q2v + Z

Here, in this section, we give an estimation of the number of the exponents e satisfying
the equation eX − NY = p2u + q2v + Z. Suppose that u is an integer multiple of 2
and v is an integer multiple of 3 and the public parameter e < N satisfies at most one
equation eX − NY = p2u + q2v + Z where the parameters X, Y and Z satisfy the
condition in Theorem 3.5.

Lemma 3.7. [14] Let m and n be positive integers. Then

m∑
k=1

gcd(k, n)=1

1 >
cm

(log log N)2
,

where c is a positive constant.

Proof. For a positive integer d, we denote by µ(d) be the Möbius function. This function
is define by

µ(d) =




1, if d = 1,

(−1)ω(d), if d is square free,

0, otherwise ,

where for an integer d ≥ 2, ω(d) is the number of distinct prime factors of d. By using



3170 M. Rezal Kamel Ariffin and N. Nek Abd Rahman

Legendre formula, we get

m∑
k=1

gcd(k, n)=1

1 =
∑
d|n

µ(d)
⌊m

d

⌋

=
∑
d|n

µ(d)=1

⌊m

d

⌋
−

∑
d|n

µ(d)=−1

⌊m

d

⌋

≥
∑
d|n

µ(d)=1

(m

d
− 1

)
−

∑
d|n

µ(d)=−1

m

d

=
∑
d|n

µ(d)
m

d
−

∑
d|n

µ(d)=1

1

This leads to

ω(n)

m∑
k=1

gcd(k, n)=1

1 ≥
m∑

k=1
gcd(k, n)=1

1 +
∑
d|n

µ(d)=1

1

≥
∑
d|n

µ(d)
m

d

= m
∑
d|n

µ(d)

d
.

For n > 1, we recall that ∑
d|n

µ(d)

d
= φ(n)

n

(see 16.3.1, [15]). Hence
m∑

k=1
gcd(k, n)=1

1 >
mφ(n)

nω(n)
.

Other than that, it is well known that
φ(n)

n
>

c1

log log n
([15], Theorem 328) and

ω(n) = c2 log log n ([15], Theorem 430 & Theorem 431) where c1, c2 are positive
constants. It follows that

m∑
k=1

gcd(k, n)=1

1 >
c1m

c2(log log n)2
= cm

log log n)2
,
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where c = c1

c2
and the lemma follows. �

Lemma 3.8. Let N = p2q be RSA modulus with q < p < 2q. Let 1 < u < q/2
and 1 < v < p/3 such that u is an integer multiple of 2 and v is an integer multiple of
3. For i = 1,2, let ei be two exponents satisfying eXi − NYi = p2u + q2v + Zi with
gcd(Xi, Yi),

Xi <
N

3(p2u + q2v)

and

|Zi | <
|p2 − q2|

3(p2 + q2)
N1/3.

Then X1 = X2, Y1 = Y2 and Z1 = Z2.

Proof. Suppose that e satisfying two equations

eX1 − NY1 = p2u + q2v + Z1 and eX2 − NY2 = p2u + q2v + Z2

with

X1, X2 <
N

3(p2u + q2v)
and |Z1|, |Z2| <

|p2 − q2|
3(p2 + q2)

N1/3

Then, we eliminate e and we have

p2u + q2v + Z1 + NY1

X1
= p2u + q2v + Z2 + NY2

X2
(7)

Rearrange (7), we obtain

(p2u + q2v)(X2 − X1) + Z1X2 − Z2X1 = N(X1Y2 − X2Y1) (8)

Let |p2 − q2| < p2u + q2v and p2u + q2v <
N

2
+ N

3
< N . Consider the left hand

side of (8), the

|(p2u + q2v)(X2 − X1) + Z1X2 − Z2X1|
≤ ((p2u + q2v)(X2 + X1)) + |Z1X2| + |Z2X1|
<

2|p2u + q2v|N
3(p2u + q2v)

+ 2|p2 − q2|N4/3

3(p2u + q2v)(p2 + q2)

<
2N

3
+ (p2 + q2)N2/3

3(p2 + q2)

<
2N

3
+ N2/3

3
< N
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Hence, from the right hand side of (8), we deduceX1Y2−X2Y1 = 0, we getX1Y2 = X2Y1
and

(p2u + q2v)(X2 − X1) + Z1X2 − Z2X1 = 0.

Since gcd(X1, Y1) = gcd(X2, Y2) = 1 leads us to X1 = X2, Y1 = Y2 and finally
Z1 = Z2. �

Lemma 3.9. Let N = p2q be RSA modulus with q < p < 2q. Let 1 < u < q/2 and
1 < v < p/3 such that u is an integer multiple of 2 and v is an integer multiple of 3.
For i = 1, 2, let ei be two exponents satisfying

ei =
[(NYi − p2u + q2v + Zi

Xi

)]

with gcd(Xi, Yi) = 1, Yi ≤ Xi and

|Zi | <
|p2 − q2|

3(p2 + q2)
N1/3.

If u1 �= u2 and v1 �= v2, then e1 �= e2.

Proof. Suppose for the contradiction that u1 �= u2 andv1 �= v2, and without loss of
generality that u1 < u2 and v1 < v2, then

p2u1 +q2v1 − (p2u2 +q2v2) = p2(u1 −u2)−q2(v1 −v2) ≤ −p2 +q2 ≤ −(p2 −q2)

For i = 1 ,2, suppose that e satisfying two equations

eX1 − NY1 = p2u1 + q2v1 + Z1 and eX2 − NY2 = p2u2 + q2v2 + Z2

Then, we eliminate e and we get

p2u1 + q2v1 + Z1 + NY1

X1
= p2u1 + q2v1 + Z2 + NY2

X2(
p2u1 + q2v1

)
X2 + Z1X2 + NY1X2 =

(
p2u2 + q2v2

)
X1 + Z2X1 + NY2X1(

p2u1 + q2v1

)
X2 −

(
p2u2 + q2v2

)
X1 + NY1X2 − NY2X1 = Z2X1 + Z1X2

Since
Y1

X1
and

Y2

X2
are two convergents of

e

N
, then

Y1

X1
≈ Y2

X2
. This leads to

(
p2u1 + q2v1

)
X1 − NY1X1 −

(
p2u2 + q2v2

)
X1 + NY1X1 = Z2X1 + Z1X1

(
NY1 + p2u1 + q2v1

)
X1 −

(
NY1 + p2u2 + q2v2

)
X1 =

(
Z1 − Z2

)
X1
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Then (
NY1 − (p2u1 + q2v1)

)
−

(
NY1 − (p2u2 + q2v2)

)
≥ (p2 − q2) (9)

Next [(
NY1 − (p2u1 + q2v1)

)
−

(
NY1 − (p2u2 + q2v2)

)]
X1 = (Z1 − Z2)X1[(

NY1 − (p2u1 + q2v1)
)

−
(
NY1 − (p2u2 + q2v2)

)]
≤ |Z1| + |Z2| (10)

For the right hand side of (10) satisfies

|Z1| + |Z2| ≤ |p2 − q2|
3(p2 + q2)

N1/3

This is contradict since, we combine with Lemma 3.1 and inequality (9) of the left hand
side of (10) satisfies

p2 − q2 > N2/3 − N2/3

22/3
= N2/3 − 2−2/3N2/3 >

2|p2 − q2|
3(p2 + q2)

N1/3

Hence, u1 = u2, v1 = v2 and applying Lemma 3.8, it follows that X1 = X2 and Y1 = Y2.
This terminates the proof. �

Theorem 3.10. Let N = p2q be RSA modulus with q < p < 2q. The number of
exponents e satisfying the equation eX − NY = p2u + q2v + Z with

gcd(X, Y ) = 1, 1 < u <
q

2
, 1 < v <

p

3
, X <

N

3(p2u + q2v)

and

|Z| <
|p2 − q2|

3(p2 + q2)
N1/3

is at least N
1
3 −ε , ε > 0 is arbitrarily small for suitably large N .

Proof. Suppose the number of exponents satisfying the equation eX − NY = p2u +
q2v + Z with gcd(X, Y ) = 1 and X <

N

3(p2u + q2v)
. Then, since X <

1

3
N1/3, we

have X < q and gcd(X,N) = 1. Hence, we can express e as

e ≡ p2u + q2v + Z

X
(mod N).

Other than that, if e < N , then this representation is unique. This implies that the number
of such exponent is

N =
	p/3
∑
|v=1|

	q/2
∑
|u=1|

B1∑
|Z|=1

B2∑
X=1

gcd(X, p2u+q2v+Z)=1

1, (11)
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where

B1 =
⌊ |p2 − q2|

3(p2 + q2)
N1/3

⌋
and B2 =

⌊
N

3(p2u + q2v)

⌋
.

Then, by using Lemma 3.7 with m = B2 and n = p2u + q2v + Z, we have

B2∑
X=1

gcd(X, p2u+q2v+Z)=1

1 >
cB2

(log log |p2u + q2v + Z|)2
>

cB2

(log log N)2
(12)

where c is a constant ([15], Theorem 328). Then, we substitute (12) in (11), we obtain

N >
cB2

(log log N)2

	p/3
∑
|v=1|

	q/2
∑
|u=1|

B1∑
|Z|=1

B2 (13)

Now, we have

B1∑
|Z|=1

B2 = 2B2B1 = 2

⌊ |p2 − q2|
3(p2 + q2)

N1/3
⌋⌊

N

3(p2u + q2v)

⌋

> 2

(
N1/3

3(p2 + q2)

)(
N

6p2|u|
)

> 2

(
N1/3

3(p2 + q2)

)(
N1/3

6 × 22/3|u|
)

(14)

where we used |p2u+q2v| < 2p2u and p < 21/3N1/3 for |u| <
q

2
. Next, we substitute

(14) in (13), we obtain

N >
2N2/3

18(p2 + q2)
× c

(log log N)2

	p/3
∑
|v=1|

	q/2
∑
|u=1|

1

|u| (15)

By using the estimation
n∑

x=1

1

x
≥ log n

we get
	q/2
∑
|u=1|

1

|u| > 2 log
(⌊1

2
q
⌋)

> log(2q) > log (22/3N1/3)

where we used q > 2−1/3N1/3. Then we plug in (15), we obtain

N >
c log (22/3N1/3)

9 × 22/3 (log log N)2
× N2/3

(p2 + q2)

	p/3
∑
|v=1|

1 (16)
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Now, for |v| <
p

3
, we have

	p/3
∑
|v=1|

1 = 2
(⌊p

3

⌋)
>

p

3
>

1

3
(N1/3) = N1/3

3
(17)

Then, we substitute (17) in (16), we get

N >
c log (22/3N1/3)

9 × 22/3 (log log N)2
× N2/3(N1/3)

3(p2 + q2)

Since (p2 + q2) < p2 + p2 < 2p2 < 2(21/3N1/3)2 = 25/3N2/3, we get

N >
c log (22/3N1/3)

9 × 22/3 (log log N)2
× N2/3(N1/3)

3(25/3N2/3)

>
c log (22/3N1/3)

27 × 27/3 (log log N)2
× N1/3

>
c

81 × 27/3 (log log N)2
× N1/3 log N = N

1
3 −ε

where

N−ε = c log N

81 × 27/3 (log log N)2
,

ε > 0 is arbitrarily small for large N . This terminates the proof. �

4. The Second Attack

In this section, we propose our second attack. Given k moduli Ni = p2
i qi , we consider

that the following generalized system of key equation given by eix − Niyi = p2
i u +

q2
i v+zi will provide us the factor of each moduli which are all of the same size. We show

that, it is possible to factor k RSA moduli Ni = p2
i qi when the unknown parameters x,

yi and zi are suitably small coupled with the execution of the LLL algorithm to achieve
our objective.

Theorem 4.1. For k ≥ 2, let Ni = p2
i qi , 1 ≤ i ≤ k be k RSA moduli. Let N = miniNi .

Let ei , i = 1, . . . , k be k public exponents. Define δ = k

3
− αk. Let 1 < u <

qi

2
,

1 < v <
pi

3
such that u is an integer multiple of 2 and v is an integer multiple of 3. If

there exist an integer x < Nδ, k integers yi < Nδ and |zi | <
|p2

i − qi |
3(p2

i + qi)
N1/3 such that

eix − Niyi = p2
i u + q2

i v + zi , then one can factor the k RSA moduli N1, . . . , Nk in
polynomial time.



3176 M. Rezal Kamel Ariffin and N. Nek Abd Rahman

Proof. For k ≥ 2 and i = 1, . . . , k, satisfying eix − Niyi = p2
i u + q2

i v + zi , we obtain

∣∣∣ ei

Ni

x − yi

∣∣∣ = |p2
i u + q2

i v + zi |
Ni

(18)

Let N = mini Ni and suppose that yi < Nδ and

|zi | <
|p2

i − qi |
3(p2

i + qi)
N1/3.

Then, |zi | < N1/3. Since
p2

i u + q2
i v < N

2
3 +α,

we will get

|zi + (p2
i u + q2

i v)|
Ni

≤ |zi + (p2
i u + q2

i v)|
N

≤ N1/3 + (N
2
3 +α)

N
≤ 2N

2
3 +α

N

= 2N− 1
3 +α (19)

Plugging (19) in (18), we obtain∣∣∣ ei

Ni

x − yi

∣∣∣ = 2N− 1
3 +α

We now proceed to prove the existence of integer x. Let

ε = 2N− 1
3 +α, δ = k

3
− αk.

We have
Nδ · εk = 2kNδ− k

3 +kα = 2k

Then, since 2k < 2
k(k−3)

4 · 3k for k ≥ 2, we get

Nδ · εk < 2
k(k−3)

4 · 3k.

It follows that if x < Nδ, then x < 2
k(k−3)

4 · 3k · ε−k. Summarizing for i = 1, . . . , k, we
have ∣∣∣ ei

Ni

x − yi

∣∣∣ < ε, x < 2
k(k−3)

4 · 3k · ε−k

It follows the condition of Theorem 2.3 are fulfilled will find x and yi for i = 1, . . . , k.
Next, using the equation

eix − Niyi = p2
i u + q2

i v + zi,
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we get
(ap2

i + bq2
i ) − Niyi + eix = zi.

Since

|zi | <
|p2

i − qi |
3(p2

i + qi)
N1/3

and Si = eix −Niyi is an approximation of p2
i u+q2

i v. Hence, by using Lemma 3.2 and

Theorem 3.5, this implies that uvq =
[ S2

4N

]
for Si = eix − Niyi for each i = 1, . . . , k,

we find

qi = gcd
([ S2

i

4Ni

]
, Ni

)
.

This leads to the factorization of k RSA moduli N1, . . . , Nk. This terminates the proof.
�

Example 4.2. As an illustration of the second attack on k RSA moduli Ni , we consider
the following three RSA moduli and public exponents

N1 = 140074278208066578934302219243451604349947,

N2 = 227974657099546879287992532304329283520873,

N3 = 115207280375271936217350237718693722271691,

e1 = 122489003459538901347156213660115374838322,

e2 = 144687182266179060830166514794075306277832,

e3 = 67592588540951349078338036018083407167981.

Then, N = max(N1, N2, N3) = 227974657099546879287992532304329283520873.

Since k = 3 andα < 1/3, we get δ = k

3
−αk = 1

4
and ε = 2N− 1

3 +α ≈ 0.000715384371299.

Set u = 40 and v = 60. Then, by using (22) with n = k = 3, we find

C =
[
3n+1 · 2

(n+1)(n−4)
4 · ε−n−1

]
= 154631237294596.

Consider the lattice L spanned by the matrix

M =




1 −[Ce1/N1] −[Ce2/N2] −[Ce3/N3]
0 C 0 0
0 0 C 0
0 0 0 C


 .

Then, applying the LLL algorithm to L, we get a reduced basis with the matrix

K =




20851016390 6926039718 7732916632 3684485588
4189589029 25975280415 −28739664882 −16968110412
13554125657 −46415456621 −4111981582 −17369686412
−3602798513 −6142771903 42076034382 −68116796780


 .
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Now, we obtain

K · M−1 =




20851016390 18233327713 13233377987 12233377673
4189589029 3663617558 2658979025 2458049235
13554125657 11852506868 8602308144 7952261659
−3602798513 −3150494189 −2286564532 −2113776809


 .

From the first row, we deducex = 20851016390, y1 = 18233327713, y2 = 13233377987
and y3 = 12233377673. By using x and yi for i = 1, 2, 3, define Si = eix − Niyi is
an approximation of p2

i u + q2
i v. Hence, by applying Lemma 3.2 and Theorem 3.5, this

implies that uvq =
[ S2

4N

]
for Si = eix − Niyi . Then, we get

S1 = 232630468379538676645636916369,

S2 = 342395983944160748742312443829,

S3 = 225309644357222482847794853547.

Next, for each i = 1, 2, 3, we find
[ S2

i

4Ni

]
and we get

[ S2
1

4N1

]
= 96586138994944800,

[ S2
2

4N2

]
= 128561449891663200,

[ S2
3

4N3

]
= 110158914599450400.

Then, also for each i = 1, 2, 3, we find

qi = gcd
([ S2

i

4Ni

]
, Ni

)
and we obtain

q1 = 40244224581227, q2 = 53567270788193

and q3 = 45899547749771. This leads us to the factorization of three RSA moduli
N1, N2 and N3 which p1 = 58996658535481, p2 = 65236931548931, and p3 =
50099773115039.

5. The Third Attack

In this section, we propose our third attack. Given k moduli Ni = p2
i qi , we consider that

the following generalized system of key equation given by eixi −Niy = p2
i u+q2

i v + zi

will provide us the factor of each moduli which are all of the same size. We show that,
it is possible to factor k RSA moduli. This is achievable when the unknown parameters
xi , y and zi are suitably small. We couple this information together with the execution
of the LLL algorithm to achieve our objective.
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Theorem 5.1. For k ≥ 2, let Ni = p2
i qi , 1 ≤ i ≤ k be k RSA moduli with the

same size N . Let ei , i = 1, . . . , k be k public exponents with mini ei = Nβ . Define

δ = βk − αk − 2k

3
. Let 1 < u <

qi

2
, 1 < v <

pi

3
such that u is an integer multiple of 2

and v is an integer multiple of 3. If there exist an integer x < Nδ and k integers yi < Nδ

and

|zi | <
|p2

i − qi |
3(p2

i + qi)
N1/3

such that
eixi − Niy = p2

i u + q2
i v + zi

for i = 1, . . . , k, then one can factor the k RSA moduli N1, . . . , Nk in polynomial time.

Proof. For k ≥ 2 and i = 1, . . . , k, the equation

eixi − Niy = p2
i u + q2

i v + zi,

we get ∣∣∣Ni

ei

y − xi

∣∣∣ = |p2
i u + q2

i v + zi |
ei

(20)

Let N = maxi Ni and suppose that y < Nδ and

|zi | <
|p2

i − qi |
3(p2

i + qi)
N1/3.

Then, |zi | < N1/3. Also, suppose that mini ei = Nβ . Since

p2
i u + q2

i v < N
2
3 +α,

we will get

|p2
i u + q2

i v + zi |
ei

≤ |zi | + p2
i u + q2

i v

Nβ

<
N1/3 + (N

2
3 +α)

Nβ

<
2N

2
3 +α

Nβ

= 2N
2
3 +α−β (21)

Plugging (21) in (20), we obtain

∣∣∣Ni

ei

y − xi

∣∣∣ = 2N
2
3 +α−β.
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We now proceed to prove the existence of integery and the integersxi . Let ε = 2N
2
3 +α−β ,

δ = βk − αk − 2k

3
. Then, we obtain

Nδ · εk = Nδ(2N
2
3 +α−β)k = 2k(Nδ+ 2

3 k+αk−βk) = 2k.

Then, since 2k < 2
k(k−3)

4 · 3k for k ≥ 2, we get Nδ · εk < 2
k(k−3)

4 · 3k. It follows that if

y < Nδ, then y < 2
k(k−3)

4 · 3k · ε−k. Summarizing for i = 1, ..., k, we get∣∣∣Ni

ei

y − xi

∣∣∣ < ε, y < 2
k(k−3)

4 · 3k · ε−k, for i = 1, ..., k,

It follows the condition of Theorem 2.3 are fulfilled will find y and xi for i = 1, . . . , k.
Next, using the equation

eixi − Niy = p2
i u + q2

i v + zi,

we get
(ap2

i + bq2
i ) − Niy + eixi = zi.

Since

|zi | <
|p2

i − qi |
3(p2

i + qi)
N1/3

and Si = eixi −Niy is an approximation of p2
i u+q2

i v. Hence, by using Lemma 3.2 and

Theorem 3.5 this implies that uvq =
[ S2

4N

]
since Si = eixi −Niy for each i = 1, . . . , k,

we find

qi = gcd
([ S2

i

4Ni

]
, Ni

)
.

This leads to the factorization of k RSA moduli N1, . . . , Nk. This terminates the proof.
�

Example 5.2. As an illustration of this third attack on k RSA moduli Ni , we consider
the following three RSA moduli and public exponents

N1 = 167513597679609635174467857255838464857557,

N2 = 162193711942743152949344169736443556034929,

N3 = 215150025264868035895447181823669007036303,

e1 = 130621735976643547467676084435235070075545,

e2 = 129645927842545253308124511030737798304949,

e3 = 181061388046877396966048902064529807719640.

Then, N = max(N1, N2, N3) = 215150025264868035895447181823669007036303.
We also obtain min(e1, e2, e3) = Nβ with β ≈ 0.9946777661. Since k = 3 and α <
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1/3, we get δ = βk−αk−2k

3
= 0.234033298 and ε = 2N

2
3 +α−β ≈ 0.0011929366910476.

Set u = 24 and v = 36. Then, by using (22) with n = k = 3, we find

C =
[
3n+1 · 2

(n+1)(n−4)
4 · ε−n−1

]
= 19997948141251.

Consider the lattice L spanned by the matrix

M =




1 −[CN1/e1] −[CN2/e2] −[CN3/e3]
0 C 0 0
0 0 C 0
0 0 0 C


 .

Then, applying the LLL algorithm to L, we get a reduced basis with the matrix

K =




−3186595759 −3175535180 −2508543925 −2476344545
3597868419 8192169166 −5374188372 −4451292135

−5980436867 8290726243 881173597 −2602034148
8196227911 1329332700 4686046277 −11477132170


 .

Now, we obtain

K · M−1 =




−3186595759 −4086594899 −3986594899 −3786539833
3597868419 4614024445 4501118112 4275243273

−5980436867 −7669508354 −7481833565 −7106380642
8196227911 10511111451 10253901923 9739341232


 .

From the first row, we deduce y = 3186595759, x1 = 4086594899, x2 = 3986594899
and x3 = 3786539833. By using y and xi for i = 1, 2, 3, define Si = eixi − Niy is
an approximation of p2

i u + q2
i v. Hence, by applying Lemma 3.2 and Theorem 3.5, this

implies that uvq =
[ S2

4N

]
for Si = eixi − Niy. We get

S1 = 172955024052703147678372558270,

S2 = 163577818481355525216922589040,

S3 = 205759285452509704623457581143.

Next, for each i = 1, 2, 3, we find
[ S2

i

4Ni

]
and we get

[ S2
1

4N1

]
= 44643301737039072,

[ S2
2

4N2

]
= 41243434129809504,
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[ S2
3

4N3

]
= 49194606760802208.

For each i = 1, 2, 3, we find

qi = gcd
([ S2

i

4Ni

]
, Ni

)
and we obtain

q1 = 51670488121573, q2 = 47735456168761,

and q3 = 56938202269447. This leads us to the factorization of three RSA mod-
uli N1, N2 and N3 which p1 = 56938202269447, p2 = 58290323825483 and p3 =
61470794347307.

6. Conclusion

In conclusion, this paper presents three new attacks on RSA moduli type N = p2q.
The first attack is based on the equation eX − NY = p2u + q2v + Z where u is an
integer multiple of 2 and v is an integer multiple of 3 together with some conditions
on the parameters. Continuing our work, we focused on the system of generalized key
equations of the form

eix − Niyi = p2
i u + q2

i v + zi

for the second attack and in the form of

eixi − Niy = p2
i u + q2

i v + zi

for the third attack. We proved the two attacks are successful when the parameters x, xi ,
y, yi and zi are suitably small. On top of that, we also proved that both of our attacks
enables us to factor k RSA moduli of the form Ni = p2

i qi simultaneously based on LLL
algorithm.

References

[1] Rivest, R., Shamir, A. and Adleman, L., A method for obtaining digital signatures
and public-key cryptosystems, Communication of the ACM 21(2), 21(2):17–28
(1978)

[2] Wiener, M., Cryptanalysis of short RSA secret exponents, IEEE Transaction on
Information Theory IT-36, 36:553–558 (1990)

[3] Boneh, D. and Durfee, G.,Cryptanalysis of RSA with private key d less than N0.292.
Advance in Cryptology-Eurocrypt’99, Lecture Notes in Computer Science, 1592:1–
11 (1999)

[4] Boneh, D., Twenty years of attacks on the RSA cryptosystem, Notices of the AMS,
46(2):203–213 (1999).



New Weak Findings Upon RSA Modulo of Type N = p2q 3183

[5] de Weger, B., Cryptanalysis of RSA with small prime difference, Applicable Alge-
bra in Engineering Communication and Computing, 13(1), 1728 (2002)

[6] Howgrave-Graham, N. and Seifert, J., Extending Wiener attack in the presence
of many decrypting exponents, In Secure Networking-CQRE (Secure)’99 Lecture
Notes in Computer Science, vol.1740, Springer-Verlag, pp. 153–166 (1999)

[7] Sarkar, S. and Maitra, S., Cryptanalysis of RSA with two decryption exponents,
Information Processing Letters, Vol. 110, 178–181 (2010)

[8] Hinek, J., On the security of some variants of RSA, PhD thesis, Waterloo, Ontario,
Canada (2007)

[9] Nitaj, A., Ariffin, M. R. K., Nassr, D. I. and Bahig, H. M., New attacks on the RSA
cryptosystem, Lecture Notes in Computer Science, Vol. 8469 Springer Verlag, pp.
178–198 (2014)

[10] Lenstra, A. K., Lenstra, H. W. and Lovász, L., Factoring polynomials with rational
coefficients, Mathematische Annalen, vol. 261, pp.513–534 (1982)

[11] Asbullah, M. A. and Ariffin, M. R. K., New attack on RSA with modulus N = p2q

using continued fractions, Journal of Physics, Vol. 622, pp. 191–199, (2015)

[12] Nitaj, A., Cryptanalysis of RSA using the ratio of the primes, In Progress in Cryp-
tology - AFRICACRYPT 2009, pages 98–115, Springer (2009)

[13] Nitaj, A., A new vulnerable class of exponents in RSA, JP Journal of Algebra,
Number Theory and Applications, 21(2):203–220 (2011a)

[14] Nitaj, A., New weak RSA keys, JP Journal of Algebra, Number Theory and Appli-
cations, 23(2):131–148 (2011b)

[15] Hardy, G. and Wright, E., An introduction to the theory of numbers, Oxford Uni-
versity Press, London (1965)

[16] Blömer, J. and May, A., A generalized Wiener attack on RSA, Practice and Theory
in Public Key Cryptography PKC 2004 LNCS Springer-Verlag, 2947:1–13, (2004).

[17] May, A., New RSA vulnerabilities using lattice reduction methods, PhD thesis,
University of Paderborn (2003)

[18] May, A., Secret exponent attacks on RSA-type scheme with moduli N = prq. In
PKC 2004 LNCS Springer-Verlag 2947:218–230 (2004).

[19] Sarkar, S., Small secret exponent attack on RSA variant with modulus N = prq,
Designs, Codes and Cryptography, 73(2):383–392, Springer (2014).

Appendix

Proof of Theorem 2.3.
Proof. Let ε ∈ (0, 1). Set

C =
⌈

3n+1 · 2
(n+1)(n−4)

4 · ε−n−1
⌉

(22)
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where �x� is the integer greater than or equal to x. Consider the lattice L spanned by
the rows of the matrix

M =




1 −[Cα1] −[Cα2] · · · −[Cαn]
0 C 0 · · · 0
0 0 C · · · 0
...

...
...

. . .
...

0 0 0 · · · C


 .

where [x] is the nearest integer to x. The determinant of L is det(L) = Cn and the
dimension is n+1. Applying the LLL algorithm, we find a reduced basis (b1, . . . , bn+1)

with
‖b1‖ ≤ 2n/4det(L)1/(n+1) = 2n/4Cn/(n+1).

Since b1 ∈ L, we can write b1 = ±[q, p1, p2, . . . , pn]M , that is

b1 = ±[q, Cp1 − q[Cα1], Cp2 − q[Cα2], . . . , Cpn − q[Cαn]], (23)

where q > 0. Hence, the norm of b1 satisfies

‖b1‖ =
(
q2 +

n∑
i=1

|Cpi − q[Cαi]|2
)1/2 ≤ 2n/4Cn/(n+1),

which leads to

q ≤
⌊

2n/4Cn/(n+1)
⌋

and maxi |Cpi − q[Cαi]| ≤ 2n/4Cn/(n+1). (24)

Let us consider the entries qαi − pi . We have

|qαi − pi | = 1

C
|Cqαi − Cpi |

≤ 1

C
(|Cqαi − q[Cαi]| + |q[Cαi] − Cpi |)

= 1

C
(q|Cαi] − [Cαi]| + |q[Cαi] − Cpi |)

≤ 1

C

(1

2
q + |q[Cαi] − Cpi |

)
.

Using the two inequalities in (22), we get

|qαi − pi | ≤ 1

C

(1

2
· 2n/4Cn/(n+1) + 2n/4Cn/(n+1)

)
= 3 · 2(n+1)/4

C1/(n+1)

Observe that (25) gives

3n+1 · 2
(n+1)(n−4)

4 · ε−n−1 ≤ C ≤≤ 3n+1 · 2
(n+1)(n−3)

4 · ε−n−1, (25)
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which leads to ε ≥ 3 · 2(n−4)/4

C1/(n+1)
. As a consequence, we get |qαi − pi | ≤ ε. On the other

hand, using (24) and (25), we get

q ≤
⌊

2n/4Cn/(n+1)
⌋

≤ 2n/4Cn/(n+1) ≤ 2n(n−3)/4 · 3n · ε−n.

To compute the vector [q, p1, p2, . . . , pn], we use (23)

[q, p1, p2, . . . , pn] = ±[q, Cp1 − q[Cα1], Cp2 − q[Cα2], . . . , Cpn − q[Cαn]]M−1.

This terminates the proof. �



 

 


