# New Weak Findings Upon RSA Modulo of Type $N=p^{2} q$ 

Muhammad Rezal Kamel Ariffin<br>Al-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.<br>Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Normahirah Nek Abd Rahman<br>Al-Kindi Cryptography Research Laboratory,<br>Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.


#### Abstract

This paper proposes new attacks on RSA with the modulus $N=p^{2} q$. The first attack is based on the equation $e X-N Y=p^{2} u+q^{2} v+Z$ such that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3 . If $$
\begin{gathered} \left|p^{2} u-q^{2} v\right|<N^{1 / 2} \\ |Z|<\begin{array}{c} \left|p^{2}-q^{2}\right| \\ 3\left(p^{2}+q^{2}\right) \end{array} N^{1 / 3} \end{gathered}
$$ and $$
X<\frac{N}{3\left(p^{2} u+q^{2} v\right)},
$$ then $N$ can be factored in polynomial time using continued fractions. For the second and third attacks, this paper proposes new vulnerabilities in $k$ RSA Moduli $N_{i}=p_{i}^{2} q_{i}$ for $k \geq 2$ and $i=1, \ldots, k$. The attacks work when $k$ RSA public keys ( $N_{i}, e_{i}$ ) are related through $$
e_{i} x-N_{i} y_{i}=p_{i}^{2} u+q_{i}^{2} v+z_{i}
$$


or

$$
e_{i} x_{i}-N_{i} y=p_{i}^{2} u+q_{i}^{2} v+z_{i}
$$

where the parameters $x, x_{i}, y, y_{i}$ and $z_{i}$ are suitably small.

## AMS subject classification:

Keywords: RSA, Factorization, Continued fraction, LLL algorithm, Simultaneous diophantine approximations.

## 1. Introduction

The RSA cryptosystem was developed by Rivest, Shamir and Adleman is the wellknown public key cryptosystem [1]. The mathematical operations in RSA depend on three parameters, the modulus $N=p q$ which is the product of two large primes $p$ and $q$, the public exponent $e$ and the private exponent $d$, related by the congruence relation $e d \equiv 1(\bmod \phi(N))$ where $\phi(N)=(p-1)(q-1)$. Hence, the difficulty of breaking the RSA cryptosystem is based on three hard mathematical problems which is the integer factorization problem of $N=p q$, the $e$-th root problem from $C \equiv M^{e}(\bmod N)$ and to solve the diophantine key equation $e d+1=\phi(N) k$.

Many practical issues have been considered when implementing RSA in order to reduce the encryption or the execution decryption time. To reduce the encryption time, one may wish to use a small public exponent $e$. For discussion on security issues surrounding small encryption exponent see [4]. Logically, the RSA cryptosystem is likely to have faster decryption if the secret exponent $d$ is relatively small. The knowledge of secret exponent $d$ leads to factoring $N$ in polynomial time. Thus, much research has been produced to determine the lower bound for $d$. Nevertheless, the use of short secret exponent will encounter serious security problems in various instances of RSA.

Based on the convergents of the continued fraction expansion of $\frac{e}{N}$, Wiener (1990) showed that the RSA cryptosystem is insecure when the secret exponent, $d<\frac{1}{3} N^{1 / 4}$ [2]. Later, in 1999, Boneh and Durfee proposed an extension on Wiener's work. It was determined that the RSA cryptosystem is insecure when $d<N^{0.292}$ by using lattice basis reduction technique [3]. In 2004, the work proposed by Blömer and May which combined lattice basis reduction techniques with continued fraction algorithm, showed that the RSA cryptosystem is insecure if there exist integers $x, y$ and $z$ satisfying the equation $e x-y \phi(N)=z$ with $x<\frac{1}{3} N^{1 / 4}$ and $|z|<e x N^{-3 / 4}$ [16]. In cases where a single user generates many instances of RSA ( $N, e_{i}$ ) with the same modulus and small private exponents, Howgrave-Graham and Seifert (1999) proved that the RSA cryptosystem is insecure in the presence of two decryption exponents $\left(d_{1}, d_{2}\right)$ with $d_{1}, d_{2}<N^{5 / 14}$ [6]. In the presence of three decryption exponents, they improved the bound to $N^{2 / 5}$ based on the lattice reduction method.

Then, in 2007, Hinek showed that it is possible to factor $k$ RSA moduli using equations $e_{i} d-k_{i} \phi\left(N_{i}\right)=1$ if $d<N^{\delta}$ with $\delta=\frac{k}{2(k+1)}-\varepsilon$ where $\varepsilon$ is a small constant depending on the size of $\max N_{i}=p_{i} q_{i}$ [8]. In 2014, Nitaj et al. proposed a new method to factor $k$ RSA moduli $N_{i}$ in the scenario that the RSA instances satisfy $k$ equations of the shape $e_{i} x-y_{i} \phi\left(N_{i}\right)=z_{i}$ or of the shape $e_{i} x_{i}-y \phi\left(N_{i}\right)=z_{i}$ with suitably small parameters $x_{i}, y_{i}, z_{i}, x, y$ where $\phi\left(N_{i}\right)=\left(p_{i}-1\right)\left(q_{i}-1\right)$ [9]. The analysis utilized the LLL algorithm.

As described in [18] the moduli of the form $N=p^{2} q$ is frequently used in cryptography and therefore they represent one of the most important cases. According to May, the modulus in the general form of $N=p^{r} q$ with $r \geq 2$ is more insecure than $N=p q$. Nevertheless, the modulus $N=p^{2} q$ is still tempting to be used. Examples of schemes are the RSA-Takagi Cryptosystem (1997), Okamoto-Uchiyama cryptosystem (1998), Pailier cryptosystem(1999), HIME(R) Cryptosystem (2002), SchmidtSamoa Cryptosystem (2006) and $A A_{\beta}$ Cryptosystem (2012). Differing from the modulus $N=p q$, research on the security of $N=p^{2} q$ is still scarce. Sarkar (2014) proved that the modulus $N=p^{2} q$ can be factored if $d<N^{0.395}$ using lattice reduction techniques [19].

Recently, in 2015, Asbullah and Ariffin showed that one can factor $N=p^{2} q$ in polynomial time if $e$ satisfies the equation $e X-\left(N-\left(a p^{2}+b q^{2}\right) Y=Z\right.$ where $a, b$ are positive integer satisfying $\operatorname{gcd}(a, b)=1,\left|a p^{2}-b q^{2}\right|<N^{1 / 2}$,

$$
|Z|<\frac{\left|a p^{2}-b q^{2}\right|}{3\left(a p^{2}+b q^{2}\right)} N^{1 / 3} Y
$$

and $1 \leq Y \leq X<\frac{N^{1 / 2}}{2\left(a p^{2}+b q^{2}\right)^{1 / 2}}[11]$.
Our contribution. Therefore, in this paper, we present new cryptanalysis on the modulus of $N=p^{2} q$ by using the continued fractions method as the first analysis motivated from some previous attacks by Wiener [2], Nitaj [12], [13],[14] and Asbullah and Ariffin [11]. We consider the public value, $e$ satisfying the following generalized key equation, $e X-N Y=p^{2} u+q^{2} v+Z$ such that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3 . If

$$
\left|p^{2} u-q^{2} v\right|<N^{1 / 2}, X<\frac{N}{3\left(p^{2} u+q^{2} v\right)},|Z|<\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}
$$

then $N$ can be factored in polynomial time using continued fraction. We also show that the number of such parameter $e$ satisfying the following equation $e X-N Y=p^{2} u+q^{2} v+Z$ are at least $N^{\frac{1}{3}-\varepsilon}$ where $\varepsilon>0$ is arbitrarily small for large $N$.

In the second attack, we focus on $k$ instances of $\left(N_{i}, e_{i}\right)$ where $N_{i}=p_{i}^{2} q_{i}$ together with its generalized system of key equations $e_{i} x-N_{i} y_{i}=p_{i}^{2} u+q_{i}^{2} v+z_{i}$. We prove
that, each RSA moduli $N_{i}$ can be factored in polynomial time if

$$
x<N^{\delta}, \quad y_{i}<N^{\delta},\left|z_{i}\right|<\frac{\left|p_{i}^{2}-q_{i}^{2}\right|}{3\left(p_{i}^{2}+q_{i}^{2}\right)} N^{1 / 3} \text { where } \delta=\frac{k}{3}-\alpha k, N=\min _{i} N_{i}
$$

Finally, for the third attack, we prove that we are able to factor $k$ RSA moduli of the form $N_{i}=p_{i}^{2} q_{i}$ when $k$ instance of ( $N_{i}, e_{i}$ ) are available and the variables ( $x_{i}, y, z_{i}, \delta$ ) in the generalized system of key equations given by $e_{i} x_{i}-N_{i} y=p_{i}^{2} u+q_{i}^{2} v+z_{i}$ satisfying

$$
x_{i}<N^{\delta}, y<N^{\delta},\left|z_{i}\right|<\frac{\left|p_{i}^{2}-q_{i}^{2}\right|}{3\left(p_{i}^{2}+q_{i}^{2}\right)} N^{1 / 3} \text { where } \delta=\beta k-\alpha k-\frac{2 k}{3} .
$$

with $N=\max _{i} N_{i}$ and $\min _{i} e_{i}=N^{\beta}$.
For the second and third attack, we transform the equations into a simultaneous diophantine problem and apply lattice basis reduction techniques to find parameters $\left(x, y_{i}\right)$ or $\left(y, x_{i}\right)$. This leads to a suitable approximation of $p^{2} u+q^{2} v$ which allow us to compute the prime factor $p_{i}$ and $q_{i}$ of each moduli $N_{i}=p_{i}^{2} q_{i}$. We also prove that the proposed attacks enables one to factor $k$ RSA moduli of the form $N_{i}=p_{i}^{2} q_{i}$ simultaneously.

The layout of the paper is as follows. In Section 2, we begin with a brief review on continued fractions expansion, lattice basic reduction, simultaneous diophantine approximation and also some useful results that will be used throughout the paper. In Section 3, Section 4 and Section 5, we present our first, second and third attacks consecutively together with examples. Then, we conclude the paper in Section 6.

## 2. Preliminaries

In this section, we give brief review on continued fractions expansion, lattice basic reduction and simultaneous diophantine approximation that will be used throughout this paper.

### 2.1. Continued Fractions Expansion

A continued fraction is an expression of the form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{a_{n}+} \cdot}}=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right],
$$

which, for simplicity, can be rewritten as $x=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]$. If $x$ is a rational number, then the process of calculating the continued fractions expansion will finish in some finite index $n$ and then $x=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$. The convergence $\frac{a}{b}$ of $x$ are the
fractions denoted by $\frac{a}{b}=\left[a_{0}, a_{1}, \ldots, a_{i}\right]$ for $i \geq 0$. An important result on continued fractions that will be used is the following theorem.

Theorem 2.1. (Legendre) [15] Let $x=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ be the continued fraction expansion of $x$. If $X$ and $Y$ are coprime integers such that

$$
\left|x-\frac{Y}{X}\right|<\frac{1}{2 X^{2}}
$$

then $\frac{Y}{X}$ is convergent of $x$.

### 2.2. Lattice Basis Reductions

Let $u_{1}, \ldots, u_{d}$ be $d$ linearly independent vectors of $\mathbb{R}^{n}$ with $d \leq n$. The set of all integer linear combinations of the vectors $u_{1}, \ldots, u_{d}$ is called a lattice and is in the form

$$
\mathcal{L}=\left\{\sum_{i=1}^{d} x_{i} u_{i} \mid x_{i} \in \mathbb{Z}\right\} .
$$

The set $\left(u_{i}, \ldots, u_{d}\right)$ is called a basis of $\mathcal{L}$ and $d$ is its dimension. The determinant of $\mathcal{L}$ is defined as $\operatorname{det}(\mathcal{L})=\sqrt{\operatorname{det}\left(U^{T} U\right)}$ where $U$ is the matrix of the $u_{i}$ 's in the canonical basis of $\mathbb{R}^{n}$. Define $\|v\|$ to be the Euclidean norm of a vector $v \in \mathcal{L}$. A central problem in lattice reduction is to find a short non-zero vector in $\mathcal{L}$. The LLL algorithm produces a reduced basis and the following result fixes the sizes of the reduced basis vector (see [17]).

Theorem 2.2. [10] Let L be a lattice of dimension $\omega$ with a basis $\left\{v_{1}, \ldots, v_{\omega}\right\}$. The LLL algorithm produces a reduced basis $\left\{b_{1}, \ldots, b_{\omega}\right\}$ satisfying

$$
\left\|b_{1}\right\| \leq\left\|b_{2}\right\| \leq \cdots \leq\left\|b_{i}\right\| \leq 2^{\frac{\omega(\omega-1)}{4(\omega+1-i)}} \operatorname{det}(L)^{\frac{1}{\omega+1-i}},
$$

for all $1 \leq i \leq \omega$.
One of the important application of the LLL algorithm is it provides a solution to the simultaneous diophantine approximations problem which is defined as follows. Let $\alpha_{1}, \ldots, \alpha_{n}$ be $n$ real numbers and $\varepsilon$ a real number such that $0<\varepsilon<1$. A classical theorem of Dirichlet asserts that there exist integers $p_{1}, \ldots, p_{n}$ and a positive integer $q \leq \varepsilon^{-n}$ such that

$$
\left|q \alpha_{i}-p_{i}\right|<\varepsilon \text { for } 1 \leq i \leq n .
$$

In [10] described a method to find simultaneous diophantine approximations to rational numbers which they consider a lattice with real entries. Hence, we state here a similar result for a lattice with integer entries.

Theorem 2.3. (Simultaneous Diophantine Approximations). [10] There is a polynomial time algorithm, for given rational numbers $\alpha_{1}, \ldots, \alpha_{n}$ and $0<\varepsilon<1$, to compute integers $p_{1}, \ldots, p_{n}$ and a positive integer $q$ such that

$$
\max _{i}\left|q \alpha_{i}-p_{i}\right|<\varepsilon \text { and } q \leq 2^{n(n-3) / 4} \cdot 3^{n} \cdot \varepsilon^{-n} .
$$

Proof. See Appendix.

## 3. The First Attack

In this section, we present our first attack on RSA with the modulus $N=p^{2} q$. The following lemma shows that any approximation of $p^{2} u+q^{2} v$ will lead to an approximation of $q$. We begin with a lemma fixing the size of prime factor $p$ and $q$ of RSA-type modulus $N=p^{2} q$.

Lemma 3.1. [11] Let $N=p^{2} q$ with $q<p<2 q$. Then

$$
2^{-1 / 3} N^{1 / 3}<q<N^{1 / 3}<p<2^{1 / 3} N^{1 / 3} .
$$

Proof. See [11].
Lemma 3.2. Let $N=p^{2} q$ with $q<p<2 q$. Let $1<u<q / 2,1<v<p / 3$ such that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3. Let $\left|p^{2} u-q^{2} v\right|<N^{1 / 2}$. Let $S$ be an approximation of $p^{2} u+q^{2} v$ such that

$$
\left|p^{2} u+q^{2} v-S\right|<\frac{\left|p^{2} u-q^{2} v\right|}{3\left(p^{2} u+q^{2} v\right)} N^{1 / 3}
$$

then $u v q=\left[\frac{S^{2}}{4 N}\right]$.
Proof. Set $S=p^{2} u+q^{2} v+x$ with $|x|<\frac{\left|p^{2} u-q^{2} v\right|}{3\left(p^{2} u+q^{2} v\right)} N^{1 / 3}$. Notice that

$$
\begin{aligned}
\left(p^{2} u-q^{2} v\right)^{2} & =\left(p^{2} u-q^{2} v\right)\left(p^{2} u-q^{2} v\right) \\
& =\left(p^{2} u\right)^{2}-2\left(p^{2} q^{2} u v\right)+\left(q^{2} v\right)^{2} \\
& =\left(p^{2} u\right)^{2}+2\left(p^{2} q^{2} u v\right)-2\left(p^{2} q^{2} u v\right)-2\left(p^{2} q^{2} u v\right)+\left(q^{2} v\right)^{2} \\
& =\left(p^{2} u+q^{2} v\right)^{2}-4\left(p^{2} q^{2} u v\right) \\
& =\left(p^{2} u+q^{2} v\right)^{2}-4 N q u v
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
\left(p^{2} u-q^{2} v\right)^{2}=\left(p^{2} u+q^{2} v\right)^{2}-4 N q u v \tag{1}
\end{equation*}
$$

and consider

$$
\begin{aligned}
S^{2}-4\left(p^{2} q^{2} u v\right) & =\left(p^{2} u+q^{2} v+x\right)^{2}-4 N q u v \\
& =\left(p^{2} u\right)^{2}-2\left(p^{2} q^{2} u v\right)+\left(q^{2} v\right)^{2}+2 x p^{2} u+2 x q^{2} v-4 N q u v \\
& =\left(p^{2} u+q^{2} v\right)^{2}+2 x\left(p^{2} u+q^{2} v\right)+x^{2}-4 N q u v
\end{aligned}
$$

By using (1) we can rewrite the equation as

$$
\begin{equation*}
S^{2}-4 N q u v=\left(p^{2} u-q^{2} v\right)^{2}+2 x\left(p^{2} u+q^{2} v\right)+x^{2} \tag{2}
\end{equation*}
$$

Since $\left|p^{2} u-q^{2} v\right|<N^{1 / 2}$ and

$$
|x|<\frac{\left|p^{2} u-q^{2} v\right|}{3\left(p^{2} u+q^{2} v\right)} N^{1 / 3}
$$

hence we have

$$
\begin{aligned}
\left|S^{2}-4 N q u v\right| & =\left(p^{2} u-q^{2} v\right)^{2}+2|x|\left(p^{2} u+q^{2} v\right)+x^{2} \\
& <\left(N^{1 / 2}\right)^{2}+2\left(p^{2} u+q^{2} v\right) \frac{\left|p^{2} u-q^{2} v\right|}{3\left(p^{2} u+q^{2} v\right)} N^{1 / 3}+\left(N^{1 / 3}\right)^{2} \\
& <N+\frac{2}{3}\left(N^{1 / 2}\right) N^{1 / 3}+N^{2 / 3} \\
& =N\left(1+\frac{2}{3}\left(N^{-1 / 6}\right)+N^{-1 / 3}\right. \\
& <2 N
\end{aligned}
$$

Thus, we have $\left|S^{2}-4 N q u v\right|<2 N$. Divide by $4 N$, we get

$$
\left|\frac{S^{2}}{4 N}-u v q\right|<\frac{2 N}{4 N}=\frac{1}{2}
$$

It follows that $u v q=\left[\frac{S^{2}}{4 N}\right]$. This terminates the proof.
Lemma 3.3. Let $N=p^{2} q$ with $q<p<2 q$. Let

$$
\left|p^{2} u+q^{2} v-S\right|<\frac{\left|p^{2} u-q^{2} v\right|}{3\left(p^{2} u+q^{2} v\right)} N^{1 / 3}
$$

such that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3. Let $D=$ $\left|S^{2}-4 N q u v\right|$, then $\sqrt{D}$ is an approximation of $\left|p^{2} u-q^{2} v\right|$ where $\left|p^{2} u+q^{2} v-\sqrt{D}\right|<$ $N^{1 / 3}$.

Proof. Observe that

$$
\begin{align*}
\left|\left(p^{2} u+q^{2} v\right)^{2}-\sqrt{D}\right| & \leq\left|\left(p^{2} u-q^{2} v\right)^{2}-\left|S^{2}-4 N q u v\right|\right| \\
& \leq\left|\left(p^{2} u-q^{2} v\right)^{2}+4 N q u v-S^{2}\right| \\
& \leq\left|\left(p^{2} u-q^{2} v\right)^{2}-4 N q u v+4 N q u v-S^{2}\right| \\
& =\left|\left(p^{2} u+q^{2} v\right)^{2}-S^{2}\right| \tag{3}
\end{align*}
$$

From left hand side of (3), we get

$$
\left|\left(p^{2} u-q^{2} v\right)^{2}-D\right|=\left|\left|p^{2} u-q^{2} v\right|-\sqrt{D}\right|\left(\left|p^{2} u+q^{2} v\right|+\sqrt{D}\right)
$$

and right hand side of (3), we get

$$
\left|\left(p^{2} u+q^{2} v\right)^{2}-S^{2}\right|=\left|p^{2} u+q^{2} v-S\right|\left(p^{2} u+q^{2} v+S\right)
$$

Suppose that from Lemma 3.2, we have

$$
\left|p^{2} u+q^{2} v-S\right|<\frac{\left|p^{2} u-q^{2} v\right|}{3\left(p^{2} u+q^{2} v\right)} N^{1 / 3}
$$

this implies that

$$
\begin{align*}
p^{2} u+q^{2} v+S & <p^{2} u+q^{2} v+\left(p^{2} u+q^{2} v+\frac{\left|p^{2} u-q^{2} v\right|}{3\left(p^{2} u+q^{2} v\right)} N^{1 / 3}\right) \\
& <2\left(p^{2} u+q^{2} v\right)+\frac{\left|p^{2} u-q^{2} v\right|}{3\left(p^{2} u+q^{2} v\right)} N^{1 / 3} \\
& <2\left(p^{2} u+q^{2} v\right)+\frac{1}{3} N^{1 / 3} \\
& <3\left(p^{2} u+q^{2} v\right) \tag{4}
\end{align*}
$$

where $\left|p^{2} u-q^{2} v\right|<p^{2} u+q^{2} v$ and $p^{2} u+q^{2} v>p^{2}>N^{2 / 3}$. Next, from (3) and (4), this implies that

$$
\begin{align*}
\left|\left|p^{2} u-q^{2} v\right|-\sqrt{D}\right| & =\frac{\left|\left(p^{2} u+q^{2} v\right)^{2}-S^{2}\right|}{\left|p^{2} u-q^{2} v\right|+\sqrt{D}} \\
& \leq \frac{\left|\left(p^{2} u+q^{2} v\right)^{2}-S^{2}\right|}{\left|p^{2} u-q^{2} v\right|} \\
& <\frac{\left|p^{2} u+q^{2} v-S\right|\left(p^{2} u+q^{2} v+S\right)}{\left|p^{2} u-q^{2} v\right|} \\
& <\frac{\left|p^{2} u-q^{2} v\right| N^{1 / 3}\left(3\left(p^{2} u+q^{2} v\right)\right)}{3\left(p^{2} u+q^{2} v\right)\left|p^{2} u-q^{2} v\right|} \\
& =N^{1 / 3} \tag{5}
\end{align*}
$$

This terminates the proof.
Lemma 3.4. Let $N=p^{2} q$ with $q<p<2 q$. Let $e$ be an exponent satisfying an equation $e X-N Y=p^{2} u+q^{2} v+Z$ for some $u, v \in \mathbb{N}$ and with $\operatorname{gcd}(X, Y)=1$. If $X<\frac{N}{3\left(p^{2} u+q^{2} v\right)}$ and

$$
|Z|<\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}
$$

then $\frac{Y}{X}$ is a convergent of the continued fraction $\frac{e}{N}$.
Proof. Suppose that

$$
|Z|<\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}
$$

Thus, $|Z|<N^{1 / 3}$. Let $X<\frac{N}{3\left(p^{2} u+q^{2} v\right)}$. By using the equation $e X-N Y=$ $p^{2} u+q^{2} v+Z$ and if we divide by $N X$, then we obtain

$$
\begin{aligned}
\left|\frac{e}{N}-\frac{Y}{X}\right| & =\frac{|e X-N Y|}{N X} \\
& =\frac{\left|p^{2} u+q^{2} v+Z\right|}{N X} \\
& \leq \frac{\left|p^{2} u+q^{2} v\right|+|Z|}{N X} \\
& \leq \frac{\left|\left(p^{2} u+q^{2} v\right)+N^{1 / 3}\right|}{N X}
\end{aligned}
$$

In order to apply Legendre Theorem, observe that

$$
\begin{aligned}
\left|\frac{e}{N}-\frac{Y}{X}\right| & <\frac{1}{2 X^{2}} \\
\frac{\left|\left(p^{2} u+q^{2} v\right)+N^{1 / 3}\right|}{N X} & <\frac{1}{2 X^{2}} \\
X & <\frac{N}{2\left(p^{2} u+q^{2} v\right)+N^{1 / 3}}
\end{aligned}
$$

Hence, we conclude that $\frac{Y}{X}$ is convergent continued fraction $\frac{e}{N}$. According to Lemma 3.3, such condition is satisfied for $X<\frac{N}{3\left(p^{2} u+q^{2} v\right)}$. This terminates the proof.

The following theorem shows that how to factor $N=p^{2} q$ completely.
Theorem 3.5. Let $N=p^{2} q$ with $q<p<2 q$. Let $u, v \in \mathbb{N}$ such that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3 . Let $\left|p^{2} u-q^{2} v\right|<N^{1 / 2}$. Let $e$ be an exponent satisfying an equation $e X-N Y=p^{2} u+q^{2} v+Z$ with $\operatorname{gcd}(X, Y)=1$. If $X<\frac{N}{3\left(p^{2} u+q^{2} v\right)}$ and

$$
|Z|<\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}-q^{2}\right)} N^{1 / 3}
$$

then $N$ can be factored in polynomial time.

Proof. Suppose $e$ be an exponent satisfying an equation $e X-N Y=p^{2} u+q^{2} v+Z$ with $\operatorname{gcd}(X, Y)=1$. Let $X$ and $|Z|$ satisfying the condition in Lemma 3.4, then $\frac{Y}{X}$ is convergent of continued fraction $\frac{e}{N}$. From the value of $X$ and $Y$. We define $S=$ $e X-N Y$. Then $S$ is approximation of of $p^{2} u+q^{2} v$ satisfy

$$
\begin{equation*}
\left|p^{2} u+q^{2} v-S\right|=|Z|<\frac{\left|p^{2} u-q^{2} v\right|}{3\left(p^{2} u+q^{2} v\right)} N^{1 / 3}<\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3} \tag{6}
\end{equation*}
$$

Hence, this implies that $u v q=\left[\frac{S^{2}}{4 N}\right]$. It follows that we obtain $q=\operatorname{gcd}\left(\left[\frac{S^{2}}{4 N}\right], N\right)$.

Now, we proposed the following algorithm for further recovering prime factorization of RSA-type modulus $N=p^{2} q$.

Table 1: Algorithm 1
INPUT: The public key modulus $(N, e)$ satisfying $N=p^{2} q$ and Theorem 3.5.
OUTPUT: The prime factor $p, q$.

1. Compute the continued fraction $\frac{e}{N}$.
2. For each convergent $\frac{Y}{X}$ of $\frac{e}{N}$, compute $S=e X-N Y$.
3. Compute $\left[\frac{S^{2}}{4 N}\right]$.
4. Compute $q=\operatorname{gcd}\left(\left[\frac{S^{2}}{4 N}\right], N\right)$
5. If $1<q<N$, then $p=\sqrt{\frac{N}{q}}$.

Example 3.6. As an illustration of Algorithm 1, let $N$ and $e$ be as follows.

$$
N=64831586618801, e=52225855228363
$$

Suppose that $N$ and $e$ satisfy all the conditions stated in Theorem 3.5. Then, we compute the continued fraction of $\frac{e}{N}$. The list of the convergent of continued fraction are shown as follows

$$
\left[0,1, \frac{4}{5}, \frac{25}{31}, \frac{29}{36}, \frac{3534}{4387}, \frac{229739}{285191}, \frac{233273}{289578}, \frac{5828291}{7235063}, \ldots\right] .
$$

We may omit the first and the second entry. We start with the convergent $\frac{4}{5}$ and we obtain

$$
S=e X-N Y=1802929666611, \quad\left[\frac{S^{2}}{4 N}\right]=12534612957
$$

Hence, if we compute $\operatorname{gcd}(12534612957,64505203569251)=1$. Then, we try for next convergent $\frac{25}{31}$, we obtain

$$
S=e X-N Y=-704132804473756, \quad\left[\frac{S^{2}}{4 N}\right]=1911888294710864
$$

Hence, if we compute $\operatorname{gcd}(1911888294710864,64505203569251)=1$. Then, we proceed with the next convergent which is $\frac{29}{36}$, we get $S=e X-N Y=14776275839$ and $\left[\frac{S^{2}}{4 N}\right]=841944$. Hence, we compute $\operatorname{gcd}(841944,64505203569251)=35081$ which leads to the factorization of $N$ since $q=35081$ and $p=\sqrt{\frac{N}{q}}=42989$.

### 3.1. Estimation of Weak Exponents Satisfying $e X-N Y=p^{2} u+q^{2} v+Z$

Here, in this section, we give an estimation of the number of the exponents $e$ satisfying the equation $e X-N Y=p^{2} u+q^{2} v+Z$. Suppose that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3 and the public parameter $e<N$ satisfies at most one equation $e X-N Y=p^{2} u+q^{2} v+Z$ where the parameters $X, Y$ and $Z$ satisfy the condition in Theorem 3.5.

Lemma 3.7. [14] Let $m$ and $n$ be positive integers. Then

$$
\sum_{\substack{k=1 \\ \operatorname{gcd}(k, n)=1}}^{m} 1>\frac{c m}{(\log \log N)^{2}}
$$

where $c$ is a positive constant.
Proof. For a positive integer $d$, we denote by $\mu(d)$ be the Möbius function. This function is define by

$$
\mu(d)= \begin{cases}1, & \text { if } d=1 \\ (-1)^{\omega(d)}, & \text { if } d \text { is square free } \\ 0, & \text { otherwise }\end{cases}
$$

where for an integer $d \geq 2, \omega(d)$ is the number of distinct prime factors of $d$. By using

Legendre formula, we get

$$
\begin{aligned}
\sum_{\substack{k=1 \\
g c d(k, n)=1}}^{m} 1 & =\sum_{d \mid n} \mu(d)\left\lfloor\frac{m}{d}\right\rfloor \\
& =\sum_{\substack{d \mid n \\
\mu(d)=1}}\left\lfloor\frac{m}{d}\right\rfloor-\sum_{\substack{d \mid n \\
\mu(d)=-1}}\left\lfloor\frac{m}{d}\right\rfloor \\
& \geq \sum_{\substack{d \mid n \\
\mu(d)=1}}\left(\frac{m}{d}-1\right)-\sum_{\substack{d \mid n \\
\mu(d)=-1}} \frac{m}{d} \\
& =\sum_{d \mid n} \mu(d) \frac{m}{d}-\sum_{\substack{d \mid n \\
\mu(d)=1}} 1
\end{aligned}
$$

This leads to

$$
\begin{aligned}
\omega(n) \sum_{\substack{k=1 \\
g c d(k, n)=1}}^{m} 1 & \geq \sum_{\substack{k=1 \\
\operatorname{gcd}(k, n)=1}}^{m} 1+\sum_{\substack{d \mid n \\
\mu(d)=1}} 1 \\
& \geq \sum_{d \mid n} \mu(d) \frac{m}{d} \\
& =m \sum_{d \mid n} \frac{\mu(d)}{d} .
\end{aligned}
$$

For $n>1$, we recall that

$$
\sum_{d \mid n} \frac{\mu(d)}{d}=\frac{\phi(n)}{n}
$$

(see 16.3.1, [15]). Hence

$$
\sum_{\substack{k=1 \\ \operatorname{gcd}(k, n)=1}}^{m} 1>\frac{m \phi(n)}{n \omega(n)}
$$

Other than that, it is well known that $\frac{\phi(n)}{n}>\frac{c_{1}}{\log \log n}$ ([15], Theorem 328) and $\omega(n)=c_{2} \log \log n\left([15]\right.$, Theorem $430 \&$ Theorem 431) where $c_{1}, c_{2}$ are positive constants. It follows that

$$
\sum_{\substack{k=1 \\ \operatorname{gcd}(k, n)=1}}^{m} 1>\frac{c_{1} m}{c_{2}(\log \log n)^{2}}=\frac{c m}{\log \log n)^{2}},
$$

where $c=\frac{c_{1}}{c_{2}}$ and the lemma follows.
Lemma 3.8. Let $N=p^{2} q$ be RSA modulus with $q<p<2 q$. Let $1<u<q / 2$ and $1<v<p / 3$ such that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3. For $i=1,2$, let $e_{i}$ be two exponents satisfying $e X_{i}-N Y_{i}=p^{2} u+q^{2} v+Z_{i}$ with $\operatorname{gcd}\left(X_{i}, Y_{i}\right)$,

$$
X_{i}<\frac{N}{3\left(p^{2} u+q^{2} v\right)}
$$

and

$$
\left|Z_{i}\right|<\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}
$$

Then $X_{1}=X_{2}, Y_{1}=Y_{2}$ and $Z_{1}=Z_{2}$.
Proof. Suppose that $e$ satisfying two equations

$$
e X_{1}-N Y_{1}=p^{2} u+q^{2} v+Z_{1} \text { and } e X_{2}-N Y_{2}=p^{2} u+q^{2} v+Z_{2}
$$

with

$$
X_{1}, X_{2}<\frac{N}{3\left(p^{2} u+q^{2} v\right)} \text { and }\left|Z_{1}\right|,\left|Z_{2}\right|<\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}
$$

Then, we eliminate $e$ and we have

$$
\begin{equation*}
\frac{p^{2} u+q^{2} v+Z_{1}+N Y_{1}}{X_{1}}=\frac{p^{2} u+q^{2} v+Z_{2}+N Y_{2}}{X_{2}} \tag{7}
\end{equation*}
$$

Rearrange (7), we obtain

$$
\begin{equation*}
\left(p^{2} u+q^{2} v\right)\left(X_{2}-X_{1}\right)+Z_{1} X_{2}-Z_{2} X_{1}=N\left(X_{1} Y_{2}-X_{2} Y_{1}\right) \tag{8}
\end{equation*}
$$

Let $\left|p^{2}-q^{2}\right|<p^{2} u+q^{2} v$ and $p^{2} u+q^{2} v<\frac{N}{2}+\frac{N}{3}<N$. Consider the left hand side of (8), the

$$
\begin{aligned}
& \left|\left(p^{2} u+q^{2} v\right)\left(X_{2}-X_{1}\right)+Z_{1} X_{2}-Z_{2} X_{1}\right| \\
& \quad \leq\left(\left(p^{2} u+q^{2} v\right)\left(X_{2}+X_{1}\right)\right)+\left|Z_{1} X_{2}\right|+\left|Z_{2} X_{1}\right| \\
& \quad<\frac{2\left|p^{2} u+q^{2} v\right| N}{3\left(p^{2} u+q^{2} v\right)}+\frac{2\left|p^{2}-q^{2}\right| N^{4 / 3}}{3\left(p^{2} u+q^{2} v\right)\left(p^{2}+q^{2}\right)} \\
& \quad<\frac{2 N}{3}+\frac{\left(p^{2}+q^{2}\right) N^{2 / 3}}{3\left(p^{2}+q^{2}\right)} \\
& \quad<\frac{2 N}{3}+\frac{N^{2 / 3}}{3} \\
& \quad<N
\end{aligned}
$$

Hence, from the right hand side of (8), we deduce $X_{1} Y_{2}-X_{2} Y_{1}=0$, we get $X_{1} Y_{2}=X_{2} Y_{1}$ and

$$
\left(p^{2} u+q^{2} v\right)\left(X_{2}-X_{1}\right)+Z_{1} X_{2}-Z_{2} X_{1}=0
$$

Since $\operatorname{gcd}\left(X_{1}, Y_{1}\right)=\operatorname{gcd}\left(X_{2}, Y_{2}\right)=1$ leads us to $X_{1}=X_{2}, Y_{1}=Y_{2}$ and finally $Z_{1}=Z_{2}$.

Lemma 3.9. Let $N=p^{2} q$ be RSA modulus with $q<p<2 q$. Let $1<u<q / 2$ and $1<v<p / 3$ such that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3 . For $i=1,2$, let $e_{i}$ be two exponents satisfying

$$
e_{i}=\left[\left(\frac{N Y_{i}-p^{2} u+q^{2} v+Z_{i}}{X_{i}}\right)\right]
$$

with $\operatorname{gcd}\left(X_{i}, Y_{i}\right)=1, Y_{i} \leq X_{i}$ and

$$
\left|Z_{i}\right|<\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}
$$

If $u_{1} \neq u_{2}$ and $v_{1} \neq v_{2}$, then $e_{1} \neq e_{2}$.
Proof. Suppose for the contradiction that $u_{1} \neq u_{2}$ and $v_{1} \neq v_{2}$, and without loss of generality that $u_{1}<u_{2}$ and $v_{1}<v_{2}$, then

$$
p^{2} u_{1}+q^{2} v_{1}-\left(p^{2} u_{2}+q^{2} v_{2}\right)=p^{2}\left(u_{1}-u_{2}\right)-q^{2}\left(v_{1}-v_{2}\right) \leq-p^{2}+q^{2} \leq-\left(p^{2}-q^{2}\right)
$$

For $i=1,2$, suppose that $e$ satisfying two equations

$$
e X_{1}-N Y_{1}=p^{2} u_{1}+q^{2} v_{1}+Z_{1} \text { and } e X_{2}-N Y_{2}=p^{2} u_{2}+q^{2} v_{2}+Z_{2}
$$

Then, we eliminate $e$ and we get

$$
\begin{gathered}
\frac{p^{2} u_{1}+q^{2} v_{1}+Z_{1}+N Y_{1}}{X_{1}}=\frac{p^{2} u_{1}+q^{2} v_{1}+Z_{2}+N Y_{2}}{X_{2}} \\
\left(p^{2} u_{1}+q^{2} v_{1}\right) X_{2}+Z_{1} X_{2}+N Y_{1} X_{2}=\left(p^{2} u_{2}+q^{2} v_{2}\right) X_{1}+Z_{2} X_{1}+N Y_{2} X_{1} \\
\left(p^{2} u_{1}+q^{2} v_{1}\right) X_{2}-\left(p^{2} u_{2}+q^{2} v_{2}\right) X_{1}+N Y_{1} X_{2}-N Y_{2} X_{1}=Z_{2} X_{1}+Z_{1} X_{2}
\end{gathered}
$$

Since $\frac{Y_{1}}{X_{1}}$ and $\frac{Y_{2}}{X_{2}}$ are two convergents of $\frac{e}{N}$, then $\frac{Y_{1}}{X_{1}} \approx \frac{Y_{2}}{X_{2}}$. This leads to

$$
\begin{gathered}
\left(p^{2} u_{1}+q^{2} v_{1}\right) X_{1}-N Y_{1} X_{1}-\left(p^{2} u_{2}+q^{2} v_{2}\right) X_{1}+N Y_{1} X_{1}=Z_{2} X_{1}+Z_{1} X_{1} \\
\left(N Y_{1}+p^{2} u_{1}+q^{2} v_{1}\right) X_{1}-\left(N Y_{1}+p^{2} u_{2}+q^{2} v_{2}\right) X_{1}=\left(Z_{1}-Z_{2}\right) X_{1}
\end{gathered}
$$

Then

$$
\begin{equation*}
\left(N Y_{1}-\left(p^{2} u_{1}+q^{2} v_{1}\right)\right)-\left(N Y_{1}-\left(p^{2} u_{2}+q^{2} v_{2}\right)\right) \geq\left(p^{2}-q^{2}\right) \tag{9}
\end{equation*}
$$

Next

$$
\begin{align*}
& {\left[\left(N Y_{1}-\left(p^{2} u_{1}+q^{2} v_{1}\right)\right)-\left(N Y_{1}-\left(p^{2} u_{2}+q^{2} v_{2}\right)\right)\right] X_{1}=\left(Z_{1}-Z_{2}\right) X_{1}} \\
& \quad\left[\left(N Y_{1}-\left(p^{2} u_{1}+q^{2} v_{1}\right)\right)-\left(N Y_{1}-\left(p^{2} u_{2}+q^{2} v_{2}\right)\right)\right] \leq\left|Z_{1}\right|+\left|Z_{2}\right| \tag{10}
\end{align*}
$$

For the right hand side of (10) satisfies

$$
\left|Z_{1}\right|+\left|Z_{2}\right| \leq \frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}
$$

This is contradict since, we combine with Lemma 3.1 and inequality (9) of the left hand side of (10) satisfies

$$
p^{2}-q^{2}>N^{2 / 3}-\frac{N^{2 / 3}}{2^{2 / 3}}=N^{2 / 3}-2^{-2 / 3} N^{2 / 3}>\frac{2\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}
$$

Hence, $u_{1}=u_{2}, v_{1}=v_{2}$ and applying Lemma 3.8, it follows that $X_{1}=X_{2}$ and $Y_{1}=Y_{2}$. This terminates the proof.

Theorem 3.10. Let $N=p^{2} q$ be RSA modulus with $q<p<2 q$. The number of exponents $e$ satisfying the equation $e X-N Y=p^{2} u+q^{2} v+Z$ with

$$
\operatorname{gcd}(X, Y)=1,1<u<\frac{q}{2}, 1<v<\frac{p}{3}, X<\frac{N}{3\left(p^{2} u+q^{2} v\right)}
$$

and

$$
|Z|<\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}
$$

is at least $N^{\frac{1}{3}-\epsilon}, \epsilon>0$ is arbitrarily small for suitably large $N$.
Proof. Suppose the number of exponents satisfying the equation $e X-N Y=p^{2} u+$ $q^{2} v+Z$ with $\operatorname{gcd}(X, Y)=1$ and $X<\frac{N}{3\left(p^{2} u+q^{2} v\right)}$. Then, since $X<\frac{1}{3} N^{1 / 3}$, we have $X<q$ and $\operatorname{gcd}(X, N)=1$. Hence, we can express $e$ as

$$
e \equiv \frac{p^{2} u+q^{2} v+Z}{X}(\bmod N) .
$$

Other than that, if $e<N$, then this representation is unique. This implies that the number of such exponent is

$$
\begin{equation*}
\mathcal{N}=\sum_{|v=1|}^{\lfloor p / 3\rfloor} \sum_{|u=1|}^{\lfloor q / 2\rfloor} \sum_{|Z|=1}^{B_{1}} \sum_{\substack{X=1 \\ g c d\left(X, p^{2} u+q^{2} v+Z\right)=1}}^{B_{2}} 1, \tag{11}
\end{equation*}
$$

where

$$
B_{1}=\left\lfloor\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}\right\rfloor \quad \text { and } \quad B_{2}=\left\lfloor\frac{N}{3\left(p^{2} u+q^{2} v\right)}\right\rfloor .
$$

Then, by using Lemma 3.7 with $m=B_{2}$ and $n=p^{2} u+q^{2} v+Z$, we have

$$
\begin{equation*}
\sum_{\substack{\left.X=1 \\ p^{2} u+q^{2} v+Z\right)=1}}^{B_{2}} 1>\frac{c B_{2}}{\left(\log \log \left|p^{2} u+q^{2} v+Z\right|\right)^{2}}>\frac{c B_{2}}{(\log \log N)^{2}} \tag{12}
\end{equation*}
$$

where $c$ is a constant ([15], Theorem 328). Then, we substitute (12) in (11), we obtain

$$
\begin{equation*}
\mathcal{N}>\frac{c B_{2}}{(\log \log N)^{2}} \sum_{\mid v=1}^{\lfloor p / 3\rfloor} \sum_{|u=1|}^{\lfloor q / 2\rfloor} \sum_{|Z|=1}^{B_{1}} B_{2} \tag{13}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
\sum_{|Z|=1}^{B_{1}} B_{2}=2 B_{2} B_{1} & \left.=2\left\lfloor\frac{\left|p^{2}-q^{2}\right|}{3\left(p^{2}+q^{2}\right)} N^{1 / 3}\right\rfloor \frac{N}{3\left(p^{2} u+q^{2} v\right)}\right\rfloor \\
& >2\left(\frac{N^{1 / 3}}{3\left(p^{2}+q^{2}\right)}\right)\left(\frac{N}{6 p^{2}|u|}\right) \\
& >2\left(\frac{N^{1 / 3}}{3\left(p^{2}+q^{2}\right)}\right)\left(\frac{N^{1 / 3}}{6 \times 2^{2 / 3}|u|}\right) \tag{14}
\end{align*}
$$

where we used $\left|p^{2} u+q^{2} v\right|<2 p^{2} u$ and $p<2^{1 / 3} N^{1 / 3}$ for $|u|<\frac{q}{2}$. Next, we substitute (14) in (13), we obtain

$$
\begin{equation*}
\mathcal{N}>\frac{2 N^{2 / 3}}{18\left(p^{2}+q^{2}\right)} \times \frac{c}{(\log \log N)^{2}} \sum_{|v=1|}^{\lfloor p / 3\rfloor} \sum_{|u=1|}^{\lfloor q / 2\rfloor} \frac{1}{|u|} \tag{15}
\end{equation*}
$$

By using the estimation

$$
\sum_{x=1}^{n} \frac{1}{x} \geq \log n
$$

we get

$$
\sum_{|u=1|}^{\lfloor q / 2\rfloor} \frac{1}{|u|}>2 \log \left(\left\lfloor\frac{1}{2} q\right\rfloor\right)>\log (2 q)>\log \left(2^{2 / 3} N^{1 / 3}\right)
$$

where we used $q>2^{-1 / 3} N^{1 / 3}$. Then we plug in (15), we obtain

$$
\begin{equation*}
\mathcal{N}>\frac{c \log \left(2^{2 / 3} N^{1 / 3}\right)}{9 \times 2^{2 / 3}(\log \log N)^{2}} \times \frac{N^{2 / 3}}{\left(p^{2}+q^{2}\right)} \sum_{|v=1|}^{\lfloor p / 3\rfloor} 1 \tag{16}
\end{equation*}
$$

Now, for $|v|<\frac{p}{3}$, we have

$$
\begin{equation*}
\sum_{|v=1|}^{\lfloor p / 3\rfloor} 1=2\left(\left\lfloor\frac{p}{3}\right\rfloor\right)>\frac{p}{3}>\frac{1}{3}\left(N^{1 / 3}\right)=\frac{N^{1 / 3}}{3} \tag{17}
\end{equation*}
$$

Then, we substitute (17) in (16), we get

$$
\mathcal{N}>\frac{c \log \left(2^{2 / 3} N^{1 / 3}\right)}{9 \times 2^{2 / 3}(\log \log N)^{2}} \times \frac{N^{2 / 3}\left(N^{1 / 3}\right)}{3\left(p^{2}+q^{2}\right)}
$$

Since $\left(p^{2}+q^{2}\right)<p^{2}+p^{2}<2 p^{2}<2\left(2^{1 / 3} N^{1 / 3}\right)^{2}=2^{5 / 3} N^{2 / 3}$, we get

$$
\begin{aligned}
\mathcal{N} & >\frac{c \log \left(2^{2 / 3} N^{1 / 3}\right)}{9 \times 2^{2 / 3}(\log \log N)^{2}} \times \frac{N^{2 / 3}\left(N^{1 / 3}\right)}{3\left(2^{5 / 3} N^{2 / 3}\right)} \\
& >\frac{c \log \left(2^{2 / 3} N^{1 / 3}\right)}{27 \times 2^{7 / 3}(\log \log N)^{2}} \times N^{1 / 3} \\
& >\frac{c}{81 \times 2^{7 / 3}(\log \log N)^{2}} \times N^{1 / 3} \log N=N^{\frac{1}{3}-\varepsilon}
\end{aligned}
$$

where

$$
N^{-\varepsilon}=\frac{c \log N}{81 \times 2^{7 / 3}(\log \log N)^{2}}
$$

$\varepsilon>0$ is arbitrarily small for large $N$. This terminates the proof.

## 4. The Second Attack

In this section, we propose our second attack. Given $k$ moduli $N_{i}=p_{i}^{2} q_{i}$, we consider that the following generalized system of key equation given by $e_{i} x-N_{i} y_{i}=p_{i}^{2} u+$ $q_{i}^{2} v+z_{i}$ will provide us the factor of each moduli which are all of the same size. We show that, it is possible to factor $k$ RSA moduli $N_{i}=p_{i}^{2} q_{i}$ when the unknown parameters $x$, $y_{i}$ and $z_{i}$ are suitably small coupled with the execution of the LLL algorithm to achieve our objective.
Theorem 4.1. For $k \geq 2$, let $N_{i}=p_{i}^{2} q_{i}, 1 \leq i \leq k$ be $k$ RSA moduli. Let $N=\min _{i} N_{i}$. Let $e_{i}, i=1, \ldots, k$ be $k$ public exponents. Define $\delta=\frac{k}{3}-\alpha k$. Let $1<u<\frac{q_{i}}{2}$, $1<v<\frac{p_{i}}{3}$ such that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3 . If there exist an integer $x<N^{\delta}, k$ integers $y_{i}<N^{\delta}$ and $\left|z_{i}\right|<\frac{\left|p_{i}^{2}-q_{i}\right|}{3\left(p_{i}^{2}+q_{i}\right)} N^{1 / 3}$ such that $e_{i} x-N_{i} y_{i}=p_{i}^{2} u+q_{i}^{2} v+z_{i}$, then one can factor the $k$ RSA moduli $N_{1}, \ldots, N_{k}$ in polynomial time.

Proof. For $k \geq 2$ and $i=1, \ldots, k$, satisfying $e_{i} x-N_{i} y_{i}=p_{i}^{2} u+q_{i}^{2} v+z_{i}$, we obtain

$$
\begin{equation*}
\left|\frac{e_{i}}{N_{i}} x-y_{i}\right|=\frac{\left|p_{i}^{2} u+q_{i}^{2} v+z_{i}\right|}{N_{i}} \tag{18}
\end{equation*}
$$

Let $N=\min _{i} N_{i}$ and suppose that $y_{i}<N^{\delta}$ and

$$
\left|z_{i}\right|<\frac{\left|p_{i}^{2}-q_{i}\right|}{3\left(p_{i}^{2}+q_{i}\right)} N^{1 / 3}
$$

Then, $\left|z_{i}\right|<N^{1 / 3}$. Since

$$
p_{i}^{2} u+q_{i}^{2} v<N^{\frac{2}{3}+\alpha}
$$

we will get

$$
\begin{align*}
\frac{\left|z_{i}+\left(p_{i}^{2} u+q_{i}^{2} v\right)\right|}{N_{i}} & \leq \frac{\left|z_{i}+\left(p_{i}^{2} u+q_{i}^{2} v\right)\right|}{N} \\
& \leq \frac{N^{1 / 3}+\left(N^{\frac{2}{3}+\alpha}\right)}{N} \leq \frac{2 N^{\frac{2}{3}+\alpha}}{N} \\
& =2 N^{-\frac{1}{3}+\alpha} \tag{19}
\end{align*}
$$

Plugging (19) in (18), we obtain

$$
\left|\frac{e_{i}}{N_{i}} x-y_{i}\right|=2 N^{-\frac{1}{3}+\alpha}
$$

We now proceed to prove the existence of integer $x$. Let

$$
\varepsilon=2 N^{-\frac{1}{3}+\alpha}, \delta=\frac{k}{3}-\alpha k
$$

We have

$$
N^{\delta} \cdot \varepsilon^{k}=2^{k} N^{\delta-\frac{k}{3}+k \alpha}=2^{k}
$$

Then, since $2^{k}<2^{\frac{k(k-3)}{4}} \cdot 3^{k}$ for $k \geq 2$, we get

$$
N^{\delta} \cdot \varepsilon^{k}<2^{\frac{k(k-3)}{4}} \cdot 3^{k} .
$$

It follows that if $x<N^{\delta}$, then $x<2^{\frac{k(k-3)}{4}} \cdot 3^{k} \cdot \varepsilon^{-k}$. Summarizing for $i=1, \ldots, k$, we have

$$
\left|\frac{e_{i}}{N_{i}} x-y_{i}\right|<\varepsilon, \quad x<2^{\frac{k(k-3)}{4}} \cdot 3^{k} \cdot \varepsilon^{-k}
$$

It follows the condition of Theorem 2.3 are fulfilled will find $x$ and $y_{i}$ for $i=1, \ldots, k$. Next, using the equation

$$
e_{i} x-N_{i} y_{i}=p_{i}^{2} u+q_{i}^{2} v+z_{i},
$$

we get

$$
\left(a p_{i}^{2}+b q_{i}^{2}\right)-N_{i} y_{i}+e_{i} x=z_{i}
$$

Since

$$
\left|z_{i}\right|<\frac{\left|p_{i}^{2}-q_{i}\right|}{3\left(p_{i}^{2}+q_{i}\right)} N^{1 / 3}
$$

and $S_{i}=e_{i} x-N_{i} y_{i}$ is an approximation of $p_{i}^{2} u+q_{i}^{2} v$. Hence, by using Lemma 3.2 and Theorem 3.5, this implies that $u v q=\left[\frac{S^{2}}{4 N}\right]$ for $S_{i}=e_{i} x-N_{i} y_{i}$ for each $i=1, \ldots, k$, we find

$$
q_{i}=\operatorname{gcd}\left(\left[\frac{S_{i}^{2}}{4 N_{i}}\right], N_{i}\right) .
$$

This leads to the factorization of $k$ RSA moduli $N_{1}, \ldots, N_{k}$. This terminates the proof.

Example 4.2. As an illustration of the second attack on $k$ RSA moduli $N_{i}$, we consider the following three RSA moduli and public exponents

$$
\begin{aligned}
N_{1} & =140074278208066578934302219243451604349947, \\
N_{2} & =227974657099546879287992532304329283520873, \\
N_{3} & =115207280375271936217350237718693722271691, \\
e_{1} & =122489003459538901347156213660115374838322, \\
e_{2} & =144687182266179060830166514794075306277832, \\
e_{3} & =67592588540951349078338036018083407167981 .
\end{aligned}
$$

Then, $N=\max \left(N_{1}, N_{2}, N_{3}\right)=227974657099546879287992532304329283520873$.
Since $k=3$ and $\alpha<1 / 3$, we get $\delta=\frac{k}{3}-\alpha k=\frac{1}{4}$ and $\varepsilon=2 N^{-\frac{1}{3}+\alpha} \approx 0.000715384371299$.
Set $u=40$ and $v=60$. Then, by using (22) with $n=k=3$, we find

$$
C=\left[3^{n+1} \cdot 2^{\frac{(n+1)(n-4)}{4}} \cdot \varepsilon^{-n-1}\right]=154631237294596
$$

Consider the lattice $\mathcal{L}$ spanned by the matrix

$$
M=\left[\begin{array}{cccc}
1 & -\left[C e_{1} / N_{1}\right] & -\left[C e_{2} / N_{2}\right] & -\left[C e_{3} / N_{3}\right] \\
0 & C & 0 & 0 \\
0 & 0 & C & 0 \\
0 & 0 & 0 & C
\end{array}\right]
$$

Then, applying the LLL algorithm to $\mathcal{L}$, we get a reduced basis with the matrix

$$
K=\left[\begin{array}{cccc}
20851016390 & 6926039718 & 7732916632 & 3684485588 \\
4189589029 & 25975280415 & -28739664882 & -16968110412 \\
13554125657 & -46415456621 & -4111981582 & -17369686412 \\
-3602798513 & -6142771903 & 42076034382 & -68116796780
\end{array}\right]
$$

Now, we obtain

$$
K \cdot M^{-1}=\left[\begin{array}{cccc}
20851016390 & 18233327713 & 13233377987 & 12233377673 \\
4189589029 & 3663617558 & 2658979025 & 2458049235 \\
13554125657 & 11852506868 & 8602308144 & 7952261659 \\
-3602798513 & -3150494189 & -2286564532 & -2113776809
\end{array}\right] .
$$

From the first row, we deduce $x=20851016390, y_{1}=18233327713, y_{2}=13233377987$ and $y_{3}=12233377673$. By using $x$ and $y_{i}$ for $i=1,2$, 3, define $S_{i}=e_{i} x-N_{i} y_{i}$ is an approximation of $p_{i}^{2} u+q_{i}^{2} v$. Hence, by applying Lemma 3.2 and Theorem 3.5, this implies that $u v q=\left[\frac{S^{2}}{4 N}\right]$ for $S_{i}=e_{i} x-N_{i} y_{i}$. Then, we get

$$
\begin{aligned}
& S_{1}=232630468379538676645636916369 \\
& S_{2}=342395983944160748742312443829 \\
& S_{3}=225309644357222482847794853547 .
\end{aligned}
$$

Next, for each $i=1,2,3$, we find $\left[\frac{S_{i}^{2}}{4 N_{i}}\right]$ and we get

$$
\begin{gathered}
{\left[\frac{S_{1}^{2}}{4 N_{1}}\right]=96586138994944800,\left[\frac{S_{2}^{2}}{4 N_{2}}\right]=128561449891663200,} \\
{\left[\frac{S_{3}^{2}}{4 N_{3}}\right]=110158914599450400 .}
\end{gathered}
$$

Then, also for each $i=1,2,3$, we find

$$
q_{i}=\operatorname{gcd}\left(\left[\frac{S_{i}^{2}}{4 N_{i}}\right], N_{i}\right)
$$

and we obtain

$$
q_{1}=40244224581227, q_{2}=53567270788193
$$

and $q_{3}=45899547749771$. This leads us to the factorization of three RSA moduli $N_{1}, N_{2}$ and $N_{3}$ which $p_{1}=58996658535481, p_{2}=65236931548931$, and $p_{3}=$ 50099773115039.

## 5. The Third Attack

In this section, we propose our third attack. Given $k$ moduli $N_{i}=p_{i}^{2} q_{i}$, we consider that the following generalized system of key equation given by $e_{i} x_{i}-N_{i} y=p_{i}^{2} u+q_{i}^{2} v+z_{i}$ will provide us the factor of each moduli which are all of the same size. We show that, it is possible to factor $k$ RSA moduli. This is achievable when the unknown parameters $x_{i}, y$ and $z_{i}$ are suitably small. We couple this information together with the execution of the LLL algorithm to achieve our objective.

Theorem 5.1. For $k \geq 2$, let $N_{i}=p_{i}^{2} q_{i}, 1 \leq i \leq k$ be $k$ RSA moduli with the same size $N$. Let $e_{i}, i=1, \ldots, k$ be $k$ public exponents with $\min _{i} e_{i}=N^{\beta}$. Define $\delta=\beta k-\alpha k-\frac{2 k}{3}$. Let $1<u<\frac{q_{i}}{2}, 1<v<\frac{p_{i}}{3}$ such that $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3 . If there exist an integer $x<N^{\delta}$ and $k$ integers $y_{i}<N^{\delta}$ and

$$
\left|z_{i}\right|<\frac{\left|p_{i}^{2}-q_{i}\right|}{3\left(p_{i}^{2}+q_{i}\right)} N^{1 / 3}
$$

such that

$$
e_{i} x_{i}-N_{i} y=p_{i}^{2} u+q_{i}^{2} v+z_{i}
$$

for $i=1, \ldots, k$, then one can factor the $k$ RSA moduli $N_{1}, \ldots, N_{k}$ in polynomial time. Proof. For $k \geq 2$ and $i=1, \ldots, k$, the equation

$$
e_{i} x_{i}-N_{i} y=p_{i}^{2} u+q_{i}^{2} v+z_{i}
$$

we get

$$
\begin{equation*}
\left|\frac{N_{i}}{e_{i}} y-x_{i}\right|=\frac{\left|p_{i}^{2} u+q_{i}^{2} v+z_{i}\right|}{e_{i}} \tag{20}
\end{equation*}
$$

Let $N=\max _{i} N_{i}$ and suppose that $y<N^{\delta}$ and

$$
\left|z_{i}\right|<\frac{\left|p_{i}^{2}-q_{i}\right|}{3\left(p_{i}^{2}+q_{i}\right)} N^{1 / 3}
$$

Then, $\left|z_{i}\right|<N^{1 / 3}$. Also, suppose that $\min _{i} e_{i}=N^{\beta}$. Since

$$
p_{i}^{2} u+q_{i}^{2} v<N^{\frac{2}{3}+\alpha}
$$

we will get

$$
\begin{align*}
\frac{\left|p_{i}^{2} u+q_{i}^{2} v+z_{i}\right|}{e_{i}} & \leq \frac{\left|z_{i}\right|+p_{i}^{2} u+q_{i}^{2} v}{N^{\beta}} \\
& <\frac{N^{1 / 3}+\left(N^{\frac{2}{3}+\alpha}\right)}{N^{\beta}} \\
& <\frac{2 N^{\frac{2}{3}+\alpha}}{N^{\beta}} \\
& =2 N^{\frac{2}{3}+\alpha-\beta} \tag{21}
\end{align*}
$$

Plugging (21) in (20), we obtain

$$
\left|\frac{N_{i}}{e_{i}} y-x_{i}\right|=2 N^{\frac{2}{3}+\alpha-\beta} .
$$

We now proceed to prove the existence of integer $y$ and the integers $x_{i}$. Let $\varepsilon=2 N^{\frac{2}{3}+\alpha-\beta}$, $\delta=\beta k-\alpha k-\frac{2 k}{3}$. Then, we obtain

$$
N^{\delta} \cdot \varepsilon^{k}=N^{\delta}\left(2 N^{\frac{2}{3}+\alpha-\beta}\right)^{k}=2^{k}\left(N^{\delta+\frac{2}{3} k+\alpha k-\beta k}\right)=2^{k} .
$$

Then, since $2^{k}<2^{\frac{k(k-3)}{4}} \cdot 3^{k}$ for $k \geq 2$, we get $N^{\delta} \cdot \varepsilon^{k}<2^{\frac{k(k-3)}{4}} \cdot 3^{k}$. It follows that if $y<N^{\delta}$, then $y<2^{\frac{k(k-3)}{4}} \cdot 3^{k} \cdot \varepsilon^{-k}$. Summarizing for $i=1, \ldots, k$, we get

$$
\left|\frac{N_{i}}{e_{i}} y-x_{i}\right|<\varepsilon, \quad y<2^{\frac{k(k-3)}{4}} \cdot 3^{k} \cdot \varepsilon^{-k}, \text { for } i=1, \ldots, k
$$

It follows the condition of Theorem 2.3 are fulfilled will find $y$ and $x_{i}$ for $i=1, \ldots, k$. Next, using the equation

$$
e_{i} x_{i}-N_{i} y=p_{i}^{2} u+q_{i}^{2} v+z_{i}
$$

we get

$$
\left(a p_{i}^{2}+b q_{i}^{2}\right)-N_{i} y+e_{i} x_{i}=z_{i}
$$

Since

$$
\left|z_{i}\right|<\frac{\left|p_{i}^{2}-q_{i}\right|}{3\left(p_{i}^{2}+q_{i}\right)} N^{1 / 3}
$$

and $S_{i}=e_{i} x_{i}-N_{i} y$ is an approximation of $p_{i}^{2} u+q_{i}^{2} v$. Hence, by using Lemma 3.2 and Theorem 3.5 this implies that $u v q=\left[\frac{S^{2}}{4 N}\right]$ since $S_{i}=e_{i} x_{i}-N_{i} y$ for each $i=1, \ldots, k$, we find

$$
q_{i}=\operatorname{gcd}\left(\left[\frac{S_{i}^{2}}{4 N_{i}}\right], N_{i}\right)
$$

This leads to the factorization of $k$ RSA moduli $N_{1}, \ldots, N_{k}$. This terminates the proof.

Example 5.2. As an illustration of this third attack on $k$ RSA moduli $N_{i}$, we consider the following three RSA moduli and public exponents

$$
\begin{aligned}
N_{1} & =167513597679609635174467857255838464857557, \\
N_{2} & =162193711942743152949344169736443556034929, \\
N_{3} & =215150025264868035895447181823669007036303, \\
e_{1} & =130621735976643547467676084435235070075545, \\
e_{2} & =129645927842545253308124511030737798304949, \\
e_{3} & =181061388046877396966048902064529807719640 .
\end{aligned}
$$

Then, $N=\max \left(N_{1}, N_{2}, N_{3}\right)=215150025264868035895447181823669007036303$. We also obtain $\min \left(e_{1}, e_{2}, e_{3}\right)=N^{\beta}$ with $\beta \approx 0.9946777661$. Since $k=3$ and $\alpha<$
$1 / 3$, we get $\delta=\beta k-\alpha k-\frac{2 k}{3}=0.234033298$ and $\varepsilon=2 N^{\frac{2}{3}+\alpha-\beta} \approx 0.0011929366910476$.
Set $u=24$ and $v=36$. Then, by using (22) with $n=k=3$, we find

$$
C=\left[3^{n+1} \cdot 2^{\frac{(n+1)(n-4)}{4}} \cdot \varepsilon^{-n-1}\right]=19997948141251 .
$$

Consider the lattice $\mathcal{L}$ spanned by the matrix

$$
M=\left[\begin{array}{cccc}
1 & -\left[C N_{1} / e_{1}\right] & -\left[C N_{2} / e_{2}\right] & -\left[C N_{3} / e_{3}\right] \\
0 & C & 0 & 0 \\
0 & 0 & C & 0 \\
0 & 0 & 0 & C
\end{array}\right]
$$

Then, applying the LLL algorithm to $\mathcal{L}$, we get a reduced basis with the matrix

$$
K=\left[\begin{array}{cccc}
-3186595759 & -3175535180 & -2508543925 & -2476344545 \\
3597868419 & 8192169166 & -5374188372 & -4451292135 \\
-5980436867 & 8290726243 & 881173597 & -2602034148 \\
8196227911 & 1329332700 & 4686046277 & -11477132170
\end{array}\right]
$$

Now, we obtain

$$
K \cdot M^{-1}=\left[\begin{array}{cccc}
-3186595759 & -4086594899 & -3986594899 & -3786539833 \\
3597868419 & 4614024445 & 4501118112 & 4275243273 \\
-5980436867 & -7669508354 & -7481833565 & -7106380642 \\
8196227911 & 10511111451 & 10253901923 & 9739341232
\end{array}\right] .
$$

From the first row, we deduce $y=3186595759$, $x_{1}=4086594899, x_{2}=3986594899$ and $x_{3}=3786539833$. By using $y$ and $x_{i}$ for $i=1,2,3$, define $S_{i}=e_{i} x_{i}-N_{i} y$ is an approximation of $p_{i}^{2} u+q_{i}^{2} v$. Hence, by applying Lemma 3.2 and Theorem 3.5, this implies that $u v q=\left[\frac{S^{2}}{4 N}\right]$ for $S_{i}=e_{i} x_{i}-N_{i} y$. We get

$$
\begin{aligned}
& S_{1}=172955024052703147678372558270 \\
& S_{2}=163577818481355525216922589040, \\
& S_{3}=205759285452509704623457581143
\end{aligned}
$$

Next, for each $i=1,2,3$, we find $\left[\frac{S_{i}^{2}}{4 N_{i}}\right]$ and we get

$$
\begin{aligned}
& {\left[\frac{S_{1}^{2}}{4 N_{1}}\right]=44643301737039072,} \\
& {\left[\frac{S_{2}^{2}}{4 N_{2}}\right]=41243434129809504,}
\end{aligned}
$$

$$
\left[\frac{S_{3}^{2}}{4 N_{3}}\right]=49194606760802208
$$

For each $i=1,2,3$, we find

$$
q_{i}=\operatorname{gcd}\left(\left[\frac{S_{i}^{2}}{4 N_{i}}\right], N_{i}\right)
$$

and we obtain

$$
q_{1}=51670488121573, q_{2}=47735456168761
$$

and $q_{3}=56938202269447$. This leads us to the factorization of three RSA moduli $N_{1}, N_{2}$ and $N_{3}$ which $p_{1}=56938202269447, p_{2}=58290323825483$ and $p_{3}=$ 61470794347307.

## 6. Conclusion

In conclusion, this paper presents three new attacks on RSA moduli type $N=p^{2} q$. The first attack is based on the equation $e X-N Y=p^{2} u+q^{2} v+Z$ where $u$ is an integer multiple of 2 and $v$ is an integer multiple of 3 together with some conditions on the parameters. Continuing our work, we focused on the system of generalized key equations of the form

$$
e_{i} x-N_{i} y_{i}=p_{i}^{2} u+q_{i}^{2} v+z_{i}
$$

for the second attack and in the form of

$$
e_{i} x_{i}-N_{i} y=p_{i}^{2} u+q_{i}^{2} v+z_{i}
$$

for the third attack. We proved the two attacks are successful when the parameters $x, x_{i}$, $y, y_{i}$ and $z_{i}$ are suitably small. On top of that, we also proved that both of our attacks enables us to factor $k$ RSA moduli of the form $N_{i}=p_{i}^{2} q_{i}$ simultaneously based on LLL algorithm.

## References

[1] Rivest, R., Shamir, A. and Adleman, L., A method for obtaining digital signatures and public-key cryptosystems, Communication of the ACM 21(2), 21(2):17-28 (1978)
[2] Wiener, M., Cryptanalysis of short RSA secret exponents, IEEE Transaction on Information Theory IT-36, 36:553-558 (1990)
[3] Boneh, D. and Durfee, G.,Cryptanalysis of RSA with private key $d$ less than $N^{0.292}$. Advance in Cryptology-Eurocrypt'99, Lecture Notes in Computer Science, 1592:111 (1999)
[4] Boneh, D., Twenty years of attacks on the RSA cryptosystem, Notices of the AMS, 46(2):203-213 (1999).
[5] de Weger, B., Cryptanalysis of RSA with small prime difference, Applicable Algebra in Engineering Communication and Computing, 13(1), 1728 (2002)
[6] Howgrave-Graham, N. and Seifert, J., Extending Wiener attack in the presence of many decrypting exponents, In Secure Networking-CQRE (Secure)'99 Lecture Notes in Computer Science, vol.1740, Springer-Verlag, pp. 153-166 (1999)
[7] Sarkar, S. and Maitra, S., Cryptanalysis of RSA with two decryption exponents, Information Processing Letters, Vol. 110, 178-181 (2010)
[8] Hinek, J., On the security of some variants of RSA, PhD thesis, Waterloo, Ontario, Canada (2007)
[9] Nitaj, A., Ariffin, M. R. K., Nassr, D. I. and Bahig, H. M., New attacks on the RSA cryptosystem, Lecture Notes in Computer Science, Vol. 8469 Springer Verlag, pp. 178-198 (2014)
[10] Lenstra, A. K., Lenstra, H. W. and Lovász, L., Factoring polynomials with rational coefficients, Mathematische Annalen, vol. 261, pp.513-534 (1982)
[11] Asbullah, M. A. and Ariffin, M. R. K., New attack on RSA with modulus $N=p^{2} q$ using continued fractions, Journal of Physics, Vol. 622, pp. 191-199, (2015)
[12] Nitaj, A., Cryptanalysis of RSA using the ratio of the primes, In Progress in Cryptology - AFRICACRYPT 2009, pages 98-115, Springer (2009)
[13] Nitaj, A., A new vulnerable class of exponents in RSA, JP Journal of Algebra, Number Theory and Applications, 21(2):203-220 (2011a)
[14] Nitaj, A., New weak RSA keys, JP Journal of Algebra, Number Theory and Applications, 23(2):131-148 (2011b)
[15] Hardy, G. and Wright, E., An introduction to the theory of numbers, Oxford University Press, London (1965)
[16] Blömer, J. and May, A., A generalized Wiener attack on RSA, Practice and Theory in Public Key Cryptography PKC 2004 LNCS Springer-Verlag, 2947:1-13, (2004).
[17] May, A., New RSA vulnerabilities using lattice reduction methods, PhD thesis, University of Paderborn (2003)
[18] May, A., Secret exponent attacks on RSA-type scheme with moduli $N=p^{r} q$. In PKC 2004 LNCS Springer-Verlag 2947:218-230 (2004).
[19] Sarkar, S., Small secret exponent attack on RSA variant with modulus $N=p^{r} q$, Designs, Codes and Cryptography, 73(2):383-392, Springer (2014).

## Appendix

Proof of Theorem 2.3.
Proof. Let $\varepsilon \in(0,1)$. Set

$$
\begin{equation*}
C=\left\lceil 3^{n+1} \cdot 2^{\frac{(n+1)(n-4)}{4}} \cdot \varepsilon^{-n-1}\right\rceil \tag{22}
\end{equation*}
$$

where $\lceil x\rceil$ is the integer greater than or equal to $x$. Consider the lattice $\mathcal{L}$ spanned by the rows of the matrix

$$
M=\left[\begin{array}{ccccc}
1 & -\left[C \alpha_{1}\right] & -\left[C \alpha_{2}\right] & \cdots & -\left[C \alpha_{n}\right] \\
0 & C & 0 & \cdots & 0 \\
0 & 0 & C & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & C
\end{array}\right]
$$

where $[x]$ is the nearest integer to $x$. The determinant of $\mathcal{L}$ is $\operatorname{det}(\mathcal{L})=C^{n}$ and the dimension is $n+1$. Applying the LLL algorithm, we find a reduced basis $\left(b_{1}, \ldots, b_{n+1}\right)$ with

$$
\left\|b_{1}\right\| \leq 2^{n / 4} \operatorname{det}(\mathcal{L})^{1 /(n+1)}=2^{n / 4} C^{n /(n+1)} .
$$

Since $b_{1} \in \mathcal{L}$, we can write $b_{1}= \pm\left[q, p_{1}, p_{2}, \ldots, p_{n}\right] M$, that is

$$
\begin{equation*}
b_{1}= \pm\left[q, C p_{1}-q\left[C \alpha_{1}\right], C p_{2}-q\left[C \alpha_{2}\right], \ldots, C p_{n}-q\left[C \alpha_{n}\right]\right], \tag{23}
\end{equation*}
$$

where $q>0$. Hence, the norm of $b_{1}$ satisfies

$$
\left\|b_{1}\right\|=\left(q^{2}+\sum_{i=1}^{n}\left|C p_{i}-q\left[C \alpha_{i}\right]\right|^{2}\right)^{1 / 2} \leq 2^{n / 4} C^{n /(n+1)}
$$

which leads to

$$
\begin{equation*}
q \leq\left\lfloor 2^{n / 4} C^{n /(n+1)}\right\rfloor \text { and } \max _{i}\left|C p_{i}-q\left[C \alpha_{i}\right]\right| \leq 2^{n / 4} C^{n /(n+1)} . \tag{24}
\end{equation*}
$$

Let us consider the entries $q \alpha_{i}-p_{i}$. We have

$$
\begin{aligned}
\left|q \alpha_{i}-p_{i}\right| & =\frac{1}{C}\left|C q \alpha_{i}-C p_{i}\right| \\
& \leq \frac{1}{C}\left(\left|C q \alpha_{i}-q\left[C \alpha_{i}\right]\right|+\left|q\left[C \alpha_{i}\right]-C p_{i}\right|\right) \\
& =\frac{1}{C}\left(q \mid C \alpha_{i}\right]-\left[C \alpha_{i}\right]\left|+\left|q\left[C \alpha_{i}\right]-C p_{i}\right|\right) \\
& \leq \frac{1}{C}\left(\frac{1}{2} q+\left|q\left[C \alpha_{i}\right]-C p_{i}\right|\right) .
\end{aligned}
$$

Using the two inequalities in (22), we get

$$
\left|q \alpha_{i}-p_{i}\right| \leq \frac{1}{C}\left(\frac{1}{2} \cdot 2^{n / 4} C^{n /(n+1)}+2^{n / 4} C^{n /(n+1)}\right)=\frac{3 \cdot 2^{(n+1) / 4}}{C^{1 /(n+1)}}
$$

Observe that (25) gives

$$
\begin{equation*}
3^{n+1} \cdot 2^{\frac{(n+1)(n-4)}{4}} \cdot \varepsilon^{-n-1} \leq C \leq \leq 3^{n+1} \cdot 2^{\frac{(n+1)(n-3)}{4}} \cdot \varepsilon^{-n-1}, \tag{25}
\end{equation*}
$$

which leads to $\varepsilon \geq \frac{3 \cdot 2^{(n-4) / 4}}{C^{1 /(n+1)}}$. As a consequence, we get $\left|q \alpha_{i}-p_{i}\right| \leq \varepsilon$. On the other hand, using (24) and (25), we get

$$
q \leq\left\lfloor 2^{n / 4} C^{n /(n+1)}\right\rfloor \leq 2^{n / 4} C^{n /(n+1)} \leq 2^{n(n-3) / 4} \cdot 3^{n} \cdot \varepsilon^{-n}
$$

To compute the vector $\left[q, p_{1}, p_{2}, \ldots, p_{n}\right]$, we use (23)
$\left[q, p_{1}, p_{2}, \ldots, p_{n}\right]= \pm\left[q, C p_{1}-q\left[C \alpha_{1}\right], C p_{2}-q\left[C \alpha_{2}\right], \ldots, C p_{n}-q\left[C \alpha_{n}\right]\right] M^{-1}$. This terminates the proof.

