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Abstract

Diabetes Mellitus (DM) is one of the most dangerous diseases to humans because
of the effects of complications caused. According to WHO, in 2013, the total num-
ber of DM patients in Indonesia was ranked 7" in the world and this disease was
ranked 6" in the world as the leading causes of human death. Bayesian Mixture
Model Averaging (BMMA) is a Bayesian approach for multiple mixture models
with the model parameter estimation using the averaging rule. The purpose of this
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study would be built the BMMA models to blood sugar levels of Diabetes Mellitus
(DM) patients through simulation studies where the simulation data built on cases of
blood sugar levels of DM patients in RSUD Saiful Anwar Malang. The results of this
study have succed to built the BMMA normal models with 2 components mixture
that could accommodate the real condition of the DM data with driven data concept.

AMS subject classification: Primary 68U20, Secondary 62P10.
Keywords: Mixture Model, Model Averaging, Bayesian Approach, Diabetes Mel-
litus.

1. Introduction

Diabetes Mellitus (DM) is one of the most dangerous diseases that are not contagious
but it can cause complications of other very dangerous diseases. This disease is caused
by a disruption in the body’s metabolic system so that the increase in blood sugar levels
(hyperglycemia). A person is said to have the disease if the blood sugar levels had reached
more than 200 mg/dL for the condition is not fasting, more than 126 mg/dL for fasting
conditions and the average blood sugar levels exceeding 150 mg/dL ([16], [27], [28] and
[29]). According to the WHO report, DM was ranked as the world’s sixth largest as the
leading causes of death and in 2013, Indonesia ranked seventh in the number of patients
as many as 8.5 million people [17]. The impact of the DM disease is very dangerous
because it can lead to death of the patient and the number of patients continues to increase
sharply over time. DM disease requires huge maintenance costs because it can cause
complications of other diseases.

A study of DM data is very important, in particular on the modeling of blood sugar
levels in DM patient data so that it can be known the exact model for policy making in the
management of disease control and prevention of DM diseases. Challenges of the data
DM is to have a mixture distribution and can be approximated by some distributions.
Research of [28] indicates that the DM data has a mixture distribution and research [7]
indicates that the DM data can be approached by some distributions.

Bayesian Mixture Model Averaging (BMMA) is a Bayesian solution to form the best
single model from all the possible mixture models. BMMA is a combination of the two
methods, the Bayesian Mixture Model (BMM) and Bayesian Model Averaging (BMA)
[8]. One study on the modeling of BMM for DM data is the research that has been done
by [28] and some of the BMM research in the field of microarray data, among others [10].
Whilst research on the modeling of the BMA for DM data has been carried out by [7] and
the modeling of the BMA for microarray data by ([3], [4], [6], and [26]). The research
on BMMA has been done by [8]. The BMMA models built on data driven concept ([5],
[6], [7], [9], and [22]). In this paper would be built a model of the BMMA to blood
sugar levels of Diabetes Mellitus (DM) patients through simulation studies where the
simulation data built on the cases of blood sugar levels of DM patients in RSUD Saiful
Anwar Malang.
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2. Data and Methods

The data used in this study is simulation data which is constructed based on the cases
of blood sugar levels of DM patients in RSUD Saiful Anwar Malang for Kesatrian and
Blimbing villages in 2015. The number of mixture components model specified by
the algorithm RIMCMC and the number of models generated by the MCMC algorithm
are 1, 000 models. The best model to be established in the BMMA modeling must be
appropriate with the results of Occam’s Window selection model methods. The number
of simulations are 10 times for each village.

2.1. Bayesian, BMM, BMA, and BMMA Analysis
2.1.1 Bayesian Analysis

Bayesian analysis is a statistical analysis method based on the posterior probability
distribution model. The posterior distribution is a blend of two information i.e., the prior
information and the likelihood of the data. These concept using Bayes theorem was
invented by Thomas Bayes in 1702-1761, where in model parameter, 6 € €2, is treated
as a random variable ([1], [9], [12], [20] and [21]).

If a likelihood function of observational data x is f(x | 6) and the prior 6 is p(6)
then the posterior probability distribution of 6 is p(6 | x), determined by the rules of
probability according to Bayes’ theorem [14] as in Eq. (1)

p@|x)= % where, (2.1)
fx)=E[f(x]0)]= f(x|6)f(0)d6é if 6 continuous and
0eR
f@ =Elf(x10)1=) f(x|6)p®) if 6 discrete,
0eB

where f(x) is a normalized constant [12]. So that Eq. (1) can be written as:

p@ | x) o f(x|0)p©O). (2.2)

Based on the Eq. (2), it can be shown the posterior probability will be used for
decision making is proportional to the product of the likelihood function and the prior
probability of the model parameters ([3], [4], [6], [7], [8], and [14]).

2.1.2 BMM Analysis

Mixture Models Mixture model is a special model for the data that have sub-sub-
populations or groups, where each proportion of sub-population or group is a constituent
component of the mixture models. These model called the particular model because this
model is able to combine some different data but still retains the characteristics of the
original data ([2], [8], [12], and [24]).
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According to ([8], [12], [20], and [24]), mixture probability function of an observation

x = (x1,Xx2,...,x,) taken from a number of k-subpopulation can be expressed as in
Eq. (3).
k
fx10.w)=> wig;x|0), (23)
j=1

where f(x | 8, w) is a function of the probability mixture, g;(x | 6;) isa j’ h probability
function of k number of sub-population that make up a model, and € is a mixture model
parameters containing of (61, 6, ..., 6;). Parameter 6;, j = 1,2, ..., k represents the
characteristic distribution of g ; on each component in mixture models. While w is the pa-

rameter vector of proportions (weighted) mixture model containing of (w1, wa, ..., wi),
k

where 0 < w; < 1,V and Z w; = 1 for each model parameter 6;.
j=1

BMM Models According to ([8] and [25]), to model such data into a mixture model,
each observation x; would be classified on each unknown number of sub-population. If
the allocation of each observation on each sub-population in Eq. (3) is denoted by z,
then the allocation of each observation z;,i = 1, 2, ..., n could be determined based on
Eq. (4).

pzi=j)=wj,j=12,... k. (2.4)

Given the value of z; then the observation data x; can be derived from the sub-populations
as in Eq. (5).
Xilzi~f(x|6),i=1,2,...,n. (2.5)

Thus the resulting joint posterior distribution of all parameter in the mixture model
can be expressed as in Eq. (6).

plk,w,z,0,x) =pk)p(w | k)pz|w,k)p@ |z, w,k)px |0,z w, k). (2.6)

The next process is to estimate each parameter in Eq. (6) by employing the full
conditional distribution of each parameter [25].

Suppose there is a parameter 6 which has a stationary distribution of p(€). The full
conditional distribution of parameter 6 is constructed by making a partition of 6 as shown
in Eq. (7) ([8] and [30]).

0 = 0y, 0_g, 2.7)
where 0, denote the-s’ h parameter to be estimated and 6_ denote the complement of 6
that is parameter 6 without the-s"" component.

According to ([13] and [30]), the full conditional distribution can be established based
on the joint distribution of all the parameters as in Eq. (8).

p(9S5 Q—S)
[ 65, 0_5)db;

pOs | 0—s) = (2.8)
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RJMCMC Algorithm According to ([25] and [30]), Reversible Jump Markov Chain
Monte Carlo (RIMCMC) concept can be used to determine the number of mixture
components model in which the number of mixture components is unknown. In its ap-
plication, RIMCMC algorithm uses the concept of birth/death and split/merge with 6
types of movement, that is w updating, 6 updating, z updating, hyperparameter 8 updat-
ing, split/merge components, and birth/death of an empty component. The movement
split/merge is a random choice between split (k — k + 1) or merge (k + 1 — k).

2.1.3 BMA Analysis

BMA is a Bayesian solution to model uncertainty in order to establish the best single
model by considering all possible models. The completion of BMA models by averaging
the posterior distribution of all the best models so that the BMA model combines the
best of all possible models ([3], [4], [6], [7], [8], [15], and [18].

If My, M, ... M, is the set of possible models of M and A is the value would
be predicted, then the BMA prediction starts with determining the prior probability
distribution of all the model parameters and the model Mj ([14] and [21]). Posterior
distribution of A | x is as in Eq. (9).

q

P(A|x)=)_ P(A| M, x)P(My | x), (2.9)

k=1
where ¢ is the sum of all the models that may be formed. Posterior distribution of A | x
is the average of the posterior distribution whilst the posterior probability of the model
M, is:
PY | M) P(My)

Yol P(Y | ML)P(M))

P(My | x) = (2.10)

where
P(x | My) = / P(x | Ok, M) P (0 | My)dO. (2.11)

Eq. (11) is the marginal likelihood of the model M. The prior probability of 6; | My
is p(6r | My) and p(x | 6, My) is likelihood function and p(My) is prior probability of
the model M. Implicitly, all probabilities depend on the model M so the expectation
value of the coefficient A obtained by averaging the model M as in Eq. (12).

q
E(A|x)= Z P(My | x)E(A | My, x). (2.12)
k=1
Value of E(A | x) in Eq. (12) shows the weighted expected value of A in every possible
combination models whilst the variance of (A | x) is as in Eq. (13).

q
Var(A |x) =Y (var(A | x, M) + (E[A | Mi, x)P(M | %) = E(A | 0)?)
k=1
(2.13)
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2.1.4 BMMA Analysis

BMMA is proposed method which is build by combining the two methods, BMM and
BMA, wherein the model parameter estimators are obtained by averaging all of the
possible mixture models. Therefore, the form of BMMA can be determined by applying
Eq. (12) and Eq. (13) to the some mixture models. This finding BMMA, therefore, have
the value of E(A | x) as the weighted value of the parameters in any combination of
mixture models and P (M | x) is the posterior distribution of the k’ " mixture model [8].
Selection of models included in the modeling of the BMA as in Eq.(12), use Occam’s
Window selection methods ([3], [4], [6], [7], [15], and [23]).

2.1.5 MCMC Algorithm

In Bayesian Analysis, to obtain the posterior distribution is often very complicate and
requires a difficult integration process in determining the marginal posterior of a model
parameter. So that it takes a numerical approximation with Markov Chain Monte Carlo
(MCMC) algorithm ([7], [11], and [19]). MCMC algorithms can be described as follows:

MCMC Algorithm with Gibbs Sampler Approach

Step 1. In this step we will provide initial value.
90 — (9 © O
] 9 o . r

Step 2. In this step we will do the sampling of the parameter.
Generate the value of 6, j = 1, ..., r from their conditional distribution as
follows:
Step 2.1. Sampling 0%V from p (91 1x, 00, 9,<’<>)

Step2.2. Sampling 0V from p (92 | x, 08D o 9,<’<>)

R

Step 2.r.  Sampling %V from p <9r | x, 00t gt 9(k+1))

Step 3. In this step we will do iteration.
Execute step 2 as K times with K — oo.

2.1.6 Goodness of Fit Model with Kolmogorov-Smirnov (KS)

According to ([7] and [18]), the theoritical concept of Kolmogorov-Smirnov test is to
compare the empirical cumulative distribution function (CDF), F;(x;), and the hypoth-
esis cumulative distribution function, F. If X 1> X@), - - - X(n), 18 statistic order to the
independent random variable with hypothesis distribution, F and the empirical distribu-
tion is as in Eq. (14).

the number of data X; < x;

F,(x;) = " fori =1,2,3,...,k <n, (2.14)

where F},(x;) is right continuous step function.
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The formula of test statistic D,, can be written as in Eq. (15).
D, =sup{|F,,(x)—ﬁ|} (2.15)

If the value of D,, smaller then the tested models is better.

3. Results and Discussions

3.1. Description and Distribution of the Data from the Kesatrian and Blimbing
Villages

The description and distribution results for the blood sugar levels of DM patients data in
Saiful Anwar Malang Hospital for Kesatrian and Blimbing villages in 2015 can be seen
that in the Figure 1 and Figure 2.

ki R =
Histogram of Kesatrian Vilage Histogram of Bimbing Village
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Figure 1: Histogram for the blood sugar levels of DM patients data for Kesatrian and
Blimbing villages.

Frequensy

Derived from Figure 1 can be known that data are indicated to have a mixture dis-
tribution with 2 components, both for the Kesatrian and Blimbing villages. Meanwhile,
based on Figure 2 can be seen that the data have a normal distribution for the Kesatrian
and Blimbing villages. It can be seen by the p-value of the normality tests for data greater
than 0.05, which means accept the null hypothesis that the data has a normal distribution.

3.2. Identification for the Number of Components Mixture by RJMCMC Algo-
rithm with Mixture Normal Distribution

The identification results for the number of components mixture in the normal mixture
distribution by RIMCMC algorithm can be seen that in the Table 1 and Table 2.

Based on Table 1, for simulation of Kesatrian village, it can be seen that the best
model is the mixture normal distributions with 2 components mixture because it has the
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Figure 2: Normal Distribution Test for the blood sugar levels of DM patients data for

Kesatrian and Blimbing villages.

Table 1: Results of RIMCMC Algorithm for Kesatrian and Simulation of Kesatrian

Villages.
No. Villages Result
1 2 3

1 Kesatrian 0.2798 0.4909 0.2292
2 Kesatrian Simulation 1 0.2649 0.4962 0.2389
3 Kesatrian Simulation 2 0.2581 0.5004 0.2416
4 Kesatrian Simulation 3 0.2323 0.5125 0.2552
5 Kesatrian Simulation 4 0.1828 0.522 0.2952
6 Kesatrian Simulation 5 0.1942 0.5211 0.2847
7 Kesatrian Simulation 6 0.1597 0.5282 0.312
8 Kesatrian Simulation 7 0.2501 0.5012 0.2487
9 Kesatrian Simulation 8 0.2612 0.4975 0.2413
10 Kesatrian Simulation 9 0.1672 0.5285 0.3043
11 Kesatrian Simulation 10 0.27 0.4946 0.2354
Average of Kesatrian Simulation 0.22405 0.51022 0.26573
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Table 2: Results of RIMCMC Algorithm for Blimbing and Simulation of Blimbing
Villages.

No. Villages Result of RICMC Test
1 2 3 4 5 6 7 8

1 Blimbing 0.1692 | 0.3984 | 0.2154 | 0.103 | 0.0551 | 0.032 | 0.0201 | 0.0067
2 Blimbing Simulation 1 0.1479 | 0.3982 | 0.2219 | 0.1092 | 0.0588 | 0.0347 | 0.0221 | 0.0072
3 Blimbing Simulation 2 0.1472 | 0.4002 | 0.2204 | 0.1094 | 0.0595 | 0.0345 | 0.0217 | 0.0071
4 Blimbing Simulation 3 0.1557 | 0.4028 | 0.2188 | 0.1075 | 0.0567 | 0.0322 | 0.0199 | 0.0063
5 Blimbing Simulation 4 0.1169 | 0.3708 | 0.2264 | 0.1264 | 0.0729 | 0.0456 | 0.0305 | 0.0104
6 Blimbing Simulation 5 0.1689 | 0.393 0.213 0.1033 | 0.0564 | 0.0347 | 0.0228 | 0.0079
7 Blimbing Simulation 6 0.1701 | 0.4005 0.212 | 0.1018 | 0.0542 | 0.0319 | 0.022 | 0.0074
8 Blimbing Simulation 7 0.1365 | 0.3759 | 0.2177 | 0.1146 | 0.0679 | 0.0441 | 0.317 | 0.0115
9 Blimbing Simulation 8 0.1247 | 0.3644 | 0.2181 | 0.1188 | 0.0721 | 0.0489 | 0.0384 | 0.0147
10 Blimbing Simulation 9 0.154 | 0.3903 0.216 0.108 0.059 | 0.0379 | 0.0258 | 0.009
11 Blimbing Simulation 10 | 0.1265 | 0.3736 | 0.2206 | 0.1216 | 0.0709 | 0.0448 | 0.031 | 0.0112

Average of Blimbing Simulation | 0.14484 | 0.387 | 0.21849 | 0.1121 | 0.0628 | 0.0389 | 0.0266 | 0.0093

average value probability of RIMCMC test the biggest, that is 0.51022. Meanwhile,
according to Table 2, for Blimbing village, it can be seen also that the mixture normal
distributions with 2 components mixture is the best model because it has the average
value probability of RIMCMC test the biggest, that is 0.387. Therefore, in modeling
BMMA will be established mixture normal model that contains 2 components mixture.

3.3. The BMMA Normal Models with 2 Components Mixture and
the Goodness of Fit Models by KS

The BMMA normal models with 2 components mixture and the goodness of fit models
by KS for simulation of Kesatrian and Blimbing villages can be seen that in the Table 3
and Table 4.

Based on Table 3 and Table 4 as a result of the simulation data, it can be seen that
the average for the number of component models in the BMMA normal models with
2 components mixture is 13 models and 10 models from the 1,000 models have been
generated. Based on this model can be shown that there are two groups of DM patients
in Kesatrian and Blimbing villages. Furthermore, the goodness of fit from the BMMA
normal models with 2 components is measured based on the Kolmogorov-Smirnov (KS)
value. The average KS value is 0.605446154 for simulation of Kesatrian village (Table
3) and the average KS value is 0.43951321 for simulation of Blimbing village (Table
4). Based on both the value of small KS can be seen that the BMMA model with 2
components mixture is very good models because if the value of KS small then there is
a suitability between a model built with a model of the real data. The BMMA normal
models with 2 components mixture and the number of components model as the result of
Occamak.™s Window selection for each simulation data can be described as in Equation
(A1) to Equation (Al1) for Kesatrian and simulation of Kesatrian villages and then
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Table 3: The BMMA Normal Models with 2 Components Mixture and the Goodness of
Fit Models by KS.

No. Villages The Number of | The Number of The BMMA The Fitted

Generation Component Models Models by KS
Models in the Models in the
BMMA BMMA

1 Kesatrian 1,000 14 Equation (A1) 0.614563927
2 Kesatrian Simulation 1 1,000 13 Equation (A2) 0.613438034
3 Kesatrian Simulation 2 1,000 13 Equation (A3) 0.613438034
4 Kesatrian Simulation 3 1,000 14 Equation (A4) 0.592135119
5 Kesatrian Simulation 4 1,000 13 Equation (AS) 0.613737704
6 Kesatrian Simulation 5 1,000 13 Equation (A6) 0.613615432
7 Kesatrian Simulation 6 1,000 13 Equation (A7) 0.614415823
8 Kesatrian Simulation 7 1,000 14 Equation (A8) 0.560690951
9 Kesatrian Simulation 8 1,000 13 Equation (A9) 0.613234424
10 Kesatrian Simulation 9 1,000 14 Equation (A10) | 0.610930429
11 Kesatrian Simulation 10 1,000 13 Equation (A11) | 0.608825589
Average of Kesatrian Simulation 1,000 133 0.605446154

Table 4: The BMMA Normal Models with 2 Components Mixture and the Goodness of

Fit Models by KS.
No. Villages The Number of | The Number of The BMMA The Fitted
Generation Component Models Models by KS
Models in the Models in the
BMMA BMMA

1 Blimbing 1,000 18 Equation (B1) 0.30890336
2 Blimbing Simulation 1 1,000 9 Equation (B2) 0.47746443
3 Blimbing Simulation 2 1,000 6 Equation (B3) 0.49178101
4 Blimbing Simulation 3 1,000 16 Equation (B4) 0.56590676
5 Blimbing Simulation 4 1,000 7 Equation (B5) 0.57912561
6 Blimbing Simulation 5 1,000 7 Equation (B6) 0.19888206
7 Blimbing Simulation 6 1,000 7 Equation (B7) 0.34575018
8 Blimbing Simulation 7 1,000 9 Equation (B8) 0.4126112
9 Blimbing Simulation 8 1,000 8 Equation (B9) 0.51248193
10 Blimbing Simulation 9 1,000 17 Equation (B10) 0.45335265
11 Blimbing Simulation 10 1,000 9 Equation (B11) 0.35777624

Average of Blimbing Simulation 1,000 9.5 0.43951321
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Equation (B1) to Equation (B11) for Blimbing and simulation of Blimbing villages
(Appendix A).

4. Conclusion

The BMMA models as a result of the simulation data for cases of the blood sugar levels
of DM patients in RSUD Saiful Anwar Malang of Kesatrian and Blimbing villages
have mixture normal distribution with 2 components mixture and have the average for
the number of component models at 13 and 10 models from the 1,000 models have
been generated, respectively. For Kesatrian and Blimbing villages, based on this model
and information from Figure 1 can be seen that there are two groups of DM patients,
namely DM patients with average blood sugar levels less than 200 mg/dL and greater
than or equal to 200 mg/dL with the proportion of the first group is greater than the
second group, respectively. The goodness of fit from the BMMA normal model with 2
components mixture by KS with the average KS =0.605446154 for Kesatrian village and
the average KS=0.43951321 for Blimbing village. Based on the value of small KS, the
BMMA models for cases of the blood sugar levels of DM patients in RSUD Saiful Anwar
Malang for Kesatrian and Blimbing villages are very good models and those models able
to accommodate the real condition of the DM data with driven data concept.
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Appendix A. The BMMA Normal Models with 2 Components
Mixture and the Number of Components Model as

the Result of Occam’s Window Selection for Real and
Simulation Data

Semma(Al) = [wAl(l)(l)NAl(l)(l) (ﬂ(l)(l), 3(21)(1)> +warm@Naine (ﬁ(l)(z), 5(21)(2)>]
+- 4 [wAl(14)(l)NAl(l4)(l) (ll(14)(1)7 5(214)(1)> +war14 2 Na114))

~ A2
(M(14)(2), 0(14)(2))] (A1)
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IBMMA(A2) = [wAz(l)a)NAZ(l)(l) (/1(1)(1), a(21)(1)) twnnmoNeoe (’1(”(2)’ &(21)@)}
+- [wA2(13)(1)NA2(13)(1) (ﬂ(13)(1)7 a(213)(1)> +waa3@Na2a3)@

. )
(M(13)(2)v "(13)(2))]

fBMma(A3) = [wA3(1)(1)NA3(1)(1) (ﬂm(lw 531)(”) Fuasoeisne <ﬁ(1)(2)’ &(21)(2)”
- [wA3(13)(1)NA3(13)(1) (ﬂm)(l), &(213)(1>) + wa3a3)@Nasa3) @
(/l<13)(2)’ 5’(213>(2)>]

fBMma(A4) = [wA4(l)(1)NA4(1)(1) (ll(l)(l), 3(21)(1)) + was@)Nas) @) (ﬂ(l)@% &(2”(2))]
RS [wA4(14)(1)NA4(14)(1) (ﬁ(14)(1>, ‘3<214>(1)> s Naane
(/204)(2)’ ‘}(214><2>)]

SBmma(AS) = [wAS(l)(l)NAS(l)(l) (ll(l)(l)’ &(21)(1)> Fuasoeasne <la(1)(2)’ &(21)(2)”
- [wA5(13)(1)NA5(13)(1) (/30<13)(1>, 653)(1)) + wasa3)@Nasa3) @
(/203)(2)’ &(213><2)>]

fBMMA(AG) = [wAé(l)(l)NA6(1)(1) (ﬂ(l)(l)» 5(21)(1)> + wasy2)Nas()) (ﬂ(l)@% &<21><2)>]
- [wA6(13)(1)NA6(13)(1) (ﬁm)(l), 653)(1)) + wa613)2) Na6(13)(2)
(/1(13)(2)’ &(213><2)>]

femma(AT) = [wA7(1)(1)NA7(1)(1) (ﬂ(l)(l)» 5(21)(1)> +war@Na1@) (ﬂ(l)@% 6(21)(2)>]
- [wA7(13)(1)NA7(13)(1) (ﬂm)(l), 6313)(1)) + wa7013) 2 Na713)2)
(/1<13)(2)» &<213><2)>]

TfemMma(A8) = [wAS(l)(l)NAS(l)(l) (ﬂ(l)(l)» 5(21)(1)> +wasm@Nasy) (ﬂ(l)@% &<21>(2)>]
- [wA8(14)(1)NA8(14)(1) (ﬁ(m)(l), 6(214)0)) + wag14)2) Nas(14)2)
(/204)(2)’ &<214><2>)]

TBmma(A9) = [wA9(1)<1)NA9<1>(1) (ﬂ(l)(l)» 5(21)(1)> +wasm@Nasy ) (ﬂ(1><2>’ &<21>(2)>]
4+ [wA9(13)(1)NA9(13)(1) (ﬁm)(l)’ ‘3(213>(1>) Fraameieane

N ~2
(M(ls)(z)v 0(13>(2)>]

(A2)

(A3)

(A4)

(AS)

(A6)

(A7)

(A8)

(A9)
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SBmMma(A10) = [wAIO(l)(l)NAlO(l)(l) (ﬁ(l)(l), 3(21)(1)) + watomy@) Nato) @) ([L(l)(z), 6(21)(2))]
(4.16)

+---+ [wA10(14)(1)NA10(14)(1) (ﬁ(14)(1), 5(214)(1)) + wat0014)2) Na10(14)2)
. ~2
(M(14)(2)’ 0(14)(2)>] (A10)
femma(All) = [wAll(l)(l)NAll(l)(l) (ﬂ(l)(l), 5(2])(1)) +wanm@Naiie) (/:L(l)(Z), 5(21)(2))]
+---+ [wA11(13)(1)NA11(13)(1) (/1(13>(1), 5(213)(1)> +wanazn@Naia3)e)
- ~2
(M(IS)Q)» 0(13)(2)>] (A11)
fBMma(Bl) = [wBl(l)(l)NBl(l)(l) ([L(l)(n, 5(21)(1)> + wr1()@)NB1(1)(2) (ﬂ(l)(z), &(2”(2))]
+---+ [wBl(18)(1)NB1(18)(1) (/lusm), 558)(1)) + wg1318)2) NB1(18)(2)
- ~2
(M(IS)(Z)» ‘7(18)(2)>] (B1)
femma(B2) = [wBZ(l)(l)NBZ(l)(l) ([L(l)u), &(21)(1)) +wp21)@) NB2(1)(2) (ﬁ(l)(z), 5(21)(2))]
. 2
+ot [w32(9)(1>NBz<9>(1) (M(%(l» 0(9)(1)> + wp29)2) NB29)(2)
- 2
(H(9)(2>’ 0 (9)(2))] (B2)
femMma(B3) = [wBS(l)(l)NB3(1)(1) (ﬁ(l)(l), 3(21)(1)) + w3 Ne3(1) ) (ﬁ(l)(z), 55>(2))]
N )
+ot [wB3(6)(1>NB3(6)<1> (M(6)(1>1 %)(1)) + ws36)2 NB3(6)2)
- A2
(P‘(é)(Z)’ ‘7(6)(2))] (B3)
fBMma(BY) = [wB4(1)(1)NB4(1)(1) ([L(l)(l), 5(21)(1)> + wr4a1)2) NBa(1)(2) (ﬂ(l)(z), &(2])(2))]
+---+ [wB4(16)(1)NB4(16)(1) (ﬂ(l(ﬁ)(l)» 5(216)(1)) + wp4(16)2) NB4(16)(2)
. ~2
(Maé)(zw 0(16)(2)>] (B4)
femMma(BS) = [wBS(l)(l)NBS(l)(l) (ﬁ(l)(l), 5(21)(1)) + was)@) Nes(1)@) (ﬁ(l)(z), 5(21)(2))]
N 2
+- [wBS(7)(1)NBS(7)(l) (Mm(l)’ 0(7)(1)) + was7 @ NB5(7)2)
- 2
(P‘(7)(2)’ 0(7)(2))] (B5)
femMma(B6) = [wBG(l)(l)NB6(1)(1) (ﬁ(l)(l), 3(21)(1)) + wae) @) NB6(1)(2) (ﬁ(l)(z), 5(21)(2))]
N 2
+o [w36(7)(1>NB6(7)<1> (Mm(l)’ 0(7)(1)) + waen @ NB67)2)
- 2
(l‘(7)(2)’ 0(7)(2))] (B6)
femma(BT) = [wB7(1)(1)NB7(1)(1) (ﬁ(l)(l), 5(21)(1)) + wpr(H@ NB1(1)(2) (ﬁ(l)(z), 5(21)(2))]
N 2
+ot [wB7(7)(1>NB7(7)<1> (Ma)(l)’ 0(7)(1>) + wprn @ NB1(7)(2)

- A2
(M(7)(2), ‘7(7)(2))] (B7)
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fBmMma(B8) = [wBS(l)(l)NBS(l)(l) (ﬂ(l)(l), 5(21)(1)> + wrs)2) NBs()(2) (ﬂ(l)(z), 5'(21)(2))]
oot [WB8<9><1)N38<9)<1> (ﬁ<9><1)’ 5{‘3)(1)) +wps©) Nes©)2)
<ﬂ<9><2)7 839)@))] (BS)
femMma(B9) = [wB9(1)(1)NB9(1)(1) (ﬂ(l)(l), 5(21)(1)> + wro)2) Npo()(2) (ﬂ(l)(z), 5(21)(2))]
+ -+ [waoma Nswin (Aen- 6%a)) + wrsme Nesse)
<ﬁ<8><2)7 &(28)(2))] (B9)
fBMma(B10) = [wBlO(l)(l)NBIO(l)(l) (ﬂ(l)(l)» 5(21)(1)> + wa101)@) NB10(1)(2) (ﬂ(l)(z), 5(21)(2))]
+ 4 [w310(17)(1)N310(17>(1) ([L(n)(l), 6(217)(1)) + wr1007)@NB10(17)2)
<ﬁ<17)<2>7 5(217><2))] (B10)
fBMma(Bll) = [wBll(l)(l)NBll(l)(l) (/1(1)(1), 5(21)(1)) +wsm@NB11(1)©2) (/1(1)(2), 5(21)(2))]
+-o [w311(9>(1)N311(9)(1) ([L(t))(l), &(29)(1)) + wB119)2) NB119)(2)

- A2
(M(9)(2),0(9)(2))] (B11)
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