Indexed Norlund Summability Of A Factored Fourier Series-Via-Local Property

Pankajini Tripathy¹, B.P.Padhy², B.B.Misra³ and U.K.Misra⁴

¹Department of Mathematics, KMBB college of Engg. and Technology,

Daleiput, Khurda.

²Department of Mathematics, School of Applied Sciences,

KIIT University, Bhubaneswar ³Department of Mathematics, School of Applied Sciences,

KIIT University, Bhubaneswar

⁴Department of Mathematics, National Institute of Science and Technology, Berhampur

ABSTRACT

In this paper we have established a theorem on $|N, p_n, \alpha_n, \delta, \gamma|_k$ summability of a factored Fourier series-via-Local property.

KEY WORDS: $\left|N,p_{n}\right|_{k}$ -summability, $\left|N,p_{n},\alpha_{n}\right|_{k}, k\geq 1$ -summability, $\left|N,p_{n},\alpha_{n},\delta\right|_{k}, k\geq 1$, $\delta\geq 0$ -summability, $\left|N,p_{n},\alpha_{n},\delta,\gamma\right|_{k}, k\geq 1$, $\delta\geq 0$ -summability.

AMS CLASSIFICATION NO: 40D25

1. INTRODUCTION:

Let $\sum a_n$ be a given infinite series with sequence of partial sums $\{s_n\}$. Let $\{p_n\}$ be a sequence of positive real constants such that

(1.1)
$$P_{n} = \sum_{\nu=0}^{n} p_{\nu} \to \infty \text{ as } n \to \infty \ (P_{-i} = p_{-i} = 0, i \ge 1)$$

The sequence-to-sequence transformation

(1.2)
$$t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} s_{\nu}$$

defines (N, p_n) -mean of the sequence $\{s_n\}$ generated by the sequence of coefficients $\{p_n\}$. The series $\sum a_n$ is said to be summable $|N, p_n|_k$, $k \ge 1$, if

(1.3)
$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} \left| t_n - t_{n-1} \right|^k < \infty.$$

For k=1, $|\overline{N}, p_n|_L$ -summability is same as $|N, p_n|$ -summability.

When $p_n = 1$, for all n and k = 1, $|N, p_n|_k$ -summability is same as |C, 1| summability.

Let $\{\alpha_n\}$ be any sequence of positive numbers. The series $\sum a_n$ is said to be summable $[N, p_n, \alpha_n]_k$, $k \ge 1$, if

(1.4)
$$\sum_{n=1}^{\infty} \alpha_n^{k-1} |t_n - t_{n-1}|^k < \infty,$$

where $\{t_n\}$ is as defined in (5.1.2).The series $\sum a_n$ is said to be $|N, p_n, \alpha_n, \delta|_k$, $k \ge 1, \delta \ge 0$, summable if

(1.5)
$$\sum_{n=1}^{\infty} \alpha_n^{\delta k+k-1} \left| t_n - t_{n-1} \right|^k < \infty.$$

For $\delta=0$, the summability metod $\left|N,\;p_{\scriptscriptstyle n},\alpha_{\scriptscriptstyle n},\delta\right|_{\scriptscriptstyle k},\;k\geq 1,\delta\geq 0$, reduces to the summability method $\left|N,\;p_{\scriptscriptstyle n},\alpha_{\scriptscriptstyle n}\right|_{\scriptscriptstyle k},\;k\geq 1$

For any real number γ , the series $\sum a_n$ is said to be summable by the summability method $|N, p_n, \alpha_n; \delta, \gamma|_k$, $k \ge 1, \delta \ge 0$, if

(1.6)
$$\sum_{n=1}^{\infty} \alpha_n^{\gamma(\delta k+k-1)} \left| t_n - t_{n-1} \right|^k < \infty.$$

For $\gamma=1$, the summability method $\left|N,p_n,\alpha_n;\delta,\gamma\right|_k, k\geq 1, \delta\geq 0$, any real γ , reduces to the method $\left|N,p_n,\alpha_n;\delta\right|_k, k\geq 1, \delta\geq 0$.

A sequence $\{\lambda_n\}$ is said to be convex if $\Delta^2 \lambda_n \ge 0$ for every positive integer n.

Let f(t) be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi,\pi)$. Without loss of generality we may assume that the constant term in the Fourier series of f(t) is zero, so that

(1.7)
$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t)$$

It is well known that the convergence of Fourier series at t = x is a local property of f(t) (i.e., it depends only on the behavior of f(t) in an arbitrarily small neighborhood of x) and hence the summability of the Fourier series at t = x by any regular linear method is also a local property of f(t).

2. KNOWN THEOREMS:

Dealing with the $|\overline{N}, p_n|_k$ -summability of an infinite series Bor [5] proved the following theorem:

THEOREM-2.1:

Let $k \ge 1$ and let the sequences $\{p_n\}$ and $\{\lambda_n\}$ be such that

$$(2.1.1) \Delta X_n = O\left(\frac{1}{n}\right),$$

(2.1.2)
$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{\left|\lambda_n\right|^k + \left|\lambda_{n+1}\right|^k}{n} < \infty,$$

and

(2.1.3)
$$\sum_{n=1}^{\infty} (X_n^k + 1) |\Delta \lambda_n| < \infty,$$

where $X_n = \frac{P_n}{np_n}$. Then the summability $|\overline{N}, p_n|_k$ of the factored Fourier series

 $\sum_{n=1}^{\infty} A_n(t) \lambda_n X_n$ at a point can be ensured by the local property.

Subsequently, Padhy et al [2] proved the following theorem on the local property of $\left|\overline{N},p_{\scriptscriptstyle n},\alpha_{\scriptscriptstyle n},\delta\right|_{\scriptscriptstyle k}$ summability($k\geq 1,\delta\geq 0$) of a factored Fourier series.

THEOREM-2.2:

Let $k \ge 1$. Suppose $\{\lambda_n\}$ be a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent and $\{p_n\}$ be a sequence of positive numbers such that

$$(2.2.1) \Delta X_n = O\left(\frac{1}{n}\right),$$

(2.2.2)
$$\sum_{n=\nu+1}^{m+1} \alpha_n^{\delta k+k-1} \left(\frac{p_n}{P_n} \right)^k \left(\frac{1}{P_{n-1}} \right) = O\left(\frac{1}{P_{\nu}} \right),$$

(2.2.3)
$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{\left|\lambda_n\right|^k + \left|\lambda_{n+1}\right|^k}{n} < \infty,$$

(2.2.4)
$$\sum_{n=1}^{\infty} (X_n^k + 1) |\Delta \lambda_n| < \infty,$$

and

(2.2.5)
$$\sum_{n=2}^{\infty} \alpha_n^{3k+k-1} \frac{\left|\lambda_n\right|^k}{n^k} < \infty,$$

where $X_n = \frac{P_n}{np_n}$. Then the summability $|\overline{N}, p_n, \alpha_n, \delta|_k$, $k \ge 1, \delta \ge 0$ of the factored

Fourier series $\sum_{n=1}^{\infty} A_n(t) \lambda_n X_n$ at a point can be ensured by the local property, where $\{\alpha_n\}$ is a sequence of positive numbers.

In what follows, in the present paper we establish the following theorem on $|N, p_n, \alpha_n, \delta, \gamma|_k$ -summability of a factored Fourier series through its local property.

3. MAIN THEOREM:

Let $k \ge 1$. Suppose $\{\lambda_n\}$ be a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent and $\{p_n\}$ be a sequence such that

(3.1)
$$\Delta X_n = O\left(\frac{1}{n}\right),$$

(3.2)
$$\frac{P_{n-r-1}}{P_n} = O\left(\frac{p_{n-r-1}}{P_{n-1}} \frac{P_r}{p_r}\right),$$

(3.3)
$$\sum_{n=r+1}^{m+1} \left(\alpha_n\right)^{\delta k+k-1} \frac{p_{n-r}}{P_n} = O\left(\frac{p_r}{P_r}\right),$$

$$(3.4) \sum_{n=1}^{\infty} X_n^{k-1} \frac{\left|\lambda_n\right|^k}{n} < \infty,$$

and

(3.5)
$$\sum_{n=1}^{\infty} X_n^{k-1} \frac{\left|\Delta \lambda_n\right|^k}{n} < \infty,$$

where $X_n = \frac{P_n}{np_n}$. Then the summability $|N, p_n, \alpha_n, \delta, \gamma|_k$, $k \ge 1$ of the factored Fourier

series $\sum_{n=1}^{\infty} A_n(t) \lambda_n X_n$ at a point can be ensured by the local property, where $\{\alpha_n\}$ is a sequence of positive numbers.

4. REQUIRED LEMMA:

In order to prove the above theorem we require the following lemma:

LEMMA-4.1:

Let $k \ge 1$ and suppose $\{\lambda_n\}$ be a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent and $\{p_n\}$ be a sequence such that the conditions (3.1)-(3.5) are satisfied. If $\{s_n\}$ is bounded, then for the sequence of positive numbers $\{\alpha_n\}$ the series $\sum_{n=1}^{\infty} a_n \lambda_n X_n$ is summable $[N, p_n, \alpha_n, \delta]_k$, $k \ge 1, \delta \ge 0$.

PROOF OF THE LEMMA-4.1:

Let $\{T_n\}$ denote the (N, p_n) -mean of the series $\sum_{n=1}^{\infty} a_n \lambda_n X_n$. Then by definition we

have

$$\begin{split} T_{n} &= \frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} \sum_{r=0}^{v} a_{r} \lambda_{r} X_{r} \\ &= \frac{1}{P_{n}} \sum_{r=0}^{n} a_{r} \lambda_{r} X_{r} \sum_{v=r}^{n} p_{n-v} \\ &= \frac{1}{P_{n}} \sum_{r=0}^{n} a_{r} P_{n-r} \lambda_{r} X_{r} \end{split}$$

Hence

$$\begin{split} T_{n} - T_{n-1} &= \frac{1}{P_{n}} \sum_{r=1}^{n} P_{n-r} a_{r} \lambda_{r} X_{r} - \frac{1}{P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-1} a_{r} \lambda_{r} X_{r} \\ &= \sum_{r=1}^{n} \left(\frac{P_{n-r}}{P_{n}} - \frac{P_{n-r-1}}{P_{n-1}} \right) a_{r} \lambda_{r} X_{r} \\ &= \frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n} \left(P_{n-r} P_{n-1} - P_{n-r-1} P_{n} \right) a_{r} \lambda_{r} X_{r} \\ &= \frac{1}{P_{n} P_{n-1}} \left[\sum_{r=1}^{n-1} \Delta \left\{ \left(P_{n-r} P_{n-1} - P_{n-r-1} P_{n} \right) \lambda_{r} X_{r} \right\} \right] \sum_{v=1}^{r} a_{v} \\ &= \frac{1}{P_{n} P_{n-1}} \left[\sum_{r=1}^{n-1} \left(p_{n-r} P_{n-1} - p_{n-r-1} P_{n} \right) \lambda_{r} X_{r} s_{r} \right. \\ &+ \sum_{r=1}^{n-1} \left(P_{n-r-1} P_{n-1} - P_{n-r-2} P_{n} \right) \lambda_{r+1} \Delta X_{r} s_{r} \end{split}$$

(by Abel's transformation)

$$=T_{n,1}+T_{n,2}+T_{n,3}+T_{n,4}+T_{n,5}+T_{n,6}$$
, (say).

In order to complete the proof of the theorem by using Minokowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \alpha_n^{\gamma(\delta k + k - 1)} \left| T_{n,i} \right|^k < \infty \quad for \ i = 1, 2, 3, 4, 5, 6.$$

Now, we have

$$\begin{split} &\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \left| T_{n,1} \right|^{k} &= \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \left| \frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} p_{n-r} P_{n-1} \lambda_{r} X_{r} S_{r} \right|^{k} \\ &\leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n}} \left(\sum_{r=1}^{n-1} p_{n-r} \left| \lambda_{r} \right|^{k} \left| S_{r} \right|^{k} X_{r}^{k} \right) \left(\frac{1}{P_{n}} \sum_{r=1}^{n-1} p_{n-r} \right)^{k-1} \end{split}$$

$$= O(1) \sum_{r=1}^{m} |\lambda_{r}|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \left(\frac{p_{n-r}}{P_{n}} \right)$$

$$= O(1) \sum_{r=1}^{m} |\lambda_{r}|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}} , \text{ by}(3.3)$$

$$= O(1) \sum_{r=1}^{m} |\lambda_{r}|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{rp_{r}}, \text{ as } X_{n} = \frac{P_{n}}{np_{n}}$$

$$= O(1) \sum_{r=1}^{m} X_{r}^{k-1} \frac{|\lambda_{r}|^{k}}{r}$$

$$= O(1) \quad \text{as } m \to \infty \text{ ,by } (3.4).$$
Now,

Next,

$$\begin{split} &\sum_{n=2}^{m+1} \alpha_n^{\gamma(\delta k + k - 1)} \left| T_{n,2} \right|^k &= \sum_{n=2}^{m+1} \alpha_n^{\gamma(\delta k + k - 1)} \left| \frac{1}{P_n P_{n-1}} \sum_{r=1}^{n-1} p_{n-r-1} P_n \lambda_r X_r s_r \right|^k \\ &\leq \sum_{n=2}^{m+1} \alpha_n^{\gamma(\delta k + k - 1)} \frac{1}{P_{n-1}} \left(\sum_{r=1}^{n-1} p_{n-r-1} \left| \lambda_r \right|^k \left| s_r \right|^k X_r^k \right) \left(\frac{1}{P_{n-1}} \sum_{r=1}^{n-1} p_{n-r-1} \right)^{k-1} \\ &= O(1) \sum_{r=1}^{m} \left| \lambda_r \right|^k X_r^k \sum_{n=r+1}^{m+1} \alpha_n^{\gamma(\delta k + k - 1)} \left(\frac{p_{n-r-1}}{P_{n-1}} \right) \\ &= O(1) \sum_{r=1}^{m} \left| \lambda_r \right|^k X_r^k \frac{p_r}{P_r} , \text{ by}(3.3) \\ &= O(1) \sum_{r=1}^{m} \left| \lambda_r \right|^k X_r^{k-1} \frac{p_r}{P_r} \frac{P_r}{r p_r} , \text{ as } X_n = \frac{P_n}{n p_n} \\ &= O(1) \sum_{r=1}^{m} X_r^{k-1} \frac{\left| \lambda_r \right|^k}{r} \\ &= O(1) \quad as \quad m \to \infty , \text{ by } (3.4). \end{split}$$

Further,

$$\begin{split} &\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \left| T_{n,3} \right|^{k} &= \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \left| \frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-1} P_{n-1} \Delta \lambda_{r} X_{r} S_{r} \right|^{r} \\ &\leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n}} \left(\sum_{r=1}^{n-1} P_{n-r-1} \left| \Delta \lambda_{r} \right|^{k} \left| S_{r} \right|^{k} X_{r}^{k} \right) \left(\frac{1}{P_{n}} \sum_{r=1}^{n-1} P_{n-r-1} \left| \Delta \lambda_{r} \right| \right)^{k-1} \\ &= O(1) \sum_{r=1}^{m} \left| \Delta \lambda_{r} \right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \left(\frac{P_{n-r-1}}{P_{n}} \right) \\ &\left(Since \frac{1}{P_{n}} \sum_{r=1}^{n-1} P_{n-r-1} \left| \Delta \lambda_{r} \right| \leq \sum_{r=1}^{n-1} \left| \Delta \lambda_{r} \right| = O(1) \right) \\ &= O(1) \sum_{r=1}^{m} \left| \Delta \lambda_{r} \right|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}} , \text{ by}(3.3) \end{split}$$

$$=O(1)\sum_{r=1}^{m}|\Delta\lambda_{r}|^{k}X_{r}^{k-1}\frac{p_{r}}{P_{r}}\frac{P_{r}}{rp_{r}}, \text{as }X_{n} = \frac{P_{n}}{np_{n}}$$

$$=O(1)\sum_{r=1}^{m}X_{r}^{k-1}\frac{|\Delta\lambda_{r}|^{k}}{r}$$

$$=O(1) \text{ as } m \to \infty, \text{ by (3.5)}.$$
Now,
$$\sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}|T_{n,4}|^{k} = \sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n}P_{n-1}}\sum_{r=1}^{n-1}P_{n-r-2}P_{n}\Delta\lambda_{r}X_{r}S_{r}\right|^{k}$$

$$\leq \sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\frac{1}{P_{n-1}}\left(\sum_{r=1}^{n-1}P_{n-r-2}|\Delta\lambda_{r}|^{k}|S_{r}|^{k}X_{r}^{k}\right)\left(\frac{1}{P_{n-1}}\sum_{r=1}^{n-1}P_{n-r-2}|\Delta\lambda_{r}|\right)^{k-1}$$

$$=O(1)\sum_{r=1}^{m}|\Delta\lambda_{r}|^{k}X_{r}^{k}\sum_{n=r+1}^{m-1}\alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{P_{n-r-2}}{P_{n-1}}\right) \text{ (as above)}$$

$$=O(1)\sum_{r=1}^{m}|\Delta\lambda_{r}|^{k}X_{r}^{k}\frac{P_{r}}{P_{r}}, \text{ by (3.3)}$$

$$=O(1)\sum_{r=1}^{m}|\Delta\lambda_{r}|^{k}X_{r}^{k-1}\frac{P_{r}}{P_{r}}\frac{P_{r}}{rp_{r}}, \text{ as }X_{n} = \frac{P_{n}}{np_{n}}$$

$$=O(1)\sum_{r=1}^{m}|\Delta\lambda_{r}|^{k}X_{r}^{k-1}\frac{P_{r}}{P_{r}}\frac{P_{r}}{rp_{r}}, \text{ as }X_{n} = \frac{P_{n}}{np_{n}}$$

$$=O(1)\sum_{r=1}^{m}|\Delta\lambda_{r}|^{k}X_{r}^{k-1}\frac{|\Delta\lambda_{r}|^{k}}{r}$$

$$=O(1) \text{ as }m \to \infty, \text{ by (3.5)}.$$
Again
$$\sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}|T_{n,5}|^{k} = \sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n}P_{n-1}}\sum_{r=1}^{n-1}P_{n-r-1}A_{r+1}\Delta X_{r}S_{r}\right|^{k}$$

$$=\sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1}\frac{P_{n-r-1}}{P_{n-1}}\frac{P_{r}}{P_{r}}\lambda_{r+1}\Delta X_{r}S_{r}\right|^{k} \text{ by (3.2)}$$

$$=\sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1}\frac{P_{n-r-1}}{P_{n-1}}\frac{P_{r}}{P_{r}}\lambda_{r+1}S_{r}X_{r}\frac{P_{r}}{P_{r}}\right|^{k}, \text{ as }X_{n} = \frac{P_{n}}{np_{n}}$$

$$=O(1)\sum_{r=1}^{m}|\lambda_{r+1}|^{k}X_{r}^{k}\sum_{n=r+1}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n-r-1}}{P_{n-1}}\right)$$

$$=O(1)\sum_{r=1}^{m}|\lambda_{r+1}|^{k}X_{r}^{k-1}\frac{p_{r}}{P_{r}}\frac{P_{r}}{P_{r}}, \text{ as } X_{n} = \frac{P_{n}}{np_{n}} \text{ and by (3.3)}$$

$$=O(1)\sum_{r=1}^{m}\frac{|\lambda_{r+1}|^{k}}{r}X_{r}^{k-1},$$

$$=O(1) \text{ as } m \to \infty \text{ , by (3.4).}$$
Finally,
$$\sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}|T_{n,6}|^{k} = \sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n}P_{n-1}}\sum_{r=1}^{n-1}P_{n-r-2}P_{n}\lambda_{r+1}\Delta X_{r}S_{r}\right|^{k}$$

$$=\sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1}\frac{P_{n-r-2}}{P_{n-2}}\frac{P_{r}}{P_{r}}\lambda_{r+1}\Delta X_{r}S_{r}\right|^{k} \text{ , by (3.2)}$$

$$=\sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1}\frac{P_{n-r-2}}{P_{n-2}}\frac{P_{r}}{P_{r}}\lambda_{r+1}S_{r}X_{r}\right|^{k} \text{ , by (3.1)}$$

$$=\sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1}\frac{p_{n-r-2}}{P_{n-2}}\frac{P_{r}}{P_{r}}\lambda_{r+1}S_{r}X_{r}\frac{p_{r}}{P_{r}}\right|^{k} \text{ , as } X_{n}=\frac{P_{n}}{np_{n}}$$

$$=\sum_{n=2}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1}\frac{p_{n-r-2}}{P_{n-2}}|\lambda_{r+1}|^{k}|S_{r}|^{k}X_{r}^{k}\right\}\left\{\sum_{r=1}^{n-1}\frac{p_{n-r-2}}{P_{n-2}}\right\}^{k-1}$$

$$=O(1)\sum_{r=1}^{m}|\lambda_{r+1}|^{k}X_{r}^{k}\sum_{n=r+1}^{m+1}\alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n-r-2}}{P_{n-2}}\right)$$

$$=O(1)\sum_{r=1}^{m}|\lambda_{r+1}|^{k}X_{r}^{k-1}\frac{p_{r}}{P_{r}}\frac{P_{r}}{P_{r}}, \text{ as } X_{n}=\frac{P_{n}}{np_{n}} \text{ and by (3.3)}$$

$$=O(1)\sum_{r=1}^{m}|\lambda_{r+1}|^{k}X_{r}^{k-1}\frac{P_{r}}{P_{r}}\frac{P_{r}}{P_{r}}, \text{ as } X_{n}=\frac{P_{n}}{np_{n}} \text{ and by (3.3)}$$

$$=O(1)\sum_{r=1}^{m}|\lambda_{r+1}|^{k}X_{r}^{k-1}\frac{P_{r}}{P_{r}}\frac{P_{r}}{P_{r}}, \text{ as } X_{n}=\frac{P_{n}}{np_{n}} \text{ and by (3.3)}$$

This completes the proof of the Lemma.

5. PROOF OF THE THEOREM:

Since the behavior of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behavior of the function in the immediate neighborhood of this point only, the truth of the theorem is necessarily the consequence of the Lemma.

6. CONCLUSION:

Putting $\delta = 0$ and $\alpha = \frac{P_n}{p_n}$ with $\delta = 0$, the result of Padhy et al.[2] and the result of

H.Bor [1] can be achieved respectively from the result established in the present chapter under a few varying condition. Further there is a reach scope to work in this area for different indexed summability methods with additional parameter.

REFERENCES

- 1. H.Bor., 1992, On the Local Property of $|\overline{N}, p_n|_k$ Summability of factored Fourier series, journal of mathematical analysis and applications-163(220-226).
- 2. Padhy, B.P, Panda, N.K, Misra, U.K. and, Misra, M., 2012. On the Local Property of $|\overline{N}, p_n, \alpha_n, \delta|_k$ -Summability of factored Fourier series, International Journal of Research and Reviews in applied Sciences, Vol. 13, No. 2, pp 561-566..