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ABSTRACT 

 
In this paper we have established a theorem on knnpN  ,,,,

-
summability 

of a factored Fourier series-via-Local property. 
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1. INTRODUCTION: 

Let  na be a given infinite series with sequence of partial sums ns . Let np be a 

sequence of positive real constants such that 
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defines  , nN p -mean of the sequence ns generated by the sequence of coefficients

 np . The series  na is said to be summable knpN , , ,1k if 

(1.3) 
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For k=1, 
knpN, -summability is same as npN , -summability. 

When 1, for all and 1np n k  , knpN , -summability is same as |C, 1| summability. 

Let  n  be any sequence of positive numbers. The series  na  is said to be 

summable 1,,, kpN
knn  , if 

(1.4)  
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where  nt is as defined in (5.1.2).The series  na is said to be

0,1,,,,   kpN
knn , summable if 

(1.5) 
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For 0  , the summability metod 0,1,,,,   kpN
knn , reduces to the 

summabilty method 1,,, kpN
knn 

 
For any real number  , the series  na is said to be summable by the summabilty 

method , , ; , , 1, 0n n k
N p k     , if 

(1.6) 
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For 1  , the summability method , , ; , , 1, 0, any real n n k
N p k      , reduces to 

the method , , ; , 1, 0n n k
N p k    . 

A sequence  n is said to be convex if 02  n for every positive integer n. 

Let  tf  be a periodic function with period 2 and integrable in the sense of Lebesgue 

over ),(  . Without loss of generality we may assume that the constant term in the 

Fourier series of  tf  is zero, so that 

(1.7)    
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It is well known that the convergence of Fourier series at t = x is a local property of 

 f t  (i.e., it depends only on the behavior of  f t  in an arbitrarily small 

neighborhood of x ) and hence the summability of the Fourier series at t = x by any 

regular linear method is also a local property of  f t . 
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2. KNOWN THEOREMS: 

Dealing with the 
knpN, -summability of an infinite series Bor [5] proved the 

following theorem: 

 

THEOREM-2.1: 

Let 1k and let the sequences    andn np  be such that 

(2.1.1) 
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(2.1.3) 
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nnn XtA   at a point can be ensured by the local property. 

Subsequently, Padhy et al [2] proved the following theorem on the local property of 

knnpN  ,,, summability( 0,1  k ) of a factored Fourier series. 

THEOREM-2.2: 

Let 1k . Suppose  n  be a convex sequence such that  

nn 1 is convergent and 

 np be a sequence of positive numbers such that 

(2.2.1) 
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(2.2.3)  
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Fourier series 


1

)(
n

nnn XtA   at a point can be ensured by the local property, where

 n  is a sequence of positive numbers. 

In what follows, in the present paper we establish the following theorem on 

, , , ,n n k
N p    -summability of a factored Fourier series through its local property. 

 

 

3. MAIN THEOREM: 

Let 1k . Suppose  n  be a convex sequence such that  

nn 1 is convergent and 

 np be a sequence such that 
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PX  Then the summability , , , , , 1n n k
N p k    of the factored Fourier 

series 


1

)(
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nnn XtA   at a point can be ensured by the local property, where n  is a 

sequence of positive numbers. 

 

 

4. REQUIRED LEMMA: 

In order to prove the above theorem we require the following lemma: 

 

LEMMA-4.1: 

Let 1k and suppose  n  be a convex sequence such that  

nn 1 is convergent and 

 np be a sequence such that the conditions (3.1)-( 3.5) are satisfied. If  ns  is 

bounded, then for the sequence of positive numbers  n  the series 


1n
nnn Xa  is 

summable , , , , 1, 0n n k
N p k    . 
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PROOF OF THE LEMMA-4.1: 

Let  nT denote the  , nN p -mean of the series 


1n
nnn Xa  . Then by definition we 

have 
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(by Abel’s transformation) 
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In order to complete the proof of the theorem by using Minokowski’s inequality, it is 

sufficient to show that 
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Now, we have 
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This completes the proof of the Lemma. 

 

 

5. PROOF OF THE THEOREM: 

Since the behavior of the Fourier series, as far as convergence is concerned, for a 

particular value of x  depends on the behavior of the function in the immediate 

neighborhood of this point only, the truth of the theorem is necessarily the 

consequence of the Lemma. 
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6. CONCLUSION: 

Putting  = 0 and n

n

P
p

   with =0, the result of Padhy et al.[2] and the result of 

H.Bor [1] can be achieved respectively from the result established in the present 

chapter under a few varying condition. Further there is a reach scope to work in this 

area for different indexed summability methods with additional parameter. 
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