# Indexed Norlund Summability Of A Factored Fourier Series-Via-Local Property 

Pankajini Tripathy ${ }^{1}$, B.P.Padhy ${ }^{2}$, B.B.Misra ${ }^{3}$ and U.K.Misra ${ }^{4}$<br>${ }^{1}$ Department of Mathematics, KMBB college of Engg. and Technology, Daleiput, Khurda.<br>${ }^{2}$ Department of Mathematics, School of Applied Sciences,<br>KIIT University, Bhubaneswar<br>${ }^{3}$ Department of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar<br>${ }^{4}$ Department of Mathematics, National Institute of Science and Technology, Berhampur


#### Abstract

In this paper we have established a theorem on $\left|N, p_{n}, \alpha_{n}, \delta, \gamma\right|_{k_{-}}$summability of a factored Fourier series-via-Local property.


KEY WORDS: $\left|N, p_{n}\right|_{k}$-summability, $\left|N, p_{n}, \alpha_{n}\right|_{k}, k \geq 1$-summability, $\left|N, p_{n}, \alpha_{n}, \delta\right|_{k}, \quad k \geq 1, \delta \geq 0$-summability, $\left|N, p_{n}, \alpha_{n}, \delta, \gamma\right|_{k}, k \geq 1, \delta \geq 0-$ summability.

AMS CLASSIFICATION NO: 40D25

## 1.

INTRODUCTION:
Let $\sum a_{n}$ be a given infinite series with sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of positive real constants such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.2}
\end{equation*}
$$

defines $\left(N, p_{n}\right)$-mean of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficients $\left\{p_{n}\right\}$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

For k=1, $\left|\bar{N}, p_{n}\right|_{k}$-summability is same as $\left|N, p_{n}\right|$-summability.
When $p_{n}=1$, for all $n$ and $k=1,\left|N, p_{n \mid}\right|_{k}$-summability is same as $|\mathrm{C}, 1|$ summability.
Let $\left\{\alpha_{n}\right\}$ be any sequence of positive numbers. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}, \alpha_{n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

where $\left\{t_{n}\right\}$ is as defined in (5.1.2).The series $\sum a_{n}$ is said to be $\left|N, p_{n}, \alpha_{n}, \delta\right|_{k}, k \geq 1, \delta \geq 0$, summable if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{\delta k+k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty . \tag{1.5}
\end{equation*}
$$

For $\delta=0$, the summability metod $\left|N, p_{n}, \alpha_{n}, \delta\right|_{k}, k \geq 1, \delta \geq 0$, reduces to the summabilty method $\left|N, p_{n}, \alpha_{n}\right|_{k}, k \geq 1$
For any real number $\gamma$, the series $\sum a_{n}$ is said to be summable by the summabilty method $\left|N, p_{n}, \alpha_{n} ; \delta, \gamma\right|_{k}, k \geq 1, \delta \geq 0$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{\gamma(\delta k+k-1)}\left|t_{n}-t_{n-1}\right|^{k}<\infty . \tag{1.6}
\end{equation*}
$$

For $\gamma=1$, the summability method $\left|N, p_{n}, \alpha_{n} ; \delta, \gamma\right|_{k}, k \geq 1, \delta \geq 0$, any real $\gamma$, reduces to the method $\left|N, p_{n}, \alpha_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$.
A sequence $\left\{\lambda_{n}\right\}$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer $n$.
Let $f(t)$ be a periodic function with period $2 \pi$ and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Without loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t) \tag{1.7}
\end{equation*}
$$

It is well known that the convergence of Fourier series at $t=x$ is a local property of $f(t)$ (i.e., it depends only on the behavior of $f(t)$ in an arbitrarily small neighborhood of x ) and hence the summability of the Fourier series at $\mathrm{t}=\mathrm{x}$ by any regular linear method is also a local property of $f(t)$.

## 2. KNOWN THEOREMS:

Dealing with the $\left|\bar{N}, p_{n}\right|_{k}$-summability of an infinite series Bor [5] proved the following theorem:

## THEOREM-2.1:

Let $k \geq 1$ and let the sequences $\left\{p_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be such that

$$
\begin{align*}
& \Delta X_{n}=O\left(\frac{1}{n}\right),  \tag{2.1.1}\\
& \sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}+\left|\lambda_{n+1}\right|^{k}}{n}<\infty, \tag{2.1.2}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(X_{n}^{k}+1\right)\left|\Delta \lambda_{n}\right|<\infty, \tag{2.1.3}
\end{equation*}
$$

where $X_{n}=\frac{P_{n}}{n p_{n}}$. Then the summability $\left|\bar{N}, p_{n}\right|_{k}$ of the factored Fourier series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property.
Subsequently, Padhy et al [2] proved the following theorem on the local property of $\left|\bar{N}, p_{n}, \alpha_{n}, \delta\right|_{k}$ summability $(k \geq 1, \delta \geq 0)$ of a factored Fourier series.

## THEOREM-2.2:

Let $k \geq 1$. Suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and $\left\{p_{n}\right\}$ be a sequence of positive numbers such that

$$
\begin{equation*}
\Delta X_{n}=O\left(\frac{1}{n}\right) \tag{2.2.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=v+1}^{m+1} \alpha_{n}^{\delta k+k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left(\frac{1}{P_{n-1}}\right)=O\left(\frac{1}{P_{v}}\right) \tag{2.2.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}+\left|\lambda_{n+1}\right|^{k}}{n}<\infty \tag{2.2.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(X_{n}^{k}+1\right)\left|\Delta \lambda_{n}\right|<\infty, \tag{2.2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty} \alpha_{n}^{\delta k+k-1} \frac{\left|\lambda_{n}\right|^{k}}{n^{k}}<\infty \tag{2.2.5}
\end{equation*}
$$

where $X_{n}=\frac{P_{n}}{n p_{n}}$. Then the summability $\left|\bar{N}, p_{n}, \alpha_{n}, \delta\right|_{k}, k \geq 1, \delta \geq 0$ of the factored

Fourier series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property, where $\left\{\alpha_{n}\right\}$ is a sequence of positive numbers.
In what follows, in the present paper we establish the following theorem on $\left|N, p_{n}, \alpha_{n}, \delta, \gamma\right|_{k}$-summability of a factored Fourier series through its local property.

## 3. MAIN THEOREM:

Let $k \geq 1$. Suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and $\left\{p_{n}\right\}$ be a sequence such that

$$
\begin{align*}
& \Delta X_{n}=O\left(\frac{1}{n}\right),  \tag{3.1}\\
& \frac{P_{n-r-1}}{P_{n}}=O\left(\frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}}\right),  \tag{3.2}\\
& \sum_{n=r+1}^{m+1}\left(\alpha_{n}\right)^{\delta k+k-1} \frac{p_{n-r}}{P_{n}}=O\left(\frac{p_{r}}{P_{r}}\right),  \tag{3.3}\\
& \sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}}{n}<\infty, \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\Delta \lambda_{n}\right|^{k}}{n}<\infty, \tag{3.5}
\end{equation*}
$$

where $X_{n}=\frac{P_{n}}{n p_{n}}$. Then the summability $\left|N, p_{n}, \alpha_{n}, \delta, \gamma\right|_{k}, k \geq 1$ of the factored Fourier series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property, where $\left\{\alpha_{n}\right\}$ is a sequence of positive numbers.

## 4. REQUIRED LEMMA:

In order to prove the above theorem we require the following lemma:

## LEMMA-4.1:

Let $k \geq 1$ and suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and $\left\{p_{n}\right\}$ be a sequence such that the conditions (3.1)-( 3.5) are satisfied. If $\left\{s_{n}\right\}$ is bounded, then for the sequence of positive numbers $\left\{\alpha_{n}\right\}$ the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n} X_{n}$ is summable $\left|N, p_{n}, \alpha_{n}, \delta\right|_{k}, k \geq 1, \delta \geq 0$.

## PROOF OF THE LEMMA-4.1:

Let $\left\{T_{n}\right\}$ denote the $\left(N, p_{n}\right)$-mean of the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n} X_{n}$. Then by definition we have
$T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} \sum_{r=0}^{v} a_{r} \lambda_{r} X_{r}$
$=\frac{1}{P_{n}} \sum_{r=0}^{n} a_{r} \lambda_{r} X_{r} \sum_{v=r}^{n} p_{n-v}$
$=\frac{1}{P_{n}} \sum_{r=0}^{n} a_{r} P_{n-r} \lambda_{r} X_{r}$
Hence

$$
\begin{aligned}
& T_{n}-T_{n-1}=\frac{1}{P_{n}} \sum_{r=1}^{n} P_{n-r} a_{r} \lambda_{r} X_{r}-\frac{1}{P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-1} a_{r} \lambda_{r} X_{r} \\
& =\sum_{r=1}^{n}\left(\frac{P_{n-r}}{P_{n}}-\frac{P_{n-r-1}}{P_{n-1}}\right) a_{r} \lambda_{r} X_{r} \\
& =\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n}\left(P_{n-r} P_{n-1}-P_{n-r-1} P_{n}\right) a_{r} \lambda_{r} X_{r} \\
& =\frac{1}{P_{n} P_{n-1}}\left[\sum_{r=1}^{n-1} \Delta\left\{\left(P_{n-r} P_{n-1}-P_{n-r-1} P_{n}\right) \lambda_{r} X_{r}\right\}\right] \sum_{r=1}^{r} a_{v} \\
& =\frac{1}{P_{n} P_{n-1}}\left[\sum_{r=1}^{n-1}\left(p_{n-r} P_{n-1}-p_{n-r-1} P_{n}\right) \lambda_{r} X_{r} s_{r}\right. \\
& \quad+\sum_{r=1}^{n-1}\left(P_{n-r-1} P_{n-1}-P_{n-r-2} P_{n}\right) \Delta \lambda_{r} X_{r} s_{r} \\
& \left.\quad+\sum_{r=1}^{n-1}\left(P_{n-r-1} P_{n-1}-P_{n-r-2} P_{n}\right) \lambda_{r+1} \Delta X_{r} s_{r}\right]
\end{aligned}
$$

(by Abel's transformation)
$=T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}+T_{n, 5}+T_{n, 6}$, (say).
In order to complete the proof of the theorem by using Minokowski's inequality, it is sufficient to show that
$\sum_{n=1}^{\infty} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, i}\right|^{k}<\infty$ for $i=1,2,3,4,5,6$.
Now, we have
$\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 1}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} p_{n-r} P_{n-1} \lambda_{r} X_{r} S_{r}\right|^{k}$
$\leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n}}\left(\sum_{r=1}^{n-1} p_{n-r}\left|\lambda_{r}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right)\left(\frac{1}{P_{n}} \sum_{r=1}^{n-1} p_{n-r}\right)^{k-1}$

$$
\begin{aligned}
& =O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n-r}}{P_{n}}\right) \\
& =O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}}, \operatorname{by}(3.3) \\
& =O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}} \text {, as } X_{n}=\frac{P_{n}}{n p_{n}} \\
& =O(1) \sum_{r=1}^{m} X_{r}^{k-1} \frac{\left|\lambda_{r}\right|^{k}}{r} \\
& =O(1) \text { as } m \rightarrow \infty, \text { by (3.4). }
\end{aligned}
$$

Next,
$\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 2}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} p_{n-r-1} P_{n} \lambda_{r} X_{r} S_{r}\right|^{k}$
$\leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n-1}}\left(\sum_{r=1}^{n-1} p_{n-r-1}\left|\lambda_{r}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right)\left(\frac{1}{P_{n-1}} \sum_{r=1}^{n-1} p_{n-r-1}\right)^{k-1}$
$=O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n-r-1}}{P_{n-1}}\right)$
$=O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}}, \operatorname{by}(3.3)$
$=O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}$, as $X_{n}=\frac{P_{n}}{n p_{n}}$
$=O(1) \sum_{r=1}^{m} X_{r}^{k-1} \frac{\left|\lambda_{r}\right|^{k}}{r}$
$=O$ (1) as $m \rightarrow \infty$, by (3.4).
Further,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 3}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-1} P_{n-1} \Delta \lambda_{r} X_{r} s_{r}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n}}\left(\sum_{r=1}^{n-1} P_{n-r-1}\left|\Delta \lambda_{r}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right)\left(\frac{1}{P_{n}} \sum_{r=1}^{n-1} P_{n-r-1}\left|\Delta \lambda_{r}\right|\right)^{k-1} \\
& =O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{P_{n-r-1}}{P_{n}}\right) \\
& \left(\text { Since }\left.\frac{1}{P_{n}} \sum_{r=1}^{n-1} P_{n-r-1}\right|^{\left.\left|\Delta \lambda_{r}\right| \leq \sum_{r=1}^{n-1}\left|\Delta \lambda_{r}\right|=O(1)\right)}\right. \\
& =O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}}, \operatorname{by}(3.3)
\end{aligned}
$$

Indexed Norlund Summability Of A Factored Fourier Series-Via-Local Property 3129
$=O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}$, as $X_{n}=\frac{P_{n}}{n p_{n}}$
$=O(1) \sum_{r=1}^{m} X_{r}^{k-1} \frac{\left|\Delta \lambda_{r}\right|^{k}}{r}$
$=O(1)$ as $m \rightarrow \infty$, by (3.5).
Now,
$\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 4}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-2} P_{n} \Delta \lambda_{r} X_{r} S_{r}\right|^{k}$
$\leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n-1}}\left(\sum_{r=1}^{n-1} P_{n-r-2}\left|\Delta \lambda_{r}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right)\left(\frac{1}{P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-2}\left|\Delta \lambda_{r}\right|\right)^{k-1}$
$=O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{P_{n-r-2}}{P_{n-1}}\right)$ (as above)
$=O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}}$, by (3.3)
$=O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}$, as $X_{n}=\frac{P_{n}}{n p_{n}}$
$=O(1) \sum_{r=1}^{m} X_{r}^{k-1} \frac{\left|\Delta \lambda_{r}\right|^{k}}{r}$
$=O(1)$ as $m \rightarrow \infty$, by (3.5).
Again

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 5}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-1} P_{n-1} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k} \\
& =\left.\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{P_{n-r-1}}{P_{n}} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k} \text { by (3.2) } \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma \gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}} \lambda_{r+1} s_{r} \frac{1}{r}\right|^{k} \text { by (3.1) } \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma \gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}} \lambda_{r+1} s_{r} X_{r} \frac{p_{r}}{P_{r}}\right|^{k}, \text { as } X_{n}=\frac{P_{n}}{n p_{n}} \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma \gamma(\delta k+k-1)}\left\{\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}}\left|\lambda_{r+1}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right\}\left\{\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}}\right\}^{k-1}
\end{aligned}
$$

$=O(1) \sum_{r=1}^{m}\left|\lambda_{r+1}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n-r-1}}{P_{n-1}}\right)$
$=O(1) \sum_{r=1}^{m}\left|\lambda_{r+1}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}$, as $X_{n}=\frac{P_{n}}{n p_{n}}$ and by (3.3)
$=O(1) \sum_{r=1}^{m} \frac{\left|\lambda_{r+1}\right|^{k}}{r} X_{r}^{k-1}$,
$=O(1)$ as $m \rightarrow \infty$, by (3.4).
Finally,
$\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 6}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-2} P_{n} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k}$
$=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{P_{n-r-2}}{P_{n-1}} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k}$
$=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-2}}{P_{n-2}} \frac{P_{r}}{p_{r}} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k}$, by (3.2)
$=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-2}}{P_{n-2}} \frac{P_{r}}{p_{r}} \lambda_{r+1} s_{r} \frac{1}{r}\right|^{k}$, by (3.1)
$=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-2}}{P_{n-2}} \frac{P_{r}}{p_{r}} \lambda_{r+1} s_{r} X_{r} \frac{p_{r}}{P_{r}}\right|^{k}$, as $X_{n}=\frac{P_{n}}{n p_{n}}$
$=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left\{\sum_{r=1}^{n-1} \frac{p_{n-r-2}}{P_{n-2}}\left|\lambda_{r+1}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right\}\left\{\sum_{r=1}^{n-1} \frac{p_{n-r-2}}{P_{n-2}}\right\}^{k-1}$
$=O(1) \sum_{r=1}^{m}\left|\lambda_{r+1}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n-r-2}}{P_{n-2}}\right)$
$=O(1) \sum_{r=1}^{m}\left|\lambda_{r+1}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}$, as $X_{n}=\frac{P_{n}}{n p_{n}}$ and by(3.3)
$=O(1) \sum_{r=1}^{m} \frac{\left|\lambda_{r+1}\right|^{k}}{r} X_{r}^{k-1}$,
$=O(1)$ as $m \rightarrow \infty$, by (3.4).
This completes the proof of the Lemma.

## 5. <br> PROOF OF THE THEOREM:

Since the behavior of the Fourier series, as far as convergence is concerned, for a particular value of $x$ depends on the behavior of the function in the immediate neighborhood of this point only, the truth of the theorem is necessarily the consequence of the Lemma.

## 6. CONCLUSION:

Putting $\delta=0$ and $\alpha=\frac{P_{n}}{p_{n}}$ with $\delta=0$, the result of Padhy et al.[2] and the result of H.Bor [1] can be achieved respectively from the result established in the present chapter under a few varying condition. Further there is a reach scope to work in this area for different indexed summability methods with additional parameter.

## REFERENCES

1. H.Bor., 1992, On the Local Property of $\left|\bar{N}, p_{n}\right|_{k}$ Summability of factored Fourier series,journal of mathematical analysis and applications-163(220-226).
2. Padhy, B.P, Panda,N.K, Misra, U.K. and,Misra,M., 2012. On the Local Property of $\left|\bar{N}, p_{n}, \alpha_{n}, \delta\right|_{k}$-Summability of factored Fourier series, International Journal of Research and Reviews in applied Sciences, Vol.13, No. 2, pp 561-566..
