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ABSTRACT

In this paper we have established a theorem on |N, pn,an,5,y|k _summability

of a factored Fourier series-via-Local property.
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1. INTRODUCTION:
Let > a, be a given infinite series with sequence of partial sums {s, }. Let{p, }be a

sequence of positive real constants such that

(1.2) P,,:va—>ooasn—>oo(P_i:p_i:0,i21)
v=0

The sequence-to-sequence transformation
1 n

(1.2) t, = FZPHSV

n v=0
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defines(N , pn)-mean of the sequence {sn}generated by the sequence of coefficients

{p, }. The series )" a, is said to be summable [N, p,|, , k > 1 if

k-1
=( P
@3 ( ,, ]
2,
_-summability is same as N, p,

k
tn - tn—l

<00,

For k=1, W, D,

-summability.

When p, =1, foralln and k =1,|N, p,
Let {o,} be any sequence of positive numbers. The series » a, is said to be
k21 if

. -summability is same as |C, 1| summability.

summable [N, p,,a,

(1.4) iaf’l
n=1

where {t,} is as defined in (5.1.2).The series > a, is said to be
IN, p,,,6],, k =21,6 20, summable if

(1'5) Za5k+kfl
n=1

For 5=0, the summability metod |N, p,.a,.5| .,k 21,620, reduces to the
k>1

k’
For any real number y, the series Zan is said to be summable by the summabilty

method |N, p,.,;6,7,,k>1620, if

(1.6) >/, i,
n=1

For y =1, the summability method |N, p,,«,;6,7|, .k >1,6 >0, any real y, reduces to

the method |N, p,,a,; 5|, .k 21,6 20.

A sequence {/In }is said to be convex if A*A4, >0 for every positive integer n.

Let f(t) be a periodic function with period 2z and integrable in the sense of Lebesgue
over (-, ) . Without loss of generality we may assume that the constant term in the
Fourier series of £(¢) is zero, so that

(L.7) £(t)~ > (a, cosnt +b, sinnry =Y 4, (1)

It is well known that the convergence of Fourier series at t = x is a local property of
f(¢) (ie., it depends only on the behavior of f(z) in an arbitrarily small
neighborhood of x ) and hence the summability of the Fourier series at t = x by any
regular linear method is also a local property of f(t) :

k

tn - ln -1

< o0

k
ln - ZLn—l

<00,

summabilty method [N, p,,a

n

<o,

n?!
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2. KNOWN THEOREMS:
Dealing with the W, p,,‘k -summability of an infinite series Bor [5] proved the

following theorem:

THEOREM-2.1:
Let k£ >1and let the sequences { p, }and {4, } be such that
(2.1.1) AX, = O[EJ ,
n

e A1 +[A
(2.1.2) Yy <o,

n=1 n
and
(2.1.3) D (XE+D)|AL,] < oo,

n=1

P R . .
where X, =—". Then the summability ‘N,pn‘k of the factored Fourier series
np,

ZAn (1)A,X, atapoint can be ensured by the local property.

n=1

Subsequently, Padhy et al [2] proved the following theorem on the local property of
W, D, Q,, 5‘]( summability( £ >1,6 > 0) of a factored Fourier series.
THEOREM-2.2:

Letk >1. Suppose {/1} be a convex sequence such that Zn’l/ln is convergent and
{pn} be a sequence of positive numbers such that

2.2.1) AX, = 0(1J |
n
m+1 p K 1 1
(2.2.2) doalt R | = =0 = |,
n=v+l 1);1 Rz—l PV
i A1+
2.2.3 el Pl oo,
(2.2.3) le " .
(2.2.4) D (XE+D)|AL,| < oo,
n=1
and
k
(2.2.5) Zaj"+k-1’;—k< 0,
n=2

where X =i.Then the summability W, pn,an,6‘k, k=1,6 20 of the factored
npn
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Fourier series ZAn (#)A,X, at a point can be ensured by the local property, where
n=1

{a, } is a sequence of positive numbers.
In what follows, in the present paper we establish the following theorem on
N,p,.,,6,7|, -summability of a factored Fourier series through its local property.

n!

3. MAIN THEOREM:
Letk >1. Suppose {4,} be a convex sequence such that » n~*2, is convergent and

{p,} be asequence such that

(3.1) AX, = OH ,
n
(32) R1—r—1 — O(!’n—r—l ij ,
Pn ])n—l pr
mil Sk+k—1 » »
3.3 a L =0 |,
( ) n;—l( ! ) Ijn L R« J
- k-1 Z’n ‘
(3.4) Y X<,
-1 n
and
& A4,
(3.5) > X |—" <o,
n=1 n

P -
where X, = —"-.Then the summability |V, p

a,,8,7|,, k >10f the factored Fourier
np,

n?

series ZAn (#)A,X, at a point can be ensured by the local property, where {a”} is a
n=1

sequence of positive numbers.

4. REQUIRED LEMMA:
In order to prove the above theorem we require the following lemma:

LEMMA-4.1:
Let £ >1and suppose {/1} be a convex sequence such that Zn’lﬂn is convergent and

{p,} be a sequence such that the conditions (3.1)-( 3.5) are satisfied. If {s,} is

bounded, then for the sequence of positive numbers {«,} the series ZanﬂnX,, is

n=1

summable|N, p,. a,., 5], . k21,6 0.

n?
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PROOF OF THE LEMMA-4.1:

Let {T, {denote the (v,  )-mean of the series > a,4,X, . Then by definition we

n=1
have

Tn :iipnfviarﬂlX
=—Za A.X an .

n r=0
:iiarPn—rerr
Pn r=0
Hence
1 n-1
n —1 = _ZPn r rXr __ZPn—r—larﬂ’rXr
n r=1 n-1 r=1
(PP
= _nor _ _norel A X
;( Pn Pn—l Jar t
1 n
= P P .,—P PhAX
Pn])n_l ;( n—r= n-1 n—r-1 nhr r

n

1 ”
P P”_l |:ZA -r n 1 7rfan )ﬂ“rXr }:|;av

n r

1 n=1
= PP |:Z(pn—rR1—l pn r-1 )ﬂ’ X S
ntn-1Lr=l

n—.

+ZP P.—P_ ,P)ALX,s,

n—r-1 n—r-2
r=

n—-1
+Z(Pn—r—1pn—1 n-r-2 )/IHIAX S :|
r=1
(by Abel’s transformation)
=T, 41,41, 3+T, ,+T,5s+1,¢ , (say).

In order to complete the proof of the theorem by using Minokowski’s inequality, it is
sufficient to show that

k+k-1
Sk+k-
EC{/( +k1)

n=1
Now, we have

T "< fori=12345,6.

n,i

& (Sk+k-1) k & 7(5k+k-1) '
7(Sk+k=: _ +
Zan Tl"t,l - Zal an —r n—l/errSr
n=2 n=2 n n—1 r=
m+l 1 n—1 k=1
< §k+k -1) Z Z
< P F Dr
n=2 n r=1
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i 7(Sk+k-1) | Py
n=r+1 P

n

 by(3.3)

P
—,as X, =
B, np,

k
=om) x™ Pl

r=1 r
=0@Q) as m— o,by (3.4).

Next,
k
& (Sk+k-1) k & y(Sk+k-1)
y _
Zan T, = ZOC,, Zp” LPAX s,
n=2 n=2 PP_1 r=1

m+1 n k-1
< Z r(okk1) (Z];pn 1 J [ Z];pn e 1)

= 1—1 \r=. _1 r=
& y(Sk+k-1) | Pyp_ra
nz-#l [ P 1 }

 by(3.3)

P
a8 X, =
B, np,

k
=0 x* 2N

r=1 r
=0@Q) as m — o, by (3.4).

Further,
k
& (Sk+k-1) k & y(Sk+k-1)
A Sk+k—
> a, T =>a’ ZPMlP ALX,s,
n=2 n=2 n n—l r=1

I

m+1
5k+k 1 k k
< z (Z n—r-. l Sr rj Z n-r l
n=2 n r=1 n r=1
i ok [ By
P

n=r+1 n

(Sznce —Z  a|AZ,| < 2|Al},| = O(l)j

n r=1 r=1

- by(3.3
p o YE3I)

r
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—,as X, =
P mp, np,

m A k
= 0(1)2 XL
r=1
=0@Q) as m — o, by (3.5).

NOW;
Sa/ A [ =Sae LS e pasxs |
2 u n,4 s n PnBl_l — n—r-2"n (bl gl
m+1 -
< 5k+k 1 k S g j ( J
; _1 [; n—r— 2 ! : _1 iz—ll '
- 0(1)Z|A/1 Fxt S g e (%} (as above)
n=r+1 n-1

ki P
X5 £ by (3.3
X5 y (3.3)

r

P
a8 X, =
P mp, np,

m A k
= 0(1)2 XL
r=1
=0@Q) as m — o, by (3.5).

Again
k
‘ 1
oy ‘ ”5‘ 7ok Z n 1ﬂ‘r+lAX S

n= ntn-1 r=1

m+l n-1 P k
e S B axs,

~ n = Pn 741

m+l n-—. k
_ Zany(5k+k -1) Z Puya B A.AXs| by(3.2)

n=2 r=1 _1 pr

m+l 1
_ aﬂy(&lﬁ—k 1) an -1 r r+lS by (3.1)

n=2 r=1 n—l pr

m+l
ZZan7(5k+k ! an S r A?Jrl rXr p} y @S Xn =

n=2 =1 —1 r r npﬂ

m+l n-1 k-1
— 7(5k+k—1) pn—r—l pn r—1
- Zan { P /11'+1 r } {Z }
n=2 r=1 n-1 =1 _1
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= O(l)z - Xf i H(5k+k-1) (%]
n-1

n=r+1

P P
= O(l)z Al XL D as x =t
r=1 PV rpr npn
=0 X
r=1
=0@1) as m— o, by (3.4).
Finally,
m+l Shikt i m+1 bk ‘ l n—1 k
Sa/ [ =S a2 S e pgAX
n=2 n=2 _1 r=1
m+1 n-1 P k
=3NS Tz g AX s,
n=2 r=1 n-1
m+ n-1 k
=SS P L ax | by (32)
n=2 r=1 }1—2 Ijr
k
m+. . n—. P 1
_ an7(5k k-1) Pn 22 s ‘ , by (3.1)
n=2 r= RI—Z pr r
m+1 n—1 p P p k
=Zan}’(6k+k—l) n—r=2 " r. r+lSrXr r . as Xﬂ —
n=2 r=1 Pn_z D, Pr np,

r

n p k-1
k yrk n—r—2
X e
}{Z—ll Bl }

—0(1)Z| JxSa ”““k-l)(l?;_r_z]
n-2

n=r+1

m+1 n-1
:Zan7(5k+k—l){ P2 1
=

r+1
n=2

P P
oS L
r=1 r rpr npn
=0 — X7,
r=1

=0@Q) as m — o, by (3.4).
This completes the proof of the Lemma.

5. PROOF OF THE THEOREM:

Since the behavior of the Fourier series, as far as convergence is concerned, for a
particular value of x depends on the behavior of the function in the immediate
neighborhood of this point only, the truth of the theorem is necessarily the
consequence of the Lemma.
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6. CONCLUSION:
Putting & = 0 and oz:i with =0, the result of Padhy et al.[2] and the result of
P

H.Bor [1] can be achieved respectively from the result established in the present
chapter under a few varying condition. Further there is a reach scope to work in this
area for different indexed summability methods with additional parameter.
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